
WiseTrans: Adaptive Transport Protocol Selection for Mobile
Web Service

Jia Zhang1,3, Enhuan Dong1,3, Zili Meng2,3, Yuan Yang1,3, Mingwei Xu1,2,3,
Sijie Yang4, Miao Zhang4, Yang Yue1

1Department of Computer Science and Technology & BNRist, Tsinghua University
2Institute for Network Sciences and Cyberspace, Tsinghua University

3Peng Cheng Laboratory (PCL) 4Baidu Inc.
{jia-zhan18,mzl19,ley18}@mails.tsinghua.edu.cn,{dongenhuan,yangyuan_thu,xumw}@tsinghua.edu.cn

{yangsijie,zhangmiao02}@baidu.com

ABSTRACT
To improve the performance of mobile web service, a new transport
protocol, QUIC, has been recently proposed. However, for large-
scale real-world deployments, deciding whether and when to use
QUIC in mobile web service is challenging. Complex temporal
correlation of network conditions, high spatial heterogeneity of
users in a nationwide deployment, and limited resources on mobile
devices all affect the selection of transport protocols. In this paper,
we present WiseTrans to adaptively switch transport protocols for
mobile web service online and improve the completion time of web
requests.

WiseTrans introduces machine learning techniques to deal with
temporal heterogeneity, makes decisions with historical informa-
tion to handle spatial heterogeneity, and switches transport pro-
tocols at the request level to reach both high performance and
acceptable overhead. We implement WiseTrans on two platforms
(Android and iOS) in a popular mobile web service application of
Baidu. Comprehensive experiments demonstrate that WiseTrans
can reduce request completion time by up to 26.5% on average
compared to the usage of a single protocol.

CCS CONCEPTS
• Networks→ Transport protocols; Mobile networks.

KEYWORDS
Protocol Selection; Mobile Web Service; ML-based Networking
Systems
ACM Reference Format:
Jia Zhang, Enhuan Dong, Zili Meng, Yuan Yang, Mingwei Xu, Sijie Yang,
Yang Yue. 2021. WiseTrans: Adaptive Transport Protocol Selection for Mo-
bile Web Service. In Proceedings of the Web Conference 2021 (WWW ’21),
April 19–23, 2021, Ljubljana, Slovenia. ACM, New York, NY, USA, 10 pages.
https://doi.org/10.1145/3442381.3449958

1 INTRODUCTION
Recently, a sharp increase in the usage of mobile web service has
been observed. The latest statistics demonstrate that mobile users
This paper is published under the Creative Commons Attribution 4.0 International
(CC-BY 4.0) license. Authors reserve their rights to disseminate the work on their
personal and corporate Web sites with the appropriate attribution.
WWW ’21, April 19–23, 2021, Ljubljana, Slovenia
© 2021 IW3C2 (International World Wide Web Conference Committee), published
under Creative Commons CC-BY 4.0 License.
ACM ISBN 978-1-4503-8312-7/21/04.
https://doi.org/10.1145/3442381.3449958

become the largest proportion of global Internet users [2]. In this
case, request completion time1 of mobile web service is becoming
more and more critical for service providers. For example, Google
reported that 53% of mobile users give up waiting if the page vis-
ited fails to be loaded within three seconds [30]. As a consequence,
mobile web service providers strive to reduce the page load time
and improve mobile web performance. In response, a new transport
protocol, QUIC, has been proposed to cater for the increasingly
stringent delay requirements from web service. As being standard-
ized [8], QUIC has been becoming a newwidely supported transport
protocol in web service.

Yet, QUIC does not always perform better than TCP. Generally
speaking, with proper designs on the handling of packet retransmis-
sions, QUIC achieves better performance than TCP in the scenario
of slow nets. On the other hand, TCP works better in networks
with better conditions due to the quality of service (QoS) strategies
from Internet Service Providers (ISPs) [22, 23, 33]. Moreover, in
mobile networks, the network condition of the mobile users could
be frequently changed. Therefore, using a fixed transport protocol
for all requests will result in sub-optimal performance.

Therefore, we propose WiseTrans in this paper, an adaptive
transport protocol selection mechanism to improve the perfor-
mance of mobile web service. WiseTrans measures the network
conditions from mobile users and switches the transport protocols
when needed. By adaptively switching transport protocols, mobile
users can therefore enjoy benefits from both protocols and have a
higher experience when using mobile web service. A straightfor-
ward method to enable the idea is to measure the protocol perfor-
mance in advance and construct a decision boundary for online
protocol switching. For example, operators can emulate different
bandwidths, delay, and packet loss rate and measure the perfor-
mance of both protocols as in the online optimization of congestion
control parameters [29, 32].

However, in a large-scale real-world deployment of mobile web
service, it is non-trivial to decide whether a request in mobile web
service should use TCP or QUIC. First, the temporal heterogene-
ity of network conditions during the connection makes the prob-
lem more challenging. For example, even for one mobile user, the
network conditions could be affected by the interference on wire-
less channels and the competition with other flows. It is difficult
for operators to precisely measure the network conditions in real
time. Second, due to the spatial heterogeneity of mobile users, the
1There are also metrics in the optimization of mobile web service, such as page loading
time. In this paper, we focus on the HTTP request completion time.

https://doi.org/10.1145/3442381.3449958
https://doi.org/10.1145/3442381.3449958

WWW ’21, April 19–23, 2021, Ljubljana, Slovenia Jia Zhang, Enhuan Dong, Zili Meng, Yuan Yang, Mingwei Xu, Sijie Yang, Yang Yue

web service provider needs to tackle different behaviors on wide-
area networks and mobile access networks. For example, different
QoS preferences of ISPs and home routers could all affect the op-
timal choice between two protocols [23]. In this case, different
users might have different decision boundaries. Third, deciding the
proper granularity of protocol switching is also challenging. Fine
granularity of protocol switching (e.g., packet-level) will result in
burdensome overhead to collect statistics from mobile clients and
maintain consistency during switching. Switching the protocol in
a sparse granularity (e.g., user-level and page-level) would degrade
the performance due to the temporal heterogeneity of mobile users.

To address the above challenges, we design several building
blocks in WiseTrans. First, we observe that the spatial heterogene-
ity of users could be learned by the combination of history network
conditions, history decisions, and the performance of that decision.
Therefore, we collect not only historical network conditions, but
also the decisions and their consequent performance for those de-
cisions (§3.2). Second, to handle the complex temporal relationship
during a connection while ensuring the simplicity for large-scale
deployment, we employ a tree-based classification algorithm, XG-
Boost, to optimize the protocol decisions (§3.3). Moreover, we utilize
features of concurrent requests in HTTP page loading and decide to
optimize the protocol selection at the granularity of web requests.
Due to the independence of each request in web service, the timeli-
ness of web requests, and the computation ability of mobile devices,
switching the protocol at the request level can achieve both high
performance and satisfactory overhead (§3.1).

We implement WiseTrans on two platforms (Android and iOS)
in the production environment in Baidu. Extensive experiments
demonstrate that WiseTrans could reduce the request completion
time by 26.5% on average compared to using a single protocol.
With XGBoost, WiseTrans can also achieve an accuracy of 88.3% of
protocol selection for each request.

In summary, we make the following contributions in this paper:
• We motivate the problem and significance of transport proto-
col selection with measurements from real-world mobile web
service (§2).

• We propose WiseTrans, an adaptive transport protocol selection
mechanism based on XGBoost for large-scale deployment of
mobile web service (§3).

• Weevaluate the performance improvements ofWiseTrans against
several baselines with extensive experiments with one of the
mobile web service of Baidu (§4).

2 BACKGROUND AND MOTIVATION
In this section, we first introduce the performance differences be-
tween QUIC and TCP for mobile web service in §2.1. We then
present the challenges of the adaptive protocol switching for mo-
bile web service in §2.2.

2.1 Background
After QUIC was proposed, lots of measurements have revealed
the performance differences between TCP and QUIC. Specifically
for mobile web service, we also conduct a week-long passive mea-
surement campaign on one mobile web service with millions of

0 1 2 3 5 7 9 10 20
Loss rate (%)

0.
0

0.
4

0.
8

1.
6

2.
4

3.
2

4.
0

5.
6

8.
0

12
.0

16
.0

Ba
nd

wi
dt

h
(m

bp
s)

0.5

0.0

0.5

1.0

1.5

Figure 1: ln 𝜆 with different bottleneck bandwidth and packet loss
rate. Red color indicates QUIC outperforms TCP and blue color indi-
cates that TCP outperforms QUIC. 𝜆 is the ratio of the performance
of TCP and QUIC. The performance here is the request completion
time at the application layer for the mobile web service.

requests. We summarize the key enablers that result in the per-
formance difference of using TCP and QUIC. Our detailed passive
measurements in the wild in Appendix A also show that TCP and
QUIC perform differently with different access network types in
different geographical locations. See the appendix for the method-
ology and detailed results of our large-scale passive measurement
on one mobile web service.

Network conditions. We present our measurement results of the
performance of QUIC and TCP on different bandwidth and loss
rate in Fig. 1. Red color indicates that QUIC outperforms TCP at
that network condition, and deeper color indicates more significant
improvements. The statistical average results of QUIC outperforms
TCP on those slow net (high loss rate and low bandwidth). Mea-
surements on RTT demonstrate similar results. As also measured
by recent advances, the higher performance of QUIC in those slow
nets attributes to its better loss detection and recovery, as well as
the elimination of Head-Of-Line (HOL) blocking and ACK ambigu-
ity [9, 22, 23, 33].

Computation resources. Meanwhile, for mobile web service, the
performance of QUIC is also affected by the computation resource
on mobile users. Due to the high CPU overhead (up to 3.5× higher
compared to TCP/TLS [23]), mobile devices with limited computa-
tion resources might experience performance degradation [22].

2.2 Design Challenge
However, as we discussed in §1, deciding which protocol to use is
non-trivial in a large-scale real-world deployment of mobile web
service. We have encountered the following major challenges:

Complex temporal correlation. Network condition fluctuates
due to wireless channel fading, user moving, or network conges-
tion. Therefore, if we categorize the best protocol for mobile users

WiseTrans: Adaptive Transport Protocol Selection for Mobile Web Service WWW '21, April 19�23, 2021, Ljubljana, Slovenia

according to Fig. 1, the optimal protocol might also change. How-
ever, precisely measuring the current network condition and cap-
turing the temporal relationship is challenging due to the complex
correlation of network statistics. For example, existing research
e�orts have employed sophisticated mathematical tools to measure
and predict even one network condition (e.g., Kalman �lter for
RTT [14]). Precisely combining the statistics from three network
properties (bandwidth, RTT, and loss rate) and jointly optimizing
the transport protocol selection would be more challenging.

High spatial heterogeneity. For widely deployed mobile web
service, users may come from di�erent regions, using di�erent ISPs
and home devices. However, those in-network devices might have
di�erent preferences towards UDP, which will consequently a�ect
the performance of QUIC. For example, since UDP tra�c is more
likely to be adopted as malicious attack tra�c, ISP gateways or
home routers might have additional QoS strategies by randomly
dropping, rate limiting, or even blocking UDP tra�c [1, 3]. Since
di�erent ISPs and home routers might have di�erent preferences, it
is challenging for us to optimize the protocol selection for individual
users.

Limited resource on mobile devices. Deciding the proper oper-
ating granularity of a protocol switching algorithm is also challeng-
ing for mobile devices. On one hand, packet-level measurements
might result in burdensome overhead by querying the statistics of
network stack [12]. Packet-level protocol switching will also result
in consistency overhead at the transport layer. On the other hand,
sparse granularity switching, like user-level and page-level, might
lead to sub-optimal performance because of mobile users' tempo-
ral heterogeneity and may be too long to track the time-varying
network condition [26].

Therefore, we are motivated to design an adaptive transport
protocol switching mechanism for mobile web service with the
above challenges in mind.

3 WISETRANS DESIGN
In this section, we present the design of WiseTrans. We �rst present
an overview (Ÿ3.1), and then introduce each design components
of WiseTrans, including aFeature Extractor (Ÿ3.2), aProtocol
Classifier (Ÿ3.3), and aRollback Checker (Ÿ3.4).

3.1 Design Overview
As shown in Fig. 2, the work�ow of WiseTrans is as follows:

Step 1: Feature extraction. Periodically, WiseTrans measures raw
statistics for each user of the mobile web service. We will intro-
duce which statistics to measure and how theFeature Extractor
preprocesses historical data in Ÿ3.2.

Step 2: Protocol classi�cation. Next, WiseTrans employs an XGBoost-
based [17] Protocol Classifier (Ÿ3.3). TheProtocol Classifier
selects a better transport protocol based on the features from the
Feature Extractor .

Step 3: Rollback check. After that, before putting the protocol
selection into e�ect, WiseTrans checks if the user needs to rollback
the selection with aRollback Checker (Ÿ3.4). The rollback mech-
anism is designed to correct unexpected behaviors caused by the

Figure 2: The architecture of WiseTrans.

preferences of network devices or the decisions of theProtocol
Classifier .

Step 4: Protocol switching. Finally, based on the output of the
Protocol Classifier andRollback Checker, WiseTrans decides
to still use the current transport protocol or switch to the other one
for the next web service request.

However, as we discussed before, a key design choice is the
operation granularity of WiseTrans. Compared to the user-level
classi�cation in personal characterization of social networks [6]
and packet-level decisions in network bandwidth prediction in the
network stack [14], WiseTrans works on the request level due to
the following considerations:
� Overhead on mobile devices. For mobile web service, the re-

sources on mobile devices are limited. Therefore, packet-level
measurements at the protocol stack might result in burden-
some overhead by frequently querying the statistics of network
stack [27]. Moreover, packet-level decisions usually need to mod-
ify the protocol stack [13], which is impractical for web service
providers. In contrast, request-level measurements alleviate the
overhead issue.

� Timeliness of request. Network conditions usually do not
frequently change within a few RTTs and are usually around
hundreds of milliseconds or even longer [5]. As shown in Fig. 3,
nearly 90% of requests are completed within one second from
our measurements. Meanwhile, the latency in mobile web ser-
vice could be up to hundreds of milliseconds [18]. In this way,
switching the protocol at the request level is timely enough for
mobile web service.

� Consistency during protocol switching. Moreover, opera-
tors need to consider the consistency during the protocol switch-
ing. For example, if we switch the protocol at the packet level,
packets need reordering due to the potential out-of-order issues
from two protocols. In contrast, one request does not depend
on the completion of other requests in one page of mobile web
service. Therefore, switching the protocol at the request level
does not need to guarantee the order of request completion and
reduce the overhead at the client side.

3.2 Feature Extractor
To address the spatial heterogeneity, we extract features not only
representing historical network conditions, but also historical deci-
sions and their consequent performance for those decisions. The
decision boundary may be di�erent for di�erent mobile users and
can be changeable for an individual user due to spatial heterogene-
ity. For example, since ISP gateways or home routers might have
additional QoS strategies by randomly dropping, rate limiting, or
even blocking UDP tra�c, di�erent users may have di�erent de-
cision boundaries shown in Fig. 1. Simply considering network

WWW '21, April 19�23, 2021, Ljubljana, Slovenia Jia Zhang, Enhuan Dong, Zili Meng, Yuan Yang, Mingwei Xu, Sijie Yang, Yang Yue

Figure 3: The distribution of the request completion time of our
mobile web service application in the wild. The measurement details
are introduced in Appendix A.

conditions cannot optimize protocol selection for individual users.
In another scenario, the access network and ISP changes when a
user moves, which will bring the decision boundary changes. The
same network condition may correspond to di�erent protocol se-
lection decisions with such changes, making historical network
conditions not enough for decision making.

Therefore, we adopt three kinds of features, as shown in Tab. 1
� Historical network conditions. We use')) (round-trip time),

�C;�F (bottleneck bandwidth) and!>BB'0C4(packet loss rate)
to model a network path, following [13], which can describe
the network conditions a user experienced. Based on the design
choice mentioned in Ÿ3.1, we collect request-level average RTT
(')) _0E6), throughput (A4@_2<?;_�) and retransmission rate
('4CA0=_A0C4) as network conditions.

� Historical decisions. The transport protocol should also be
considered. Historical decisions and their subsequent perfor-
mance can address the heterogeneity and variability of the deci-
sion boundary. The possible rate limit of QUIC/UDP for some
users can be re�ected from the similar network conditions and
the same protocol, but di�erent performance. In the meantime,
the changes of decision boundary will be explored by the un-
changed network conditions and protocol, but changing perfor-
mance.

� Historical requests' performance. We select)) � � andA4B?_A42_�
as the performance of the past decision. As shown in Fig. 8, TTFB
in this paper is the time from the client sending the request to
the client receiving the �rst byte, implies the properties of the
request transport.A4@_2<?;_� measures request completion
goodput, dividing the user's received bytes by the time interval
between the client sending request, and receiving the whole
response body.
As shown in Fig. 4, for each request,Feature Extractor records

the required information of the request, as well as the RTT, retrans-
mitted packets, and TTFB in the Record Window from the HTTP
logs and the socket logs. Finally, all the features extracted from
the requests in the Recog Window are passed to theProtocol
Classifier , as shown in Fig. 5.

3.3 Protocol Classi�er
As introduced before, the design goal ofProtocol Classifier
is to faithfully learn the temporal correlation and spatial hetero-
geneity based on the features fromFeature Extractor . Potential
classi�cation models include linear regression, supporting vector
machine, decision tree, random forests, and even neural networks.

Figure 4: The detail process ofFeature Extractor . Feature
Extractor records and extracts features used for classi�cation.

Figure 5: The detail process ofProtocol Classifier and
Rollback Checker.

In this paper, WiseTrans employs XGBoost, a tree-based classi�ca-
tion model, due to the following reasons:
� Expressive. Due to the complexity of features, the classi�cation

algorithm should be expressive enough to capture the relation-
ship among features. In our experiments in Ÿ4.3, XGBoost is
capable of precisely capturing the relationship and has a satis-
factory classi�cation accuracy of around 90%.

� Lightweight. For mobile web service, due to the resource limi-
tation on mobile devices, the classi�cation algorithm should also
be lightweight enough to avoid additional overhead. Therefore,
sophisticated algorithm (e.g., neural networks, integer program-
ming) are not practical without additional hardware acceleration.
As a tree-based algorithm, XGBoost could be e�ciently executed
on mobile devices in a negligible time (3ms in Ÿ4.2).

� Interpretable and veri�able. Meanwhile, deploying the classi-
�er online in a production environment also requires the model
to be interpretable and veri�able [25]. Deploying a black-box
model (e.g., neural networks) online might result in unexpected
behaviors. In contrast, recent advances in the machine learning
community have demonstrated the veri�ability and robustness
of tree-based models, including XGBoost [16].
As for the training of XGBoost, WiseTrans learns the classi�ca-

tion rules o�ine. WiseTrans discovers the rules through a large
number of �ne-grained experiments, as shown in Fig. 6. We label the
features fromFeature Extractor according to the performance
comparison of using TCP and QUIC. Therefore, WiseTrans can

WiseTrans: Adaptive Transport Protocol Selection for Mobile Web Service WWW '21, April 19�23, 2021, Ljubljana, Slovenia

Feature Description
TCP QUIC

Importance Rank Importance Rank
Retran_rate |Retransmitted Packets| / |Sent Packets| in time window 0.2849 1 0.2294 1
RTT_avg Average RTT in time window 0.1368 3 0.1214 5

resp_rec_G
Received Bytes / The time interval of the client receiving
the �rst and last bytes of the response body

0.1273 5 0.1462 4

TTFB_avg Average TTFB in time window 0.1421 2 0.1904 2
TTFB TTFB of current request 0.1308 4 0.0929 6

TTFB_rate TTFB / TTFB_avg 0.1072 6 0.1737 3

req_cmpl_G
Received Bytes / The time interval between the client sending
request and receiving the whole response body

0.0708 7 0.0469 7

Table 1: The description of the selected features and their ranking. The features selected by WiseTrans not only re�ect historical network
conditions, but also historical decisions and their performance.

Figure 6: The Process of WiseTrans O�ine Training. A server
collects information of requests under various network conditions,
using TCP and QUIC separately, and labels automatically.

learn the classi�cation rules based on the extracted features (listed
in Tab. 1) and the data labels. We leverage Grid Search [28] and
cross-validation for model selection and hyperparameter tuning.
We further evaluate the sensitivity of parameters in Ÿ4.5.

3.4 Rollback Checker
We introduceRollback Checker as a guard for unexpected behav-
iors of network and unexpected decisions ofProtocol Classifier .
On one hand, possible UDP/QUIC block or rate limit makes that
the decision making is to compare TCP and QUIC's performance
under two di�erent Ÿ ')) • �C;�F• !>BB'0C4 ¡ , as shown in Fig. 7,
which cannot be compared by theProtocol Classifier . On the
other hand, when a mobile user has only used one protocol before,
which may occur the �rst time a user visits a web service or the
user changes ISP, it is challenging for the o�ine trained classi�er to
make a proper choice. In the meantime, when network conditions
suddenly change, the sliding window inProtocol Classifier is
challenged to capture and react to the instant changes.Rollback
Checkere�ciently captures the change and avoids severe perfor-
mance degradation.

Therefore, in view of such situations,Rollback Checker com-
pares the performance of the requests in the RollBack Window
before and after the switching, shown in Fig. 5. If a signi�cant
performance deterioration is found, which means the user is in a
rollback state, Rollback Checker rolls back to the last protocol.

4 EVALUATION
In this section, we �rst introduce the setup of our evaluation in
Ÿ4.1. We then evaluate WiseTrans in the following aspects:

Figure 7: Transport model when meeting QUIC/UDP rate limit or
packet block.

� Performance in the Wild.We evaluate the performance of Wise-
Trans against a �xed transport protocol in the real world. From
our experiments, WiseTrans can reduce the average request
completion time by 26.5% compared to using TCP only and 6.6%
compared to QUIC (Ÿ4.2).

� Component E�ectiveness.We then evaluate the e�ectiveness
of the design of WiseTrans. Compared to other classi�cation
method, WiseTransProtocol Classifier can achieve a classi-
�cation accuracy of 91% (Ÿ4.3). Meanwhile, theRollback Checker
can also reduce the average completion time by 7.3% (Ÿ4.4).

� Parameter Sensitivity.Finally, we evaluate the performance of
WiseTrans by varying the hyperparameters of WiseTrans. Exper-
iments show that the performance improvements of WiseTrans
can be maintained for a wide range of parameters (Ÿ4.5).

4.1 Experimental Setup
4.1.1 WiseTrans Client.We implement WiseTrans on two plat-
forms (Android and iOS) of the client of a mobile web service
application ofBaidu. The implementation contains about 4000 lines
of C code.

For the implementation of XGBoost in WiseTransProtocol
Classifier in Ÿ3.3, we train two models separately according
to the current transport protocol. We utilize the maximum depth
of 7 and minimum child weight of 1, and the top 5 features for
requests transported by QUIC while the top 7 features for requests
transported by TCP.

To avoid switching too frequently, in our online implementation,
we use a periodic decision-making method as shown in Fig. 5. We
further discuss the time window parameter setting in Ÿ4.5.

The training traces and source code are published on https://
github.com/joycezhangjia/WiseTrans.

WWW '21, April 19�23, 2021, Ljubljana, Slovenia Jia Zhang, Enhuan Dong, Zili Meng, Yuan Yang, Mingwei Xu, Sijie Yang, Yang Yue

Figure 8: The experimental setup of WiseTrans.

4.1.2 Web Service Server.In the server-side implementation of the
mobile web service, we have frontend servers for load balancing and
backend servers for request processing. The connection between
frontend servers and backend servers are in the internal enterprise
network of Baiduand are over private protocols. Therefore, con-
nections optimized by WiseTrans are referred to the connections
between the mobile user and the frontend servers.

4.1.3 Dataset.For o�ine training, we collect 38 hours, more than
128,000 request logs on a mobile web service app ofBaidu, as the
training dataset. For evaluation, we enable WiseTrans for certain
users in two cities (Beijing and Shijiazhuang in China), with and
without CDN server cluster deployment, and collect logs for 40
hours, resulting in more than 64,000 request logs. Also, we randomly
collect more than 64,000 request logs using TCP and QUIC as our
baseline.

4.2 Request Completion Time
Request completion time is a key metric to measure the performance
of web service [7]. Fig. 9 shows the average request completion time,
with the median of it. We also select the shorter average completion
time between TCP and QUIC as Ideal for each network condition, as
a comparison. It can be found that WiseTrans outperforms TCP and
QUIC. For the situation with a client located in Beijing, WiseTrans
has a 26.5% reduction in average completion time compared to TCP,
and 2.4% to QUIC. For the median completion time, WiseTrans also
has an 18.9% and 1.6% reduction. As for the experiments which
the client is located in Shijiazhuang, the reduction is about 11.0%
and 6.6% on average and 6.0% and 11.7% for the median completion
time. In all, WiseTrans is just about 1%-2% longer than Ideal, which
demonstrates that WiseTrans is e�cient.

Fig. 10 shows the detailed reduction ratio of WiseTrans com-
pared to TCP and QUIC as the request completion time increases.
Obviously, WiseTrans shows great improvement compared to TCP
and QUIC for the 99C� percentile (the tail) completion time. Wise-
Trans has a 57.1% reduction, about 8.52 s compared to TCP, and
an 8.69% reduction compared to QUIC for the experiments in Bei-
jing. For the experiments in Shijiazhuang, the reduction is about
37.6% and 12.8%. Results show that WiseTrans e�ectively improve
users' experience who have experienced an extremely long request
completion time.

The reductions of TCP and QUIC are always complimentary.
From Fig. 10, it can be seen that when request completion time is
in the shorter half, which means under better network conditions,

(a) Experiments in Beijing. (b) Experiments in Shijiazhuang.

Figure 9: WiseTrans achieves lower request completion time than
TCP and QUIC in both cities. The reduction could achieve 26.5%
compared to using one �xed transport protocol.

(a) Experiments in Beijing.

(b) Experiments in Shijiazhuang.

Figure 10: WiseTrans's redution of TCP and QUIC with di�erent
percentile of request comlpetion time. WiseTrans has a reduction
of 57.1% for the 99C� percentile (the tail) completion time.

QUIC has poor performance, and WiseTrans has signi�cant im-
provements, especially in Shijiazhuang. While TCP always causes
a long tail, WiseTrans signi�cantly improves TCP's performance
when the completion time is longer. Such results re�ect the key
idea of WiseTrans, selecting the protocol with better performance
in the current network condition. Speci�cally, WiseTrans should
always be able to achieve the optimal performance of using QUIC
or TCP. Therefore, WiseTrans just will have better performance
than TCP or QUIC for one network condition, while can achieve
the overall optimal for users across the network.

We also �nd negative value with an average ratio of -1.29% for
experiments in Beijing and -2.37% for experiments in Shijiazhuang.
The performance degradation among them is mainly due to the

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Background
	2.2 Design Challenge

	3 WiseTrans Design
	3.1 Design Overview
	3.2 Feature Extractor
	3.3 Protocol Classifier
	3.4 Rollback Checker

	4 Evaluation
	4.1 Experimental Setup
	4.2 Request Completion Time
	4.3 Classifier Deep Dive
	4.4 Rollback Checker Deep Dive
	4.5 Parameters Analysis

	5 Related Work
	6 Conclusion
	References
	A Large-scale Measurements of One Popular Mobile Web Service
	A.1 Methodology
	A.2 Measurement Results

