
WiseTrans: Adaptive Transport Protocol Selection for Mobile
Web Service

Jia Zhang1,3, Enhuan Dong1,3, Zili Meng2,3, Yuan Yang1,3, Mingwei Xu1,2,3,
Sijie Yang4, Miao Zhang4, Yang Yue1

1Department of Computer Science and Technology & BNRist, Tsinghua University
2Institute for Network Sciences and Cyberspace, Tsinghua University

3Peng Cheng Laboratory (PCL) 4Baidu Inc.
{jia-zhan18,mzl19,ley18}@mails.tsinghua.edu.cn,{dongenhuan,yangyuan_thu,xumw}@tsinghua.edu.cn

{yangsijie,zhangmiao02}@baidu.com

ABSTRACT
To improve the performance of mobile web service, a new transport
protocol, QUIC, has been recently proposed. However, for large-
scale real-world deployments, deciding whether and when to use
QUIC in mobile web service is challenging. Complex temporal
correlation of network conditions, high spatial heterogeneity of
users in a nationwide deployment, and limited resources on mobile
devices all affect the selection of transport protocols. In this paper,
we present WiseTrans to adaptively switch transport protocols for
mobile web service online and improve the completion time of web
requests.

WiseTrans introduces machine learning techniques to deal with
temporal heterogeneity, makes decisions with historical informa-
tion to handle spatial heterogeneity, and switches transport pro-
tocols at the request level to reach both high performance and
acceptable overhead. We implement WiseTrans on two platforms
(Android and iOS) in a popular mobile web service application of
Baidu. Comprehensive experiments demonstrate that WiseTrans
can reduce request completion time by up to 26.5% on average
compared to the usage of a single protocol.

CCS CONCEPTS
• Networks→ Transport protocols; Mobile networks.

KEYWORDS
Protocol Selection; Mobile Web Service; ML-based Networking
Systems
ACM Reference Format:
Jia Zhang, Enhuan Dong, Zili Meng, Yuan Yang, Mingwei Xu, Sijie Yang,
Yang Yue. 2021. WiseTrans: Adaptive Transport Protocol Selection for Mo-
bile Web Service. In Proceedings of the Web Conference 2021 (WWW ’21),
April 19–23, 2021, Ljubljana, Slovenia. ACM, New York, NY, USA, 10 pages.
https://doi.org/10.1145/3442381.3449958

1 INTRODUCTION
Recently, a sharp increase in the usage of mobile web service has
been observed. The latest statistics demonstrate that mobile users
This paper is published under the Creative Commons Attribution 4.0 International
(CC-BY 4.0) license. Authors reserve their rights to disseminate the work on their
personal and corporate Web sites with the appropriate attribution.
WWW ’21, April 19–23, 2021, Ljubljana, Slovenia
© 2021 IW3C2 (International World Wide Web Conference Committee), published
under Creative Commons CC-BY 4.0 License.
ACM ISBN 978-1-4503-8312-7/21/04.
https://doi.org/10.1145/3442381.3449958

become the largest proportion of global Internet users [2]. In this
case, request completion time1 of mobile web service is becoming
more and more critical for service providers. For example, Google
reported that 53% of mobile users give up waiting if the page vis-
ited fails to be loaded within three seconds [30]. As a consequence,
mobile web service providers strive to reduce the page load time
and improve mobile web performance. In response, a new transport
protocol, QUIC, has been proposed to cater for the increasingly
stringent delay requirements from web service. As being standard-
ized [8], QUIC has been becoming a newwidely supported transport
protocol in web service.

Yet, QUIC does not always perform better than TCP. Generally
speaking, with proper designs on the handling of packet retransmis-
sions, QUIC achieves better performance than TCP in the scenario
of slow nets. On the other hand, TCP works better in networks
with better conditions due to the quality of service (QoS) strategies
from Internet Service Providers (ISPs) [22, 23, 33]. Moreover, in
mobile networks, the network condition of the mobile users could
be frequently changed. Therefore, using a fixed transport protocol
for all requests will result in sub-optimal performance.

Therefore, we propose WiseTrans in this paper, an adaptive
transport protocol selection mechanism to improve the perfor-
mance of mobile web service. WiseTrans measures the network
conditions from mobile users and switches the transport protocols
when needed. By adaptively switching transport protocols, mobile
users can therefore enjoy benefits from both protocols and have a
higher experience when using mobile web service. A straightfor-
ward method to enable the idea is to measure the protocol perfor-
mance in advance and construct a decision boundary for online
protocol switching. For example, operators can emulate different
bandwidths, delay, and packet loss rate and measure the perfor-
mance of both protocols as in the online optimization of congestion
control parameters [29, 32].

However, in a large-scale real-world deployment of mobile web
service, it is non-trivial to decide whether a request in mobile web
service should use TCP or QUIC. First, the temporal heterogene-
ity of network conditions during the connection makes the prob-
lem more challenging. For example, even for one mobile user, the
network conditions could be affected by the interference on wire-
less channels and the competition with other flows. It is difficult
for operators to precisely measure the network conditions in real
time. Second, due to the spatial heterogeneity of mobile users, the
1There are also metrics in the optimization of mobile web service, such as page loading
time. In this paper, we focus on the HTTP request completion time.

https://doi.org/10.1145/3442381.3449958
https://doi.org/10.1145/3442381.3449958

WWW ’21, April 19–23, 2021, Ljubljana, Slovenia Jia Zhang, Enhuan Dong, Zili Meng, Yuan Yang, Mingwei Xu, Sijie Yang, Yang Yue

web service provider needs to tackle different behaviors on wide-
area networks and mobile access networks. For example, different
QoS preferences of ISPs and home routers could all affect the op-
timal choice between two protocols [23]. In this case, different
users might have different decision boundaries. Third, deciding the
proper granularity of protocol switching is also challenging. Fine
granularity of protocol switching (e.g., packet-level) will result in
burdensome overhead to collect statistics from mobile clients and
maintain consistency during switching. Switching the protocol in
a sparse granularity (e.g., user-level and page-level) would degrade
the performance due to the temporal heterogeneity of mobile users.

To address the above challenges, we design several building
blocks in WiseTrans. First, we observe that the spatial heterogene-
ity of users could be learned by the combination of history network
conditions, history decisions, and the performance of that decision.
Therefore, we collect not only historical network conditions, but
also the decisions and their consequent performance for those de-
cisions (§3.2). Second, to handle the complex temporal relationship
during a connection while ensuring the simplicity for large-scale
deployment, we employ a tree-based classification algorithm, XG-
Boost, to optimize the protocol decisions (§3.3). Moreover, we utilize
features of concurrent requests in HTTP page loading and decide to
optimize the protocol selection at the granularity of web requests.
Due to the independence of each request in web service, the timeli-
ness of web requests, and the computation ability of mobile devices,
switching the protocol at the request level can achieve both high
performance and satisfactory overhead (§3.1).

We implement WiseTrans on two platforms (Android and iOS)
in the production environment in Baidu. Extensive experiments
demonstrate that WiseTrans could reduce the request completion
time by 26.5% on average compared to using a single protocol.
With XGBoost, WiseTrans can also achieve an accuracy of 88.3% of
protocol selection for each request.

In summary, we make the following contributions in this paper:
• We motivate the problem and significance of transport proto-
col selection with measurements from real-world mobile web
service (§2).

• We propose WiseTrans, an adaptive transport protocol selection
mechanism based on XGBoost for large-scale deployment of
mobile web service (§3).

• Weevaluate the performance improvements ofWiseTrans against
several baselines with extensive experiments with one of the
mobile web service of Baidu (§4).

2 BACKGROUND AND MOTIVATION
In this section, we first introduce the performance differences be-
tween QUIC and TCP for mobile web service in §2.1. We then
present the challenges of the adaptive protocol switching for mo-
bile web service in §2.2.

2.1 Background
After QUIC was proposed, lots of measurements have revealed
the performance differences between TCP and QUIC. Specifically
for mobile web service, we also conduct a week-long passive mea-
surement campaign on one mobile web service with millions of

0 1 2 3 5 7 9 10 20
Loss rate (%)

0.
0

0.
4

0.
8

1.
6

2.
4

3.
2

4.
0

5.
6

8.
0

12
.0

16
.0

Ba
nd

wi
dt

h
(m

bp
s)

0.5

0.0

0.5

1.0

1.5

Figure 1: ln 𝜆 with different bottleneck bandwidth and packet loss
rate. Red color indicates QUIC outperforms TCP and blue color indi-
cates that TCP outperforms QUIC. 𝜆 is the ratio of the performance
of TCP and QUIC. The performance here is the request completion
time at the application layer for the mobile web service.

requests. We summarize the key enablers that result in the per-
formance difference of using TCP and QUIC. Our detailed passive
measurements in the wild in Appendix A also show that TCP and
QUIC perform differently with different access network types in
different geographical locations. See the appendix for the method-
ology and detailed results of our large-scale passive measurement
on one mobile web service.

Network conditions. We present our measurement results of the
performance of QUIC and TCP on different bandwidth and loss
rate in Fig. 1. Red color indicates that QUIC outperforms TCP at
that network condition, and deeper color indicates more significant
improvements. The statistical average results of QUIC outperforms
TCP on those slow net (high loss rate and low bandwidth). Mea-
surements on RTT demonstrate similar results. As also measured
by recent advances, the higher performance of QUIC in those slow
nets attributes to its better loss detection and recovery, as well as
the elimination of Head-Of-Line (HOL) blocking and ACK ambigu-
ity [9, 22, 23, 33].

Computation resources. Meanwhile, for mobile web service, the
performance of QUIC is also affected by the computation resource
on mobile users. Due to the high CPU overhead (up to 3.5× higher
compared to TCP/TLS [23]), mobile devices with limited computa-
tion resources might experience performance degradation [22].

2.2 Design Challenge
However, as we discussed in §1, deciding which protocol to use is
non-trivial in a large-scale real-world deployment of mobile web
service. We have encountered the following major challenges:

Complex temporal correlation. Network condition fluctuates
due to wireless channel fading, user moving, or network conges-
tion. Therefore, if we categorize the best protocol for mobile users

WiseTrans: Adaptive Transport Protocol Selection for Mobile Web Service WWW ’21, April 19–23, 2021, Ljubljana, Slovenia

according to Fig. 1, the optimal protocol might also change. How-
ever, precisely measuring the current network condition and cap-
turing the temporal relationship is challenging due to the complex
correlation of network statistics. For example, existing research
efforts have employed sophisticated mathematical tools to measure
and predict even one network condition (e.g., Kalman filter for
RTT [14]). Precisely combining the statistics from three network
properties (bandwidth, RTT, and loss rate) and jointly optimizing
the transport protocol selection would be more challenging.

High spatial heterogeneity. For widely deployed mobile web
service, users may come from different regions, using different ISPs
and home devices. However, those in-network devices might have
different preferences towards UDP, which will consequently affect
the performance of QUIC. For example, since UDP traffic is more
likely to be adopted as malicious attack traffic, ISP gateways or
home routers might have additional QoS strategies by randomly
dropping, rate limiting, or even blocking UDP traffic [1, 3]. Since
different ISPs and home routers might have different preferences, it
is challenging for us to optimize the protocol selection for individual
users.

Limited resource on mobile devices. Deciding the proper oper-
ating granularity of a protocol switching algorithm is also challeng-
ing for mobile devices. On one hand, packet-level measurements
might result in burdensome overhead by querying the statistics of
network stack [12]. Packet-level protocol switching will also result
in consistency overhead at the transport layer. On the other hand,
sparse granularity switching, like user-level and page-level, might
lead to sub-optimal performance because of mobile users’ tempo-
ral heterogeneity and may be too long to track the time-varying
network condition [26].

Therefore, we are motivated to design an adaptive transport
protocol switching mechanism for mobile web service with the
above challenges in mind.

3 WISETRANS DESIGN
In this section, we present the design of WiseTrans. We first present
an overview (§3.1), and then introduce each design components
of WiseTrans, including a Feature Extractor (§3.2), a Protocol
Classifier (§3.3), and a Rollback Checker (§3.4).

3.1 Design Overview
As shown in Fig. 2, the workflow of WiseTrans is as follows:

Step 1: Feature extraction. Periodically, WiseTrans measures raw
statistics for each user of the mobile web service. We will intro-
duce which statistics to measure and how the Feature Extractor
preprocesses historical data in §3.2.

Step 2: Protocol classification.Next,WiseTrans employs anXGBoost-
based [17] Protocol Classifier (§3.3). The Protocol Classifier
selects a better transport protocol based on the features from the
Feature Extractor.

Step 3: Rollback check. After that, before putting the protocol
selection into effect, WiseTrans checks if the user needs to rollback
the selection with a Rollback Checker (§3.4). The rollback mech-
anism is designed to correct unexpected behaviors caused by the

Protocol switching /
maintenance

Internet Feature
Extractor

Protocol
Classifier

Rollback
Checker

Features

Advised Protocol

Figure 2: The architecture of WiseTrans.

preferences of network devices or the decisions of the Protocol
Classifier.

Step 4: Protocol switching. Finally, based on the output of the
Protocol Classifier and Rollback Checker, WiseTrans decides
to still use the current transport protocol or switch to the other one
for the next web service request.

However, as we discussed before, a key design choice is the
operation granularity of WiseTrans. Compared to the user-level
classification in personal characterization of social networks [6]
and packet-level decisions in network bandwidth prediction in the
network stack [14], WiseTrans works on the request level due to
the following considerations:
• Overhead on mobile devices. For mobile web service, the re-
sources on mobile devices are limited. Therefore, packet-level
measurements at the protocol stack might result in burden-
some overhead by frequently querying the statistics of network
stack [27]. Moreover, packet-level decisions usually need to mod-
ify the protocol stack [13], which is impractical for web service
providers. In contrast, request-level measurements alleviate the
overhead issue.

• Timeliness of request. Network conditions usually do not
frequently change within a few RTTs and are usually around
hundreds of milliseconds or even longer [5]. As shown in Fig. 3,
nearly 90% of requests are completed within one second from
our measurements. Meanwhile, the latency in mobile web ser-
vice could be up to hundreds of milliseconds [18]. In this way,
switching the protocol at the request level is timely enough for
mobile web service.

• Consistency during protocol switching. Moreover, opera-
tors need to consider the consistency during the protocol switch-
ing. For example, if we switch the protocol at the packet level,
packets need reordering due to the potential out-of-order issues
from two protocols. In contrast, one request does not depend
on the completion of other requests in one page of mobile web
service. Therefore, switching the protocol at the request level
does not need to guarantee the order of request completion and
reduce the overhead at the client side.

3.2 Feature Extractor
To address the spatial heterogeneity, we extract features not only
representing historical network conditions, but also historical deci-
sions and their consequent performance for those decisions. The
decision boundary may be different for different mobile users and
can be changeable for an individual user due to spatial heterogene-
ity. For example, since ISP gateways or home routers might have
additional QoS strategies by randomly dropping, rate limiting, or
even blocking UDP traffic, different users may have different de-
cision boundaries shown in Fig. 1. Simply considering network

WWW ’21, April 19–23, 2021, Ljubljana, Slovenia Jia Zhang, Enhuan Dong, Zili Meng, Yuan Yang, Mingwei Xu, Sijie Yang, Yang Yue

0 2000 4000 6000 8000 10000 12000
Request Completion Time (ms)

0.0

0.5

1.0

CD
F

Figure 3: The distribution of the request completion time of our
mobile web service application in thewild. Themeasurement details
are introduced in Appendix A.

conditions cannot optimize protocol selection for individual users.
In another scenario, the access network and ISP changes when a
user moves, which will bring the decision boundary changes. The
same network condition may correspond to different protocol se-
lection decisions with such changes, making historical network
conditions not enough for decision making.

Therefore, we adopt three kinds of features, as shown in Tab. 1
• Historical network conditions.Weuse𝑅𝑇𝑇 (round-trip time),
𝐵𝑡𝑙𝐵𝑤 (bottleneck bandwidth) and 𝐿𝑜𝑠𝑠𝑅𝑎𝑡𝑒 (packet loss rate)
to model a network path, following [13], which can describe
the network conditions a user experienced. Based on the design
choice mentioned in §3.1, we collect request-level average RTT
(𝑅𝑇𝑇_𝑎𝑣𝑔), throughput (𝑟𝑒𝑞_𝑐𝑚𝑝𝑙_𝐺) and retransmission rate
(𝑅𝑒𝑡𝑟𝑎𝑛_𝑟𝑎𝑡𝑒) as network conditions.

• Historical decisions. The transport protocol should also be
considered. Historical decisions and their subsequent perfor-
mance can address the heterogeneity and variability of the deci-
sion boundary. The possible rate limit of QUIC/UDP for some
users can be reflected from the similar network conditions and
the same protocol, but different performance. In the meantime,
the changes of decision boundary will be explored by the un-
changed network conditions and protocol, but changing perfor-
mance.

• Historical requests’ performance.We select𝑇𝑇𝐹𝐵 and 𝑟𝑒𝑠𝑝_𝑟𝑒𝑐_𝐺
as the performance of the past decision. As shown in Fig. 8, TTFB
in this paper is the time from the client sending the request to
the client receiving the first byte, implies the properties of the
request transport. 𝑟𝑒𝑞_𝑐𝑚𝑝𝑙_𝐺 measures request completion
goodput, dividing the user’s received bytes by the time interval
between the client sending request, and receiving the whole
response body.
As shown in Fig. 4, for each request, Feature Extractor records

the required information of the request, as well as the RTT, retrans-
mitted packets, and TTFB in the Record Window from the HTTP
logs and the socket logs. Finally, all the features extracted from
the requests in the Recog Window are passed to the Protocol
Classifier, as shown in Fig. 5.

3.3 Protocol Classifier
As introduced before, the design goal of Protocol Classifier
is to faithfully learn the temporal correlation and spatial hetero-
geneity based on the features from Feature Extractor. Potential
classification models include linear regression, supporting vector
machine, decision tree, random forests, and even neural networks.

Timeline

Record
Window

Request Complete

𝑅𝑇𝑇_𝑎𝑣𝑔
𝑅𝑒𝑡𝑟𝑎𝑛_𝑟𝑎𝑡𝑒
𝑇𝑇𝐹𝐵_𝑎𝑣𝑔

!
Statistic

Record 𝑟𝑒𝑞_𝑐𝑚𝑝𝑙_𝐺
𝑟𝑒𝑠𝑝_𝑟𝑒𝑐_𝐺
𝑇𝑇𝐹𝐵

𝑇𝑇𝐹𝐵_𝑟𝑎𝑡𝑒

!

Feature
𝐹1
⋮
𝐹𝑓…

Recog
Window

Request Complete
Request Complete …
Request Complete

Request Complete

𝐹1
⋮
𝐹𝑓

𝐹1
⋮
𝐹𝑓

𝐹1
⋮
𝐹𝑓

Features
𝐹11 ⋯ 𝐹1𝑓
⋮ ⋱ ⋮
𝐹𝑛1 ⋯ 𝐹𝑛𝑓

Figure 4: The detail process of Feature Extractor. Feature
Extractor records and extracts features used for classification.

𝑟𝑐𝑇1 𝑟𝑐𝐺1
⋮

𝑟𝑐𝑇𝑚 𝑟𝑐𝐺𝑚

req_cmpl_T & req_cmpl_G
𝑟𝑐𝑇1 𝑟𝑐𝐺1

⋮
𝑟𝑐𝑇n 𝑟𝑐𝐺𝑛

Timeline

Features
𝐹11 ⋯ 𝐹1𝑓
⋮ ⋱ ⋮
𝐹𝑛1 ⋯ 𝐹𝑛𝑓

Every
Request

Results
𝑅1
⋮
𝑅n

Every
Request

Compare

Protocol

Protocol

Recog
Window

RollBack
Window

Period

Used for subsequent transport

Classification

Protocol

Figure 5: The detail process of Protocol Classifier and
Rollback Checker.

In this paper, WiseTrans employs XGBoost, a tree-based classifica-
tion model, due to the following reasons:
• Expressive.Due to the complexity of features, the classification
algorithm should be expressive enough to capture the relation-
ship among features. In our experiments in §4.3, XGBoost is
capable of precisely capturing the relationship and has a satis-
factory classification accuracy of around 90%.

• Lightweight. For mobile web service, due to the resource limi-
tation on mobile devices, the classification algorithm should also
be lightweight enough to avoid additional overhead. Therefore,
sophisticated algorithm (e.g., neural networks, integer program-
ming) are not practical without additional hardware acceleration.
As a tree-based algorithm, XGBoost could be efficiently executed
on mobile devices in a negligible time (3ms in §4.2).

• Interpretable and verifiable.Meanwhile, deploying the classi-
fier online in a production environment also requires the model
to be interpretable and verifiable [25]. Deploying a black-box
model (e.g., neural networks) online might result in unexpected
behaviors. In contrast, recent advances in the machine learning
community have demonstrated the verifiability and robustness
of tree-based models, including XGBoost [16].
As for the training of XGBoost, WiseTrans learns the classifica-

tion rules offline. WiseTrans discovers the rules through a large
number of fine-grained experiments, as shown in Fig. 6.We label the
features from Feature Extractor according to the performance
comparison of using TCP and QUIC. Therefore, WiseTrans can

WiseTrans: Adaptive Transport Protocol Selection for Mobile Web Service WWW ’21, April 19–23, 2021, Ljubljana, Slovenia

Feature Description TCP QUIC
Importance Rank Importance Rank

Retran_rate |Retransmitted Packets| / |Sent Packets| in time window 0.2849 1 0.2294 1
RTT_avg Average RTT in time window 0.1368 3 0.1214 5

resp_rec_G Received Bytes / The time interval of the client receiving
the first and last bytes of the response body 0.1273 5 0.1462 4

TTFB_avg Average TTFB in time window 0.1421 2 0.1904 2
TTFB TTFB of current request 0.1308 4 0.0929 6

TTFB_rate TTFB / TTFB_avg 0.1072 6 0.1737 3

req_cmpl_G Received Bytes / The time interval between the client sending
request and receiving the whole response body 0.0708 7 0.0469 7

Table 1: The description of the selected features and their ranking. The features selected by WiseTrans not only reflect historical network
conditions, but also historical decisions and their performance.

Internet Protocol
Classifier

Logs Trained
Model

Offline Training

Testbed
configured with
various network

conditions

Network condition < 𝑅𝑇𝑇, 𝑏𝑤, 𝐿𝑜𝑠𝑠 >
TCP Features QUIC Features
𝐹11 ⋯ 𝐹1𝑡
⋮ ⋱ ⋮
𝐹𝑛1 ⋯ 𝐹𝑛𝑡

𝐹11 ⋯ 𝐹1𝑞
⋮ ⋱ ⋮
𝐹𝑛1 ⋯ 𝐹𝑛𝑞

Server

Trained
Parameters

Figure 6: The Process of WiseTrans Offline Training. A server
collects information of requests under various network conditions,
using TCP and QUIC separately, and labels automatically.

learn the classification rules based on the extracted features (listed
in Tab. 1) and the data labels. We leverage Grid Search [28] and
cross-validation for model selection and hyperparameter tuning.
We further evaluate the sensitivity of parameters in §4.5.

3.4 Rollback Checker
We introduce Rollback Checker as a guard for unexpected behav-
iors of network and unexpected decisions of Protocol Classifier.
On one hand, possible UDP/QUIC block or rate limit makes that
the decision making is to compare TCP and QUIC’s performance
under two different < 𝑅𝑇𝑇, 𝐵𝑡𝑙𝐵𝑤, 𝐿𝑜𝑠𝑠𝑅𝑎𝑡𝑒 >, as shown in Fig. 7,
which cannot be compared by the Protocol Classifier. On the
other hand, when a mobile user has only used one protocol before,
which may occur the first time a user visits a web service or the
user changes ISP, it is challenging for the offline trained classifier to
make a proper choice. In the meantime, when network conditions
suddenly change, the sliding window in Protocol Classifier is
challenged to capture and react to the instant changes. Rollback
Checker efficiently captures the change and avoids severe perfor-
mance degradation.

Therefore, in view of such situations, Rollback Checker com-
pares the performance of the requests in the RollBack Window
before and after the switching, shown in Fig. 5. If a significant
performance deterioration is found, which means the user is in a
rollback state, Rollback Checker rolls back to the last protocol.

4 EVALUATION
In this section, we first introduce the setup of our evaluation in
§4.1. We then evaluate WiseTrans in the following aspects:

Routers

client Transport by TCP server

Transport by QUIC

< 𝑅𝑇𝑇1, 𝐵𝑡𝑙𝐵𝑤1, 𝐿𝑜𝑠𝑠𝑅𝑎𝑡𝑒1 >

< 𝑅𝑇𝑇2, 𝐵𝑡𝑙𝐵𝑤2, 𝐿𝑜𝑠𝑠𝑅𝑎𝑡𝑒2 >

Rate limit or Packet block

Figure 7: Transport model when meeting QUIC/UDP rate limit or
packet block.

• Performance in the Wild. We evaluate the performance of Wise-
Trans against a fixed transport protocol in the real world. From
our experiments, WiseTrans can reduce the average request
completion time by 26.5% compared to using TCP only and 6.6%
compared to QUIC (§4.2).

• Component Effectiveness. We then evaluate the effectiveness
of the design of WiseTrans. Compared to other classification
method, WiseTrans Protocol Classifier can achieve a classi-
fication accuracy of 91% (§4.3). Meanwhile, the Rollback Checker
can also reduce the average completion time by 7.3% (§4.4).

• Parameter Sensitivity. Finally, we evaluate the performance of
WiseTrans by varying the hyperparameters ofWiseTrans. Exper-
iments show that the performance improvements of WiseTrans
can be maintained for a wide range of parameters (§4.5).

4.1 Experimental Setup
4.1.1 WiseTrans Client. We implement WiseTrans on two plat-
forms (Android and iOS) of the client of a mobile web service
application of Baidu. The implementation contains about 4000 lines
of C code.

For the implementation of XGBoost in WiseTrans Protocol
Classifier in §3.3, we train two models separately according
to the current transport protocol. We utilize the maximum depth
of 7 and minimum child weight of 1, and the top 5 features for
requests transported by QUIC while the top 7 features for requests
transported by TCP.

To avoid switching too frequently, in our online implementation,
we use a periodic decision-making method as shown in Fig. 5. We
further discuss the time window parameter setting in §4.5.

The training traces and source code are published on https://
github.com/joycezhangjia/WiseTrans.

https://github.com/joycezhangjia/WiseTrans
https://github.com/joycezhangjia/WiseTrans

WWW ’21, April 19–23, 2021, Ljubljana, Slovenia Jia Zhang, Enhuan Dong, Zili Meng, Yuan Yang, Mingwei Xu, Sijie Yang, Yang Yue

Backend ServerFrontend Server
APP

NetworkNetwork

1. HTTP Request 2. HTTP Request

3. HTTP Response4. HTTP Response

Log Collection Server

5. Lo
g

Figure 8: The experimental setup of WiseTrans.

4.1.2 Web Service Server. In the server-side implementation of the
mobile web service, we have frontend servers for load balancing and
backend servers for request processing. The connection between
frontend servers and backend servers are in the internal enterprise
network of Baidu and are over private protocols. Therefore, con-
nections optimized by WiseTrans are referred to the connections
between the mobile user and the frontend servers.

4.1.3 Dataset. For offline training, we collect 38 hours, more than
128,000 request logs on a mobile web service app of Baidu, as the
training dataset. For evaluation, we enable WiseTrans for certain
users in two cities (Beijing and Shijiazhuang in China), with and
without CDN server cluster deployment, and collect logs for 40
hours, resulting inmore than 64,000 request logs. Also, we randomly
collect more than 64,000 request logs using TCP and QUIC as our
baseline.

4.2 Request Completion Time
Request completion time is a keymetric tomeasure the performance
of web service [7]. Fig. 9 shows the average request completion time,
with the median of it. We also select the shorter average completion
time between TCP and QUIC as Ideal for each network condition, as
a comparison. It can be found that WiseTrans outperforms TCP and
QUIC. For the situation with a client located in Beijing, WiseTrans
has a 26.5% reduction in average completion time compared to TCP,
and 2.4% to QUIC. For the median completion time, WiseTrans also
has an 18.9% and 1.6% reduction. As for the experiments which
the client is located in Shijiazhuang, the reduction is about 11.0%
and 6.6% on average and 6.0% and 11.7% for the median completion
time. In all, WiseTrans is just about 1%-2% longer than Ideal, which
demonstrates that WiseTrans is efficient.

Fig. 10 shows the detailed reduction ratio of WiseTrans com-
pared to TCP and QUIC as the request completion time increases.
Obviously, WiseTrans shows great improvement compared to TCP
and QUIC for the 99𝑡ℎ percentile (the tail) completion time. Wise-
Trans has a 57.1% reduction, about 8.52 s compared to TCP, and
an 8.69% reduction compared to QUIC for the experiments in Bei-
jing. For the experiments in Shijiazhuang, the reduction is about
37.6% and 12.8%. Results show that WiseTrans effectively improve
users’ experience who have experienced an extremely long request
completion time.

The reductions of TCP and QUIC are always complimentary.
From Fig. 10, it can be seen that when request completion time is
in the shorter half, which means under better network conditions,

Mean Median500

1000

1500

2000

2500

Re
qu

es
t C

om
pl

. T
im

e
(m

s)

Ideal
WiseTrans
TCP
QUIC

(a) Experiments in Beijing.

Mean Median500

1000

1500

2000

Re
qu

es
t C

om
pl

. T
im

e
(m

s)

Ideal
WiseTrans
TCP
QUIC

(b) Experiments in Shijiazhuang.

Figure 9: WiseTrans achieves lower request completion time than
TCP and QUIC in both cities. The reduction could achieve 26.5%
compared to using one fixed transport protocol.

30 40 50 60 70 80 90 100
Request Completion Time Percentile (%)

0

20

40

Re
du

ct
io

n
Ra

tio
 (%

)

Reduction of TCP
Reduction of QUIC

(a) Experiments in Beijing.

30 40 50 60 70 80 90 100
Request Completion Time Percentile (%)

0

10

20

30

Re
du

ct
io

n
Ra

tio
 (%

)

Reduction of TCP
Reduction of QUIC

(b) Experiments in Shijiazhuang.

Figure 10:WiseTrans’s redution of TCP and QUIC with different
percentile of request comlpetion time. WiseTrans has a reduction
of 57.1% for the 99𝑡ℎ percentile (the tail) completion time.

QUIC has poor performance, and WiseTrans has significant im-
provements, especially in Shijiazhuang. While TCP always causes
a long tail, WiseTrans significantly improves TCP’s performance
when the completion time is longer. Such results reflect the key
idea of WiseTrans, selecting the protocol with better performance
in the current network condition. Specifically, WiseTrans should
always be able to achieve the optimal performance of using QUIC
or TCP. Therefore, WiseTrans just will have better performance
than TCP or QUIC for one network condition, while can achieve
the overall optimal for users across the network.

We also find negative value with an average ratio of -1.29% for
experiments in Beijing and -2.37% for experiments in Shijiazhuang.
The performance degradation among them is mainly due to the

WiseTrans: Adaptive Transport Protocol Selection for Mobile Web Service WWW ’21, April 19–23, 2021, Ljubljana, Slovenia

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

SVM (area = 0.81)
DecisionTree (area = 0.90)
RandomForest (area = 0.92)
XGBoost (area = 0.97)

Figure 11: ROC curves used for algorithms comparison. XGBoost
achieves the best performance.

inaccurate classification sometime during the classification and the
transport in RollBack Window, leading to the suboptimal protocol.

Overhead of WiseTrans. The additional decision-making time
consumed by WiseTrans is less than 3 ms in our experiment, which
is negligible compared to the decision period. Protocol Classifier
is the most time-consuming part, related to the value of Recog Win-
dow. For each classification, the model takes about 0.02 ms~0.04 ms.
Feature Extractor takes about one-tenth of the overall process time,
and is the second time-consuming part.

As for the switch operation, we switch the transport protocol of
a request from the application layer. WiseTrans preferably reuses
existing connections to reduce switching overhead. In our experi-
ments, 89.73% of switches can reuse existing connections and do
not need to establish new connections, which brings negligible
overhead in general.

4.3 Classifier Deep Dive
XGBoost is utilized as a classification algorithm in consideration of
the complex temporal correlation as well as the simplicity for large-
scale deployment. We compare XGBoost with a set of common
machine learning algorithms (SVM (Support Vector Machines) [15],
Decision Tree [11] and Random Forest [10]) to explore whether
XGBoost can address the complex temporal heterogeneity.

Tab. 2 and the ROC curves shown in Fig. 11 show that XG-
Boost achieves the best performance. SVM only achieves an accu-
racy of 76.87%, which means the decision boundary can hardly be
found by simply employing hyperplanes in three-dimensional space
< 𝑅𝑇𝑇, 𝐵𝑡𝑙𝐵𝑤, 𝐿𝑜𝑠𝑠𝑅𝑎𝑡𝑒 >. Meanwhile, the simple tree model, De-
cision Tree, can not describe the complex relationship between the
historical network conditions, decisions, and performance as well.
XGBoost outperforms Random Forest by its faster convergence and
higher accuracy.

The accuracy of WiseTrans’s classification is listed in Tab. 3. Its
model is trained offline using XGBoost. We apply it to the real-
world network to examine its generalization ability. The overall
accuracy of WiseTrans is about 88.29% in Beijing and 87.19% in
Shijiazhuang, which is basically consistent with the performance
of offline testing. It proves that our classifier can also achieve high
accuracy in the real network.

4.4 Rollback Checker Deep Dive
The Rollback Checker is introduced in consideration of the pos-
sible rate limit on QUIC or UDP packets in the network. [23] found
that 0.3% of users encountered such a situation. Our evaluation also

Mean Median 99 %

2000

4000

6000

8000

Re
qu

es
t C

om
pl

. T
im

e
(m

s)

w/o RC
w RC

(a) Experiments in Beijing.

Mean Median 99 %

2000

4000

6000

8000

Re
qu

es
t C

om
pl

. T
im

e
(m

s)

w RC
w/o RC

(b) Experiments in Shijiazhuang.

Figure 12: Rollback Checker contributes about 20% to the reduc-
tion of completion time.

finds that the bottlenecks of the TCP and QUIC links are not the
same. Specifically, for some users, TCP and QUIC have similar RTT
and packet retransmission ratio, but with different goodput.

Rollback Checker contributes 21.96% and 16.67% to the whole
reduction of request completion time in two cities. As shown in
Tab. 4, the classification accuracy drops by 5% and 9%when Rollback
Checker is disabled. Enabling Rollback Checker reduces the av-
erage request completion time by 7.3% and 2.0%, and shows great
improvement for the 99𝑡ℎ percentile (the tail) completion time with
a reduction of 21.28% and 12.92%, as shown in Fig. 12.

However, Rollback Checker may also bring additional perfor-
mance degradation, related to RollBack Window’s value. A longer
RollBack Window could improve the accuracy of selecting the op-
timal protocol, but also spend a longer time using the suboptimal
protocol. In contrast, a shorter RollBack Window may switch back
to the protocol incorrectly.

Therefore, we set the Rollback Checker as an optional module,
and the content providers can choose whether to enable it to achieve
their performance targets.

4.5 Parameters Analysis
4.5.1 Hyperparameters of Classifier. We perform hyperparameters
tuning to achieve the best performance. We mainly consider the
maximumdepth andminimum childweight in Protocol Classifier.
Fig. 13 shows the accuracywith different hyperparameters using the
grid search with 10-fold cross-validation. The accuracy is improved
with the maximum depth increasing, while the maximum depth
deeper than seven can only bring limited improvement but may
introduce additional overhead. Also, the minimum child weight is
robust enough. Therefore, we utilize the maximum depth of 7 and
the minimum child weight of 1 for both classifiers.

4.5.2 TimeWindows. We analyze Period and RecordWindow’s im-
pact in Fig. 4 and Fig. 5 on classification, mainly relevant to the clas-
sification speed and accuracy when the network changes. Record
Window is the time window used in calculating the average RTT
(𝑅𝑇𝑇_𝑟𝑎𝑡𝑒), TTFB (𝑇𝑇𝐹𝐵) and Retransmission rate(𝑅𝑒𝑡𝑟𝑎𝑛_𝑟𝑎𝑡𝑒).
For the purpose of avoiding frequent switch, in our implementa-
tion, the protocol selection is a process independent of sending
the requests, and WiseTrans makes the selection every Period. In
our evaluation, Record Window is set to 20 s, 30 s, while Period
values are set to 1 s, 3 s, and 5 s, respectively. We set the Recog
Window exactly the same as the Period and the Rollback Checker
is disabled. By manually adding packet loss on the client side, we

WWW ’21, April 19–23, 2021, Ljubljana, Slovenia Jia Zhang, Enhuan Dong, Zili Meng, Yuan Yang, Mingwei Xu, Sijie Yang, Yang Yue

Algorithm TCP QUIC
Train time (s) Accuracy Precision/Recall/F1-score Train time (s) Accuracy Precision/Recall/F1-score

SVM 776.216 s 0.7687 0.7687/0.7696/0.7691 2036.439 s 0.7059 0.7056/0.7012/0.7034
Decision Tree 0.094 s 0.8246 0.8270/0.8269/0.8269 0.137 s 0.8257 0.8250/0.8265/0.8257
Random Forest 18.524 s 0.8612 0.8612/0.8604/0.8608 26.652 s 0.8502 0.8492/0.8504/0.8498

XGBoost 2.069 s 0.8961 0.8968/0.8950/0.8959 2.772 s 0.9106 0.9098/0.9105/0.9102
Table 2: The comparison of machine learning algorithm candidates. XGBoost achieves the best performance.

Dataset Offline Test Set Beijing Shijiazhuang
Accuracy 0.9034 0.8829 (-2.26%) 0.8719 (-3.48%)

Table 3: The accuracy of classification.

Dataset w or w/o Rollback Checker Mean Accuracy

Beijing w Rollback Checker 0.8829
w/o Rollback Checker 0.8256

Shijiazhuang w Rollback Checker 0.8719
w/o Rollback Checker 0.7868

Table 4: The mean accuracy of WiseTrans with Rollback Checker
enabled or disabled. Rollback Checker improves the accuracy of
classification by 5% and 9%.

1 2 3 4 5 6 7 8 9 101112131415
Max Depth

0.75

0.80

0.85

0.90

Ac
cu

ra
cy

TCP
QUIC

Top3
Top4
Top5
Top6
Top7

(a) Train with maximum depth.

1 2 3 4 5
Min Child Weight

0.800

0.825

0.850

0.875

0.900

0.925

Ac
cu

ra
cy

Top3
Top4
Top5
Top6
Top7

TCP
QUIC

(b) Train with minimum child weight.

Figure 13: Grid search results (mean accuracy) of XGBoost for the
optimal model and features.

change the network status and observe WiseTrans’s performance,
as shown in Fig. 14. The red dotted line reflects the changes of net-
work conditions over time, which means protocol selection’s ideal
performance. The solid lines show the real classification results of
WiseTrans under six different parameters.

Both Period and Record Windows would affect the classification
accuracy, and it’s just a trade-off between sensitivity and stability.
When the Period is short, the amount of features used for classifica-
tion is not enough, affecting the accuracy. Therefore, as shown by
the green line and yellow line in Fig. 14, there are jumps and insta-
bility. Similarly, for the Record Window, statistics of RTT and other
features within a short period can reflect changes relatively quickly,
but may be affected by outliers and thus reduce accuracy. How-
ever, the classification sensitivity to changes decreases with long
windows, as shown by the blue line in Fig. 14b. Longer windows
ensure stability but reduce sensitivity.

5 RELATEDWORK
Adaptive optimizations on transport parameters. There are
few previous research efforts on adaptively adjusting the trans-
port protocol online. The earliest related direction of WiseTrans

Time (s)
TCP

QUIC

Cl
as

sif
ica

tio
n

Re
su

lt

period=1
period=3
period=5
Ideal

(a) Classification result with Record Window = 20

Time (s)
TCP

QUIC

Cl
as

sif
ica

tio
n

Re
su

lt

period=1
period=3
period=5
Ideal

(b) Classification result with Record Window = 30

Figure 14: Sensitivity and stability of WiseTrans classification with
different Period and Record Windows.

is congestion control algorithms. Traditionally, researchers design
different mechanisms to dynamically adjust the congestion window
and adapt to the network conditions [19, 20, 31]. Subsequently, re-
cent researchers proposed to dynamically adjust the configurations
of existing protocols [29, 32] to further enlarge the range of adapta-
tion. However, as we discussed in §2.2, due to the restriction in the
network layer, adjusting the parameters of the transport layer is
not enough in the large-scale deployment of mobile web service. In
contrast, WiseTrans optimizes performance by adaptively switch-
ing the transport protocol between TCP and QUIC to address the
challenges.

Machine learning for network prediction. Due to the complex-
ity of temporal correlations in network conditions, existingmethods
have already employedmachine learning techniques in network pre-
diction. Examples ranges from decision trees [32], hidden Markov
models [24], to neural networks [4, 21]. We refer the readers to [34]
for a comprehensive understanding. The major difference between
those research efforts andWiseTrans is thatWiseTrans is discretized
at the request level and considers not only the network conditions,
but also the previous decisions and consequences.

6 CONCLUSION
In a large-scale real-world deployment of mobile web service, it is
non-trivial to adaptively select transport protocols due to the huge
spatial heterogeneity of users, complex temporal correlation of
network conditions, and limited computation resources on mobile
clients. In response, we propose WiseTrans, the first solution that

WiseTrans: Adaptive Transport Protocol Selection for Mobile Web Service WWW ’21, April 19–23, 2021, Ljubljana, Slovenia

adaptively selects the transport protocols in an optimized way and
is deployed in the real world. We introduce Feature Extractor,
Protocol Classifier, and Rollback Checker in WiseTrans to
address the challenges above. Our extensive evaluations with hun-
dreds of thousands of requests demonstrate that WiseTrans could
improve mobile web performance compared to a fixed transport
protocol.

This work does not raise any ethical issues.

ACKNOWLEDGEMENT
We thank the reviewers and the shepherd for their valuable com-
ments. The co-authors, Dong, Yang, and Xu, from Tsinghua Uni-
versity, are supported by the National Key R&D Program of China
under Grant (2019YFB1802504), the National Natural Science Foun-
dation of China under Grant (62002192, 61625203, 61832013, and
61872209), and the Independent Scientific Research Project of NUDT
(ZZKYZX-03-02-02). Prof. Mingwei Xu and Dr. Yuan Yang are the
corresponding authors.

REFERENCES
[1] 2020. Article: K07150625 - Mitigating UDP flood attacks using a rate limiting

iRule. https://support.f5.com/csp/article/K07150625.
[2] 2020. Desktop vsMobile vs TabletMarket ShareWorldwide. https://gs.statcounter.

com/platform-market-share/desktop-mobile-tablet. Accessed: 2020-05-05.
[3] 2020. Looking for measurements on UDP blocking and rate limiting. http://

www.postel.org/pipermail/end2end-interest/2011-March/008129.html. Accessed:
2020-05-05.

[4] Soheil Abbasloo, Chen-Yu Yen, and H Jonathan Chao. 2020. Classic meets modern:
a pragmatic learning-based congestion control for the internet. In Proceedings
of the Annual conference of the ACM Special Interest Group on Data Communi-
cation on the applications, technologies, architectures, and protocols for computer
communication. 632–647.

[5] Venkat Arun andHari Balakrishnan. 2018. Copa: Practical delay-based congestion
control for the internet. In Proc. USENIX NSDI. 329–342.

[6] Randy Baden, Adam Bender, Neil Spring, Bobby Bhattacharjee, and Daniel Starin.
2009. Persona: an online social network with user-defined privacy. In Proc. ACM
SIGCOMM. 135–146.

[7] Nina Bhatti and Rich Friedrich. 1999. Web server support for tiered services.
IEEE network 13, 5 (1999), 64–71.

[8] Mike Bishop et al. 2020. Hypertext transfer protocol version 3 (HTTP/3). Internet
Engineering Task Force, Internet-Draft draft-ietf-quic-http-31 (2020).

[9] P. Biswal and O. Gnawali. 2016. Does QUIC Make the Web Faster?. In IEEE
GLOBECOM. IEEE, 1–6.

[10] L. Breiman. 2001. Random Forests. Machine Learning 45, 1 (2001), 5–32.
[11] L. Breiman, J. Friedman, C. Stone, and R. Olshen. 1984. Classification and Regres-

sion Trees. CRC press.
[12] Kevin Brown and Suresh Singh. 1997. M-TCP: TCP for mobile cellular networks.

ACM SIGCOMM Computer Communication Review 27, 5 (1997), 19–43.
[13] N. Cardwell, Y. Cheng, C. S. Gunn, S. Yeganeh, and V. Jacobson. 2016. BBR:

Congestion-based Congestion Control. ACM Queue (2016).
[14] Gaetano Carlucci, Luca De Cicco, Stefan Holmer, and Saverio Mascolo. 2017.

Congestion control for web real-time communication. IEEE/ACM Transactions
on Networking 25, 5 (2017), 2629–2642.

[15] C. Chang and C. Lin. 2011. LIBSVM: A Library for Support Vector Machines.
ACM TIST 2, 3 (2011), 1–27.

[16] Hongge Chen, Huan Zhang, Si Si, Yang Li, Duane Boning, and Cho-Jui Hsieh. 2019.
Robustness verification of tree-based models. In Advances in Neural Information
Processing Systems. 12317–12328.

[17] T. Chen and C. Guestrin. 2016. Xgboost: A Scalable Tree Boosting System. In
Proc. ACM SIGKDD. 785–794.

[18] Sam Dutton. 2020. Understanding Low Bandwidth and High Latency | Web
Fundamentals. https://developers.google.com/web/fundamentals/performance/
poor-connectivity.

[19] Sangtae Ha, Injong Rhee, and Lisong Xu. 2008. CUBIC: a new TCP-friendly
high-speed TCP variant. ACM SIGOPS operating systems review 42, 5 (2008),
64–74.

[20] Janey C Hoe. 1996. Improving the start-up behavior of a congestion control
scheme for TCP. ACM SIGCOMM Computer Communication Review 26, 4 (1996),
270–280.

[21] Nathan Jay, Noga Rotman, Brighten Godfrey, Michael Schapira, and Aviv Tamar.
2019. A deep reinforcement learning perspective on internet congestion control.
In International Conference on Machine Learning. 3050–3059.

[22] A. Kakhki, S. Jero, D. Choffnes, C. Nita-Rotaru, and A. Mislove. 2017. Taking a
Long Look at QUIC: an Approach for Rigorous Evaluation of Rapidly Evolving
Transport Protocols. In Proc. ACM IMC. 290–303.

[23] A. Langley, A. Riddoch, A. Wilk, A. Vicente, C. Krasic, D. Zhang, F. Yang, F.
Kouranov, I. Swett, J. Iyengar, et al. 2017. The QUIC Transport Protocol: Design
and Internet-scale Deployment. In ACM SIGCOMM. 183–196.

[24] Andrew R Liu and Robert R Bitmead. 2010. Observability and reconstructibility of
hidden Markov models: Implications for control and network congestion control.
In 49th IEEE Conference on Decision and Control (CDC). IEEE, 918–923.

[25] Zili Meng, Minhu Wang, Jiasong Bai, Mingwei Xu, Hongzi Mao, and Hongxin
Hu. 2020. Interpreting Deep Learning-Based Networking Systems. In Proc. ACM
SIGCOMM. 154–171.

[26] Ravi Netravali, Anirudh Sivaraman, James Mickens, and Hari Balakrishnan. 2019.
Watchtower: Fast, secure mobile page loads using remote dependency resolution.
In Proceedings of the 17th Annual International Conference on Mobile Systems,
Applications, and Services. 430–443.

[27] Zhixiong Niu, Hong Xu, Dongsu Han, Peng Cheng, Yongqiang Xiong, Guo Chen,
and Keith Winstein. 2017. Network Stack as a Service in the Cloud. In Proceedings
of the 16th ACM Workshop on Hot Topics in Networks. 65–71.

[28] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M.
Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, et al. 2011. Scikit-learn: Machine
learning in Python. the Journal of Machine Learning Research 12 (2011), 2825–
2830.

[29] Anirudh Sivaraman, Keith Winstein, Pratiksha Thaker, and Hari Balakrishnan.
2014. An experimental study of the learnability of congestion control. ACM
SIGCOMM Computer Communication Review 44, 4 (2014), 479–490.

[30] Speed Matters 2017. SPEED MATTERS. Designing for Mobile Performance.
https://www.awwwards.com/brainfood-mobile-performance-vol3.pdf.

[31] David X Wei, Cheng Jin, Steven H Low, and Sanjay Hegde. 2006. FAST TCP:
motivation, architecture, algorithms, performance. IEEE/ACM transactions on
Networking 14, 6 (2006), 1246–1259.

[32] Keith Winstein and Hari Balakrishnan. 2013. Tcp ex machina: Computer-
generated congestion control. ACM SIGCOMM Computer Communication Review
43, 4 (2013), 123–134.

[33] Yajun Yu, Mingwei Xu, and Yuan Yang. 2017. When QUIC meets TCP: An
experimental study. In 2017 IEEE 36th International Performance Computing and
Communications Conference (IPCCC). IEEE, 1–8.

[34] Lei Zhang, Yong Cui, Mowei Wang, Zhenjie Yang, and Yong Jiang. 2019. Machine
learning for internet congestion control: Techniques and challenges. IEEE Internet
Computing 23, 5 (2019), 59–64.

APPENDICES
A LARGE-SCALE MEASUREMENTS OF ONE

POPULAR MOBILE WEB SERVICE
A.1 Methodology
We conduct large-scale passive measurements of one popular mo-
bile app of Baidu. Users can access the short video mobile web
service of Baidu with this app. We collect and sample feed refresh
request data from the users, which is sent by the app when a user
wants to refresh the current list of recommended videos. On re-
ceiving a feed refresh request, the web servers of Baidu will return
response data to the app, and the data amount is less than 50 KB,
which is independent of the video size. After the request is com-
pleted, the instrumentation collects app-level logs and socket-level
logs describing the finished transport process. The logs include
timestamp, data amount received, completion time of the feed re-
fresh request, RTT, number of retransmitted packets, geographical
location of the user, access network type, etc. We sampled about
11.6 million requests during two weeks with a sampling ratio of
0.5‰, covering the users from more than 50 countries and regions.

The mobile web service supports both TCP and QUIC. A user can
choose to use one of the transport protocols in the app by himself
or herself. We also configure a small percentage of the requests to
use QUIC, so as to collect more samples of QUIC. In our measured

https://support.f5.com/csp/article/K07150625
https://gs.statcounter.com/platform-market-share/desktop-mobile-tablet
https://gs.statcounter.com/platform-market-share/desktop-mobile-tablet
http://www.postel.org/pipermail/end2end-interest/2011-March/008129.html
http://www.postel.org/pipermail/end2end-interest/2011-March/008129.html
https://developers.google.com/web/fundamentals/performance/poor-connectivity
https://developers.google.com/web/fundamentals/performance/poor-connectivity

WWW ’21, April 19–23, 2021, Ljubljana, Slovenia Jia Zhang, Enhuan Dong, Zili Meng, Yuan Yang, Mingwei Xu, Sijie Yang, Yang Yue

2G 3G 4G Wi-Fi0

25

50

75

100

125

150

M
ea

n
RT

T
(m

s)

Mean RTT

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

Pk
t.

Re
tra

ns
. R

at
io

0.155 0.155

0.044 0.0350.368
0.561

0.946

1.308

Pkt. Retrans. Ratio
Goodput (MB/s)

Figure 15: Overall status of measured re-
quest.

0 2000 4000 6000 8000
Request Completion Time (ms)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

2G
3G
4G
Wi-Fi

Figure 16: The distribution of request
completion time with different access net-
work types.

2G 3G 4G WIFI
CN

0

1

2

3

4

5

6

R
eq

ue
st

 C
om

pl
et

io
n

Ti
m

e
(s

) Protocol
TCP
QUIC

Figure 17: Request completion time of
users in China.

2G 3G 4G WIFI
US

0

1

2

3

R
eq

ue
st

 C
om

pl
et

io
n

Ti
m

e
(s

) Protocol
TCP
QUIC

Figure 18: Request completion time of
users in US.

2G 3G 4G WIFI
KR

0

1

2

3

4
R

eq
ue

st
 C

om
pl

et
io

n
Ti

m
e

(s
) Protocol

TCP
QUIC

Figure 19: Request completion time of
users in South Korea.

2G 3G 4G WIFI
NL

0

2

4

6

8

10

12

R
eq

ue
st

 C
om

pl
et

io
n

Ti
m

e
(s

) Protocol
TCP
QUIC

Figure 20: Request completion time of
users in Netherland.

data, 8.58% requests were using QUIC due to user choice, and 5%
requests were using QUIC due to our configurations, i.e., 13.58% in
total. Note that QUIC is used only between the user app and the
frontend server of Baidu. The frontend server acts as a load balancer
and a proxy, which chooses a backend server and establishes a TCP
connection to it. The HTTP response returned by the backend
server is then returned to the user app, which completes the user
request. Fig. 8 shows the transport model of our measurements. All
requests access the backend resources through several frontend
server clusters, geographically located in 6 cities.

A.2 Measurement Results
Fig. 15 shows the overall status of themeasured requests. Among the
four common types of access networks, WiFi has the best network
condition, with small RTT, small packet retransmission ratio, and
large goodput. 4G has better network conditions than 2G and 3G. 3G
has a goodput better than 2G, a packet retransmission ratio similar
to 2G, and the greatest average RTT among the four access network
types. Fig. 16 shows the distribution of the request completion time
with each access network type. It is not surprising that WiFi is the
fastest and 4G is better than 3G and 2G. Recall that 3G networks
have an RTT, which may be greater than that in 2G networks,
and our request and response data have a small amount (tens of
kilobytes). These facts may explain the reason why 2G is faster
than 3G in some cases.

We evaluate the request completion time of TCP and QUIC in
different access network types. The results are grouped by regions,
because users in different geographical locations may have differ-
ent latency due to the distance to servers. Fig. 17 to Fig. 20 show

the results in four typical countries. We can see that the request
completion time is short in 4G and WiFi for both TCP and QUIC,
and TCP performs a little better in all four countries. The request
completion time is greater in 3G and 2G, and QUIC has a better
performance in general, except for 2G users in US. The results in
different countries are not similar. For example, the request com-
pletion time of 2G users in China is greater than other users, for
both TCP and QUIC, while the request completion time of 2G users
in US and South Korea is less than their 3G users, and the request
completion time of 2G users in Netherland who use QUIC is very
short. This reflects the complicated network conditions in the real
world.

The observations are: 1) TCP in 2G and 3G networks is about
4X slower than QUIC on average, but it is still possible that TCP
outperforms QUIC in some areas; and 2) TCP is faster than QUIC
in 4G and WiFi networks on average, but the difference is small.

Note that a user who uses TCP cannot use QUIC at the same
time, the measurement results cannot tell whether a user should use
TCP or QUIC for better performance directly. Instead, our passive
measurement is like an A/B test, reflecting the probability that
QUIC may outperform TCP with certain access network types in
each area. The performance gap within one access network type is
bigger than the gap between different types due to time-varying
network conditions. For an individual user, it is difficult to ensure
that a certain protocol will consistently achieve better performance
under a certain access network/region. Thus, it is necessary for
individual users to select a proper transport protocol according to
specific network conditions.

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Background
	2.2 Design Challenge

	3 WiseTrans Design
	3.1 Design Overview
	3.2 Feature Extractor
	3.3 Protocol Classifier
	3.4 Rollback Checker

	4 Evaluation
	4.1 Experimental Setup
	4.2 Request Completion Time
	4.3 Classifier Deep Dive
	4.4 Rollback Checker Deep Dive
	4.5 Parameters Analysis

	5 Related Work
	6 Conclusion
	References
	A Large-scale Measurements of One Popular Mobile Web Service
	A.1 Methodology
	A.2 Measurement Results

