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Abstract— To improve the performance of mobile web services,
a new transport protocol, QUIC, has been recently proposed as
a substitute for TCP. However, with pros and cons of QUIC,
it is challenging to decide whether and when to use QUIC in
large-scale real-world mobile web services. Complex temporal
correlation of network conditions, high user heterogeneity in
a nationwide deployment, implementation diversity of QUIC
variants limited, and resources on mobile devices all affect
the selection of transport protocols. In this paper, we present
WiseTrans, an adaptive transport protocol selection mechanism,
to switch transport protocols for mobile web services online
and improve the completion time of web requests. WiseTrans
introduces machine learning techniques to deal with temporal
heterogeneity, makes decisions with historical information to
handle spatial heterogeneity, adopts an online learning method to
keep pace with implementation variation, and switches transport
protocols at the request level to reach high performance with
acceptable overhead. We implement WiseTrans on two platforms
(Android and iOS) in a popular mobile web service application of
Baidu. Comprehensive experiments demonstrate that WiseTrans
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can reduce request completion time by up to 25.8% on average
compared to the usage of a single protocol.

Index Terms— Protocol selection, mobile web service,
ML-based networking systems.

I. INTRODUCTION

RECENTLY, a sharp increase in the usage of mobile
web services has been observed. The latest statistics

demonstrate that mobile users have become the most signifi-
cant proportion of global Internet users [2]. In this case, the
performance of mobile web services, such as request com-
pletion time,1 is becoming more and more critical for service
providers. For example, Google reported that 53% of mobile
users give up waiting if a page fails to be loaded within three
seconds [3]. As a consequence, mobile web service providers
strive to reduce the page load time and improve mobile web
performance. In response, a new transport protocol, QUIC,
has been proposed to cater for the increasingly stringent delay
requirements from web services. As being standardized [4],
QUIC has been becoming a new widely supported transport
protocol for web services.

Yet, QUIC does not always perform better than TCP.
Although QUIC could achieve better performance than TCP in
various settings, recent studies do show that TCP sometimes
works better in scenarios such as good network conditions,
quality of service (QoS) strategies from Internet Service
Providers (ISPs) [5], [6], [7]. Therefore, using a fixed transport
protocol for all requests, all users will result in suboptimal
performance. Moreover, in mobile networks, the network
conditions could also frequently change. We are thus moti-
vated to adapt the appropriate transport protocol for a better
performance.

Therefore, we propose WiseTrans in this paper, an adaptive
transport protocol selection mechanism to improve the perfor-
mance of mobile web services. WiseTrans measures the net-
work conditions on the client side and switches the transport
protocols when necessary. By adaptively switching transport
protocols, mobile web service users can enjoy benefits from
both protocols and have a better experience.

However, it is non-trivial to decide whether a request in
a mobile web service should use TCP or QUIC in a large-
scale real-world mobile web service due to the following
reasons (§II-B). First, the network condition during the con-
nection could be fluctuating, especially in mobile network.
In this case, the answer to whether using TCP or QUIC might

1There are also metrics in the optimization of mobile web service, such
as page loading time. In this paper, we mainly focus on the HTTP request
completion time.
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also change with time. For example, even for one mobile user,
the network conditions could be affected by the interference
on wireless channels and the competition with other flows. It is
difficult for providers to have a static answer of using QUIC or
not. Second, for a large-scale service, connections from differ-
ent users will traverse wide-area networks and mobile access
networks with different behaviors (i.e., spatial heterogeneity).
For example, different QoS preferences of ISPs and home
router settings could affect the optimal choice between two
protocols [5]. In this case, different users might have different
protocol selection strategies. Third, the diverse configurations
and implementations of protocols bring more challenges. As an
evolving protocol, QUIC has various implementations of dif-
ferent parties and is still under development [8]. Even for
TCP, emerging designs at the client side will also affect its
performance [9]. In this case, the performance of TCP and
QUIC will also be different among implementations. It is
also challenging to consider the numerous variants during the
selection between TCP with QUIC, and the need to make
the selection mechanism future-proof to potential evolution.
Finally, the computation resources on mobile clients are also
limited, which requires WiseTrans to be lightweight enough
for real-world deployment. For example, expressive but heavy-
weight models might not be able to be executed in the
runtime [10]. Fine-grained actions (e.g., per-packet decision)
will introduce considerable overhead in the statistics collection
from the network stack. It is even more challenging to propose
a protocol selection mechanism that could be deployed in
practice for numerous users in the real world.

To address the above challenges, we design several building
blocks in WiseTrans. First, to adapt to the temporal network
fluctuations of mobile users, WiseTrans periodically measures
the network conditions and decide whether using QUIC or
TCP for upcoming requests. Second, to optimize towards
heterogeneous users, WiseTrans collects historical decisions
and performance, and then subsequently update and customize
the protocol decision online for different users (§III-B). Third,
to make WiseTrans generalizable to various protocol vari-
ants, we introduce a probabilistic exploration mechanism to
update the behaviors of TCP and QUIC (§III-D). Finally,
to make WiseTrans deployable for real-world large-scale ser-
vices with minimum overhead while maintaining the perfor-
mance improvements, we make a series of design choices
including using tree-based machine learning algorithms for
decision (§III-C), and carefully designing the decision-making
granularity (§III-A).

We implement WiseTrans on two platforms (Android and
iOS) in the production environment in Baidu. Extensive
experiments demonstrate that WiseTrans could reduce the
request completion time by about 25.6% on average compared
to using a single protocol. WiseTrans can also achieve an
accuracy of 88.3% of protocol selection for each request.
Additionally, our results show WiseTrans’ ability to generalize
to unseen implementations. WiseTrans could reach more than
20% improvement on different implementations, consistent
with the baseline method, which selects protocol based on
an offline-trained model specialized for that implementa-
tion (§IV).

In summary, we make the following contributions:

• We motivate the problem and significance of transport
protocol selection between TCP and QUIC with mea-
surements from real-world mobile web service (§II).

Fig. 1. ln λ with different bottleneck bandwidth and packet loss rate. Red
color indicates QUIC outperforms TCP, and blue color indicates that TCP
outperforms QUIC. λ is the ratio of the performance of TCP and QUIC. The
performance here is the request completion time at the application layer for
the mobile web service.

• We propose WiseTrans, an adaptive transport protocol
selection mechanism based on XGBoost for large-scale
deployment of mobile web service (§III).

• We evaluate the performance improvements of WiseTrans
against several baselines with extensive experiments with
one of the mobile web services of Baidu (§IV).

II. BACKGROUND AND MOTIVATION

In this section, we first introduce the performance differ-
ences between QUIC and TCP for mobile web services in
§II-A. We then present the challenges of the adaptive protocol
switching for mobile web service in §II-B.

A. Background
After QUIC was proposed, lots of measurements have

revealed the performance differences between TCP and QUIC.
Specifically for mobile web service, we also conduct a
week-long passive measurement campaign on a mobile web
service with millions of requests. We summarize the key
enablers that result in the performance difference of using TCP
and QUIC. Our detailed passive measurements in the wild in
Appendix also show that TCP and QUIC perform differently
with different access network types in different geographical
locations. See the appendix for the methodology and detailed
results of our large-scale passive measurement on one mobile
web service.
Network conditions. We present our measurement results of
the performance of QUIC and TCP on different bandwidth and
loss rate in Fig. 1. Red color indicates that QUIC outperforms
TCP at that network condition, and deeper color indicates
more significant improvements. The statistical average results
of QUIC outperform TCP on those slow net (high loss rate and
low bandwidth). Measurements on RTT demonstrate similar
results. As also measured by recent advances, the higher
performance of QUIC in those slow nets attributes to its
better loss detection and recovery, as well as the elimina-
tion of Head-Of-Line (HOL) blocking and ACK ambiguity
[5], [6], [7], [11].
Computation resources. Meanwhile, for mobile web services,
the performance of QUIC is also affected by mobile device
computation resource. Due to the high CPU overhead (up to
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Fig. 2. Performance difference between TCP and QUIC varies with user spatial heterogeneity and implementation diversity. Red color indicates QUIC
outperforms TCP, and blue color indicates that TCP outperforms QUIC.

3.5× higher compared to TCP/TLS [5]), mobile devices with
limited computation resources might experience performance
degradation [6].

B. Design Challenges
However, as discussed in §I, deciding which protocol to

use is non-trivial in a large-scale real-world deployment of a
mobile web service. We have encountered the following major
challenges:
Complex temporal correlation. Network condition fluctuates
due to wireless channel fading or user moving. Therefore,
if we categorize the best protocol for mobile users according to
Fig. 1, the answer to whether using TCP or QUIC might also
change with time. However, precisely measuring the current
network condition and capturing the temporal relationship
are challenging due to the complex correlation of network
statistics. For example, existing research efforts have employed
sophisticated mathematical tools to measure and predict even
one network condition (e.g., Kalman filter for RTT [12]). Pre-
cisely combining the statistics from three network properties
(bandwidth, RTT, and loss rate) and jointly optimizing the
transport protocol selection would be more challenging.
High spatial heterogeneity. For a widely deployed mobile
web service, users may come from different regions, using
different ISPs and home devices. However, those in-network
devices might have different preferences towards UDP, con-
sequently affecting the performance of QUIC. For example,
since UDP traffic is more likely to be adopted as malicious
attack traffic, ISP gateways or home routers might have
additional QoS strategies by randomly dropping, rate limiting,
or even blocking UDP traffic [13], [14]. As Fig. 2a and Fig. 2b
shows, users in different regions experience different protocol
performance. As we illustrate in §IV-B, there is no CDN
server cluster deployment in SJZ, users may experience more
in-network devices and complicated ISP strategies. In our
measurement, requests using QUIC encountered more loss
events than TCP in SJZ. We believe that the performance
difference could be due to the additional QoS strategies on
UDP traffic. Since different ISPs and home routers might have
different preferences, it is challenging to optimize the protocol
selection for individual users.
Implementation diversity. Although QUIC protocol specifi-
cations have been published [4], many parties have constantly
been updating more than 18 different QUIC/H3 implementa-
tions [8] and using them in their own applications. Different
implementations, as well as the updates and optimizations
in the process of deploying QUIC, will affect the protocol’s
performance [15], [16]. To verify the impact of implementation

differences on performance, we use two different implementa-
tions. One is the stable version of one application (Ver. S), and
the other is an experimental version that we print out some log
for debugging (Ver. E). As Fig. 2a and Fig. 2c show, QUIC
performs much better in almost all network conditions in Ver.
E. Since different applications may implement different pro-
tocol versions, it is challenging to design a protocol selection
scheme that suits all applications.
Limited resource on mobile devices. Deciding the proper
operating granularity of a protocol switching algorithm is also
challenging for mobile devices. On the one hand, packet-
level measurements might result in burdensome overhead by
querying the statistics of network stack [17]. Packet-level
protocol switching will also result in consistency overhead
at the transport layer. On the other hand, sparse granular-
ity switching, like user-level and page-level, might lead to
sub-optimal performance because of mobile users’ temporal
heterogeneity and may be too long to track the time-varying
network condition [18].

Therefore, we are motivated to design an adaptive transport
protocol switching mechanism for mobile web service with
the above challenges in mind. In order to address the above
challenges, the design goals of WiseTrans are: (1) being
expressive enough to reflect the complex network condi-
tions; (2) being adaptive enough to deal with unpredictable
changes in protocol performance caused by user heterogeneity;
(3) strong generalization ability among different implemen-
tations; (4) being lightweight enough to bring less additional
overhead.

III. WISETRANS DESIGN

In this section, we present the design of WiseTrans.
We first present an overview (§III-A) of how WiseTrans
achieves the design goals we present above with different
design blocks. We then introduce each design component of
WiseTrans, including a Feature Extractor (§III-B), a
Network Monitor (§III-C), a Probe Agent (§III-D),
and a Rollback Checker (§III-E).

A. Design Overview
WiseTrans architecture. To address the design challenges
and achieve the design goals of expressive, adaptive and
lightweight with the generalization ability among different
implementations, we design several building blocks in Wise-
Trans, as shown in Fig. 3. First, to optimize for heterogeneous
users, Feature Extractor collects not only historical
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Fig. 3. Architecture of WiseTrans.

network conditions, but also historical decisions and their
performance, and then subsequently updates and customizes
protocol decisions online for different users (§III-B). Sec-
ond, to handle the complex temporal relationship during
a connection while ensuring the simplicity for large-scale
deployment, Network Monitor employs a tree-based clas-
sification algorithm, XGBoost [19], to monitor the network
condition (§III-C). Third, to make WiseTrans generalizable
to various protocol variants and application implementations,
Probe Agent explores the real-time behaviors of TCP and
QUIC (§III-D). Finally, we introduce Rollback Checker
as a guard for unexpected behaviors of network, and unex-
pected decisions of protocol (§III-E).

WiseTrans works on the client side. When the transport
protocol selected by WiseTrans changes, the client simply
sends subsequent requests to the server using the new protocol
and the server can follow up with responses based on the
type of protocol received. Therefore, WiseTrans only requires
modification on the client side and it works well with any
server that supports both TCP and QUIC protocols. Specifi-
cally, WiseTrans works as a shim layer between the application
layer and transport layer. WiseTrans collects information from
both application layer and transport layer, makes decisions,
and allows the application to adopt the selected protocol.
WiseTrans workflow. As shown in Fig. 3, the workflow of
WiseTrans is as follows:
Step 1: Feature extraction. Periodically, WiseTrans measures
raw statistics for each user of the mobile web service. We will
introduce which statistics to measure and how the Feature
Extractor preprocesses historical data in (§III-B).
Step 2: Network monitoring. Next, WiseTrans employs an
XGBoost-based [19] Network Monitor (§III-C) to detect
changes of the network conditions based on the features from
the Feature Extractor. When Network Monitor
recognizes a significant change in network conditions, it is
possible that the optimal protocol has changed, and then we
enter the Probe Agent. Otherwise, we continue with the
current protocol.
Step 3.1: Protocol exploration. From the perspective of
Probe Agent (§III-D), WiseTrans consists of two phases,
the exploration phase and the exploitation phase. When
Network Monitor recognizes a significant difference in
network conditions, Probe Agent will enter the exploration
phase and re-select protocol by performing live experiments.
Probe Agent sends requests with TCP and QUIC alter-
nately, and select the protocol with better performance. In the
exploitation phase, WiseTrans will use that selected protocol.
Step 3.2: Rollback check. After that, before putting the
protocol selection into effect, WiseTrans checks if the user
needs to roll back the selection with a Rollback Checker
(§III-E). The rollback mechanism is designed to correct

Fig. 4. Distribution of the request completion time of our mobile web service
application in the wild. The measurement details are introduced in Appendix.

unexpected behaviors caused by the preferences of network
devices or the decisions of the Probe Agent.
Step 4: Protocol switching. Finally, based on the output of the
Network Monitor and Probe Agent with Rollback
Checker, WiseTrans decides to still use the current transport
protocol or switch to the other one for subsequent requests.
Operation granularity. As discussed before, an important
design choice is the operation granularity of WiseTrans.
Compared to the user-level classification in personal charac-
terization of social networks [20] and packet-level decisions
in network bandwidth prediction in the network stack [12],
WiseTrans works on the request level due to the following
considerations:

• Overhead on mobile devices. For mobile web services,
the resources on mobile devices are limited. Therefore,
packet-level measurements in the selection mechanism
might result in burdensome overhead by frequently query-
ing the statistics of the network stack [21]. Moreover,
packet-level decisions usually need to modify the protocol
stack [22], which is impractical for web service providers.
In contrast, request-level measurements alleviate the over-
head issue.

• Timeliness of request. Network conditions usually
do not frequently change within a few RTTs, which
are generally around hundreds of milliseconds or even
longer [23]. As shown in Fig. 4, nearly 90% of requests
are completed within one second from our measurements.
Meanwhile, the latency in mobile web service could be up
to hundreds of milliseconds [24]. In this way, switching
the protocol at the request level is timely enough for
mobile web service.

• Consistency during protocol switching. Moreover,
operators need to consider the consistency during the pro-
tocol switching. For example, if we switch the protocol
at the packet level, we need to reorganize packets from
two connections into one request or response. Besides,
packets also need reordering due to the potential out-of-
order issues from two protocols. In contrast, one request
does not depend on the completion of other requests in
one page of mobile web service. Therefore, switching the
protocol at the request level does not need to guarantee
the order of request completion and reduce the overhead
at the client side.

B. Feature Extractor
Feature Extractor collects and extracts features used

for protocol selection. To address the user heterogeneity,
we extract features representing not only historical network
conditions, but also historical decisions and the consequent
performance of those decisions. The decision boundary may be
different for different mobile users and can be changeable for
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TABLE I
DESCRIPTION OF FEATURES AND THEIR RANKING. THE FEATURE IMPORTANCE IS ESTIMATED AS THE AVERAGE INFORMATION GAIN.

THE FEATURES SELECTED BY WISETRANS REFLECT NOT ONLY HISTORICAL NETWORK CONDITIONS,
BUT ALSO HISTORICAL DECISIONS AND THEIR PERFORMANCE

an individual user due to spatial heterogeneity. For example,
since ISP gateways and home routers might have additional
QoS strategies by randomly dropping, rate limiting, or even
blocking UDP traffic, different users may have different deci-
sion boundaries shown in Fig. 1. Simply considering network
conditions cannot optimize protocol selection for individual
users. In another scenario, the access network and ISP change
when a user moves, which will bring the decision boundary
changes. The same network condition may correspond to dif-
ferent protocol selection decisions with such changes, making
historical network conditions not enough for decision-making.

Therefore, we adopt three kinds of features,2 as shown in
Tab. I.

• Historical network conditions. We use round-trip time
(RTT ), bottleneck bandwidth (BtlBw), and packet loss
rate (LossRate) to model a network path, follow-
ing [22], which can describe the network conditions
a user experienced. Based on the design choice men-
tioned in §III-A, we collect request-level average RTT
(RTT_avg), throughput (resp_rec_G), and retransmis-
sion rate (Retran_rate) as network conditions.

• Historical decisions. The transport protocol should also
be considered. Historical decisions and their subsequent
performance can address the heterogeneity and variability
of the decision boundary. The possible rate limit of
QUIC/UDP for some users can be reflected in the similar
network conditions and the same protocol but different
performance. In this way, the changes in the decision
boundary will be explored.

• Historical requests’ performance. We select Time to
First Byte (TTFB) and request completion goodput
(req_cmpl_G) as the performance of the past decision.
As shown in Fig. 8, TTFB in this paper is the time
from the client sending the request to the client receiv-
ing the first byte, which implies the properties of the
request transport. We collect historical average TTFB
(TTFB_avg) to estimate the application performance.
We also calculate and the ratio of TTFB of current request
to the average TTFB (TTFB_rate), aiming to capture
the transient performance changes. req_cmpl_G mea-
sures request-level goodput, dividing the user’s received
bytes by the time interval between the client sending a
request and receiving the whole response body.

2We use the Information Gain to analyze the feature importance. Informa-
tion Gain computes the difference of entropy between before and after split
and specifies the impurity in class elements. We use the average gain across
all splits the feature is used in as the importance.

For each request, Feature Extractor records the
required information of the request, as well as the information
of the connection from the HTTP logs and the socket logs.

C. Network Monitor
We build a model in Network Monitor to detect the

changes in network conditions. As the network environment
changes frequently and complicatedly, it is difficult to decide
when to perform live experiments through only observing
the current network conditions. The design of the Network
Monitor is based on the following considerations. First,
the criterion for the extent of network condition changes
is supposed to be closely related to the performance of
TCP and QUIC. For example, as shown in Tab. I, since
loss is one of the critical factors affecting the performance
difference between TCP and QUIC, a slight change in loss
rate should result in a significant change in the indicator.
Second, the model trained with specific implementations of
QUIC and TCP can still be used to understand the changes
in network conditions even in different implementations. This
is mainly because that the performance difference between
TCP and QUIC is due to their design principle. Therefore,
the trend of performance differences between QUIC and TCP
with network conditions is consistent across implementations
[5], [25]. Therefore, we train the model offline to reflect the
extent of network changes, which can generalize to other
protocol implementations.
Model. As introduced before, Network Monitor should
be able to faithfully learn the temporal correlation and
spatial heterogeneity based on the features from Feature
Extractor. Potential models include linear regression, sup-
porting vector machine, decision tree, random forests, and even
neural networks. In this paper, WiseTrans employs XGBoost,
a tree-based model, due to the following reasons:

• Expressive. Due to the complexity of features, the algo-
rithm should be expressive enough to capture the rela-
tionship among features. In our experiments in §IV-E.2,
XGBoost is capable of precisely capturing the relation-
ship and has a satisfactory accuracy of around 90%.

• Lightweight. Due to the resource limitation on mobile
devices, the algorithm should also be lightweight enough
to avoid additional overhead. Therefore, sophisticated
algorithm (e.g., neural networks, integer programming)
are not practical without additional hardware acceleration.
As a tree-based algorithm, XGBoost could be efficiently
executed on mobile devices in a negligible time (3ms in
§IV-C).
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Fig. 5. Process of WiseTrans Offline Training. A server collects information
of requests under various network conditions, using TCP and QUIC separately,
and labels automatically.

Fig. 6. Time-diagram of WiseTrans. WiseTrans includes two phases.
WiseTrans performs live experiments in the exploration phase and uses the
selected protocol in the exploitation phase.

• Interpretable and verifiable. Meanwhile, deploying
the monitor online in a production environment also
requires the model to be interpretable and verifiable [26].
Deploying a black-box model (e.g., neural networks)
online might result in unexpected behaviors. In contrast,
recent advances in the machine learning community have
demonstrated the verifiability and robustness of tree-
based models, including XGBoost [27].

Output and Training. As illustrated before, Network
Monitor gives an indicator that reflects the current network
conditions, and the fluctuation of this indicator will be used
for Probe Agent as a condition for entering the exploration
phase. For that purpose, the indicator should score the network
conditions by their influence on the performance of TCP and
QUIC. Therefore, the output of Network Monitor is not
only the objective reflection of network conditions but also
related to the performance of TCP and QUIC under current
network conditions.

As for the training of XGBoost, WiseTrans learns the model
offline. We label the features from Feature Extractor
according to the performance comparison of using TCP
and QUIC. WiseTrans learns the model with each network
condition as features and the optimal protocol under it as
labels. WiseTrans discovers how the features influence the
performance of TCP and QUIC through numerous fine-grained
experiments, as shown in Fig. 5. Therefore, WiseTrans can
learn the model based on the extracted features (listed in
Tab. I) and the data labels. We leverage Grid Search [28]
and cross-validation for model selection and hyperparameter
tuning. We further evaluate the sensitivity of parameters in
§IV-E.2.

D. Probe Agent
Probe Agent performs live experiments, compares the

performance of TCP and QUIC, and selects the subsequent

protocol. Probe Agent includes two phases, the explo-
ration phase and the exploitation phase. In the exploration
phase, Probe Agent performs live experiments by send-
ing requests using TCP and QUIC alternately and compares
the performance. The proper protocol will be used in the
exploitation phase. Probe Agent could address both the
spatial heterogeneity and implementation diversity. Through
live experiments, the different preference to UDP/QUIC will
be reflected by the poor performance of QUIC, and the
better TCP protocol will be selected. Meanwhile, with live
experiments, Probe Agent could estimate TCP and QUIC
performance under the current network and select without an
advance analysis of the protocol implementations.

There are two observations from the online practice of
WiseTrans that ensure the effectiveness of Probe Agent:

• Infrequent switching. Although wireless links fluctuate
rapidly, the frequency of protocol switching is not high.
As shown in Fig. 12b, the switching frequency is about
1%-2%, which means protocol switching is needed only
when the network undergoes drastic changes. Therefore,
we monitor network condition change and perform live
experiment only when the network conditions vary sig-
nificantly. In this case, although live experiments will
introduce performance degradation, its low frequency
could reduce the impact of performance degradation.

• Timeliness of live experiment. We run live experiments
by using TCP and QUIC alternately for several requests.
We found that users’ click behavior on the mobile web
service will trigger about 13.5 concurrent requests on
average, which will complete in about 1.5 seconds. More-
over, due to the low switching frequency, we believe that
network conditions generally will not undergo drastic
changes within several seconds. Therefore, the perfor-
mance of live experiments in the exploration phase can
be considered valid and could guide the selection of
subsequent transport protocol.

Fig. 6 shows a control cycle of Probe Agent, where the
lines colored blue, red, and green represents requests sending
with TCP, QUIC, and last selected protocol (TCP or QUIC).
We describe the key design of Probe Agent by answering
the following two questions.
How to perform live experiments? As introduced before,
the design goal of Probe Agent is to discover the proper
protocol by live experiment directly. Probe Agent performs
live experiments by using TCP and QUIC alternately, as shown
in Fig. 6. After receiving the responses of these requests,
Probe Agent compares the performance and selects the
better protocol.

A key design choice is the number of requests sent for
probing during the exploration phase. On the one hand, live
experiments could be affected by unpredictable external events
in the network and at the server side. For example, if there is an
accidental routing error, a sudden burst from other flows or a
temporary overload on the server, delay could increase dramat-
ically. On the other hand, if the live experiments take too long,
the network might be changing over time for reasons unrelated
to the Probe Agent’s action. Considering the above two
points, we conducted experiments that TCP and QUIC each
sent requests with a number of two, three, and four, and found
that the value of three is the most appropriate. Due to the
additional time of live experiment, the average request com-
pletion time that sending four requests is 0.92% longer than the
value of three. While the performance of two requests is 4.02%
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Fig. 7. Transport model when meeting QUIC/UDP rate limit or packet block.

worse than the value of three. This is because that about 5.38%
of the live experiments showed abnormal results with the
value of two, making the protocol selection decision wrong.
Therefore, to obtain accurate and timely measurement results,
we use TCP and QUIC alternatively three times each. We use
the two similar performance values of the three requests for
each protocol and select the protocol with the better average
performance.

The exploration phase ends when Probe Agent receives
the response of the third request with QUIC. Requests sent
after the third request in the exploration phase will still
use the last selected protocol. Note that Probe Agent
performs live experiments by the application’s real request and
does not send occasional probes or use throwaway data for
measurements.
When to enter the exploration phase? Since we use both
TCP and QUIC in the exploration phase, there will be several
requests sent by the wrong protocol and might bring perfor-
mance degradation. Therefore, frequent live experiments will
suffer sub-optimal performance in the exploration phase, while
low exploration frequency can lead to the use of a wrong
protocol for a long time. Probe Agent should enter the
exploration phase when the optimal protocol is much more
likely to change, i.e., the following two scenarios:

• Establish new connections. As the preference of ISP and
in-network devices could change with path, every time a
new connection is established and a new path is used,
exploration is needed to determine the optimal protocol.

• Network conditions change significantly. As introduced
before, when network condition changes slightly, the
optimal protocol may not change. Therefore, we use the
network conditions scored by Network Monitor and
retain the network condition score after the last explo-
ration phase as the history score. When the difference
between the current network score and the history score
exceeds a threshold we set, Probe Agent enters the
exploration phase.

E. Rollback Checker
We introduce Rollback Checker as a guard for unex-

pected behaviors of network, and unexpected decisions of
protocol. In most cases, the protocol decided by the Network
Monitor and Probe Agent is effective, but there are also
some cases where the unexpected behavior of the network,
server or user can upset the conclusions. Firstly, the sudden
fluctuation of network conditions will reduce the effective-
ness of Probe Agent. Furthermore, it is challenging for
Network Monitor and Probe Agent to capture the pos-
sible UDP/QUIC block and rate limit and react to the instant
changes, as shown in Fig. 7. In addition, as described before,
the protocol selection could be affected by unpredictable
external events in the network and at the server side, such
as accidental routing error or a sudden overload of the server.
Therefore, Rollback Checker is needed for the wrong
decisions.

Rollback Checker starts working when a protocol
switching occurs. In view of the above situations, Rollback
Checker compares the performance of requests sent in the
exploitation phase over a period of time before and after the
switching. If a significant performance deterioration is found,
Rollback Checker rolls back to the last protocol.

IV. EVALUATION

In this section, we first introduce the baseline algorithms
we use in our evaluations (§IV-A), and then the setup of our
evaluation (§IV-B). We evaluate WiseTrans in the following
aspects:

• Performance in the Wild. We evaluate the performance
of WiseTrans against a fixed transport protocol in the
real world. From our experiments, WiseTrans can reduce
the average request completion time by about 26.5%
compared to using one fixed protocol (§IV-C).

• Generalization analysis. We evaluate WiseTrans’s abil-
ity to generalize to unseen implementations. WiseTrans
could achieve more than 20% improvement on different
implementations, consistent with the baseline method
which selects protocol based on a offline-trained model
specialized for that implementation (§IV-D).

• Component Effectiveness. We then evaluate the necessity
and effectiveness of the design of WiseTrans. Compared
to simple heuristic methods, WiseTrans shows more than
6.23% performance advantages (§IV-E.1). The model
used in WiseTrans can achieve a classification accuracy of
91% compared to other methods (§IV-E.2). Meanwhile,
about 78% of the decisions made by Probe Agent
bring positive performance gain on average (§IV-E.3).
Finally, the Rollback Checker can also reduce the
average completion time by 7.3% (§IV-E.4).

A. The Baseline Algorithms
To demonstrate the performance improvements of Wise-

Trans, we have implemented the following algorithms in our
experiments.

1) WiseTrans-v1: In the earlier version of this work [1],
we did not introduce the Probe Agent for the online learn-
ing during a connection. Therefore, we differentiate WiseTrans
into WiseTrans-v1 and WiseTrans-v2. WiseTrans-v1 [1] uses
an offline-trained ML-based protocol classifier to directly
select the protocol without any live experiments. We present
the results of WiseTrans-v1 to demonstrate the necessity to
enhance the generalization ability in the large-scale deploy-
ment.

2) WiseTrans-v2: Consequently, WiseTrans-v2 implements
all components presented in this paper.

B. Experimental Setup
1) WiseTrans Client: We implement WiseTrans on two

platforms (Android and iOS) of the client of a mobile web
service application of Baidu. The implementation contains
about 4000 lines of C code. To implement XGBoost in
WiseTrans Network Monitor in §III-C, we train two
models separately according to the current transport protocol.
We utilize the maximum depth of 7 and minimum child weight
of 1, and the top 5 features for requests transported by QUIC
while the top 7 features for requests transported by TCP.
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Fig. 8. Experimental setup of WiseTrans.

2) Web Service Server: In the server-side implementation
of the mobile web service, we have frontend servers for load
balancing and backend servers for request processing. The
connections between frontend servers and backend servers are
in the internal enterprise network of Baidu and are over private
protocols. Therefore, connections optimized by WiseTrans are
referred to the connections between the mobile user and the
frontend servers.

3) Dataset: For offline training, we collect 38 hours, more
than 128,000 request logs on a mobile web service app
of Baidu as the training dataset. For evaluation, we enable
WiseTrans for certain users in two cities (BJ and SJZ in
China), with and without CDN server cluster deployment, and
collect logs for 105 hours, resulting in more than 160,000
request logs. Also, we randomly collect more than 96,000
request logs using TCP and QUIC as our baseline.

C. Request Completion Time

Fig. 9 shows the improvement of WiseTrans on request
completion time. We also select the shorter average completion
time between TCP and QUIC as Ideal for each network
condition, as a comparison. As the result shows, WiseTrans
outperforms TCP and QUIC. WiseTrans-v1 has a 20.65%
reduction in average completion time compared to TCP and
4.45% to QUIC. WiseTrans-v2 further improves performance
and achieves a 25.8% reduction of TCP and 10.65% to
QUIC. For the median completion time, WiseTrans-v1 also
has a 13.38% and 10.69% reduction, and WiseTrans-v2 has a
14.10% and 11.42% reduction. WiseTrans-v1 also improves
the stability of performance.3 WiseTrans-v1 has a 34.23%
reduction in the standard deviation of the request completion
time compared to TCP and 5.47% to QUIC. WiseTrans-v2
further has a 37.72% reduction to TCP and 10.47% to QUIC.
In all, both WiseTrans-v1 and WiseTrans-v2 is just about 1%-
2% longer than Ideal, which demonstrates that WiseTrans is
efficient.

Fig. 10 shows the detailed reduction ratio of WiseTrans
compared to TCP and QUIC as the request completion time
increases. Obviously, WiseTrans-v2 shows great improvement
compared to TCP and QUIC for the 99th percentile (the
tail) completion time. WiseTrans-v2 has a 49.1% reduction,
about 7s compared to TCP, and a 7.68% reduction compared
to QUIC. For WiseTrans-v1, the reduction is about 45.9%
and 1.67%. Results show that WiseTrans effectively improves

3Note that we evaluate WiseTrans in production environment on real users,
the value of the error bar is the standard deviation of the request completion
time.

Fig. 9. WiseTrans achieves lower request completion time than TCP and
QUIC in both cities. The reduction could achieve 25.8% compared to using
one fixed transport protocol.

Fig. 10. WiseTrans’s reduction of TCP and QUIC with different percentile
of request completion time. WiseTrans-v2 has a reduction of 49.1% for the
99th percentile (the tail) completion time.

users’ experience who have experienced an extremely long
request completion time.

The reductions of TCP and QUIC are always compli-
mentary. From Fig. 10, it can be seen that when request
completion time is in the shorter half, which means under
better network conditions, QUIC has poor performance, and
WiseTrans has significant improvements. While TCP always
causes a long tail, WiseTrans significantly improves TCP’s
performance when the completion time is longer.

Such results reflect the key idea of WiseTrans, selecting
the protocol with better performance in the current network
condition. Specifically, WiseTrans should consistently achieve
the optimal performance of using QUIC or TCP. Therefore,
WiseTrans will just have better performance than TCP or
QUIC for one network condition while can achieve the overall
optimal for users across the network.
Overhead. We evaluate the overhead from two aspects.

• Additional delay. The additional decision-making time
consumed by WiseTrans is less than 3 ms in our
experiment, which is negligible compared to the request
completion time. Feature Extractor is the most
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time-consuming part and takes about 0.7 ms, due to the
per-ACK and per-request feature collection and extrac-
tion. The second time-consuming part is the Network
Monitor. For each predict, the model takes about
0.02 ms ∼ 0.04 ms. As for the additional establishment
time, 89.73% of switches reuse existing connections in
our experiments, which brings negligible overhead in
general.

• Resource consumption. Firstly, the switching frequency
is less than 3%, as shown in Fig. 12b and Fig. 15,
which reduces the additional consumption caused by
WiseTrans. Secondly, we measured the overhead in power
on the mobile devices. We found that WiseTrans’s power
consumption was about 1.15 times higher than using TCP,
and is approximately the same as QUIC. This suggests
that the overhead introduced by WiseTrans is acceptable.

D. Generalization Analysis

In the experiments above, WiseTrans-v2 and WiseTrans-
v1 were trained with a set of traces collected in the stable
version of a mobile web service application of Baidu. The real
world experiment was conducted by the same stable version.
This stable version uses CUBIC as the congestion control
algorithm for both TCP and QUIC. However, in practice,
the implementation of the application and transport protocols,
especially the adopted TCP and QUIC variant, could be
different between applications and will be updated in the
future, which will result in changes of the decision boundary.
We conduct a comparative experiment to evaluate WiseTrans’s
ability to generalize to other implementations.

We compare the generalization ability of WiseTrans-v2 and
WiseTrans-v1 between different application implementations
and transport protocol variants. For the application imple-
mentations, besides the stable version (Ver. S) used by real
users, we evaluate on an experimental version (Ver. E) that
we manually print out some log for debugging. We just
add print commands for TCP. Since I/O operations bring
much overhead, QUIC performs much better in almost every
status (Fig. 20c). For protocol variants, we also consider
BBR as the congestion control algorithm. For further analysis,
we retrain a new WiseTrans-v1 specialized for the new imple-
mentation and compare the performance of WiseTrans-v2, the
initial WiseTrans-v1, and the retrained WiseTrans-v1 in the
two different implementations.

Fig. 11 shows the improvement of WiseTrans with two
different versions on request completion time compared to
using one fixed protocol. The solid bar represents the reduction
of request completion time compared to using TCP only,
and the dashed bar represents the reduction to QUIC. Both
WiseTrans-v1 for Ver. S-CUBIC and the retrained WiseTrans-
v1 for unseen Ver. E-CUBIC and Ver. S-BBR could achieve
a 17%-27% reduction in average completion time compared
to TCP and 2%-6% to QUIC. It means that, by collecting
traces from one certain application, training the classification
model offline, and selecting the protocol by online historical
information, a specialized WiseTrans-v1 could achieve signif-
icant performance improvement on that application. However,
a problem with the supervised-learning-based WiseTrans-v1 is
that, when the protocol implementation significantly changes,
the original WiseTrans-v1 will bring performance degradation
and a new WiseTrans-v1 is needed to be re-learned. We find
that for the unseen implementation Ver. E and congestion

Fig. 11. WiseTrans achieves consistent significant improvement with unseen
transport layer algorithms (BBR) and application implementations (Ver. E).
The solid bar represents the reduction of request completion time compared
to TCP, and the dashed bar represents the reduction to QUIC.

control algorithm BBR, initial WiseTrans-v1’s improvement
degrades about 2.9%-10.68%.

WiseTrans-v2 does not use a hardwired mapping of net-
work conditions to the advised protocol but select proto-
col by performing live experiments and observing protocol
performance. Therefore, for the unseen implementation Ver.
E and BBR, WiseTrans-v2 basically maintaines consistent high
performance, achieving a 24.98% total improvement of the
average request completion time for Ver. E and 26.5% for
BBR.

These results suggest that, in practice, WiseTrans-v2 will
likely be able to generalize to a broad range of imple-
mentations and protocol variants adopted by its applications.
Although WiseTrans-v1 could achieve good performance,
it could not generalize well to other implementations. Fur-
ther, for content providers, the process of collecting traces,
retraining new models, and implementing them carefully in
applications will bring heavy workloads. Also, the retraining
frequency depends on the degree of difference between the
new implementation and the existing one, which is also an
extensive experimental work.

E. WiseTrans Deep Dive
In this section, we evaluate the effectiveness of the design

of WiseTrans and provide a deeper understanding. We begin
with illustrating the necessity of using machine learning meth-
ods by comparing WiseTrans to a naive strawman method.
We then evaluate the performance of the model used in
Network Monitor and evaluate its training process. After
that, we demonstrate the frequency and effectiveness of live
experiment. Finally, we conduct experiments to understand the
effectiveness Rollback Checker.

1) Necessity Analysis of Machine Learning: WiseTrans
uses machine learning methods complemented by multiple
features to handle the temporal network fluctuations (§II-B).
To analyze the necessity of using machine learning methods,
we compare WiseTrans-v1 with a simple heuristic method.
Both WiseTrans-v1 and the strawman method adopt static
model for protocol selection.
Strawman method. A simple heuristic method is to select
the better protocol from the offline measured results. For
example, as shown in Fig. 1, the optimal decision of
using TCP or QUIC has a clear linear decision bound-
ary. Therefore, a straightforward strawman solution fit the
results of the better protocol with different network conditions
< RTT,BtlBw, LossRate > from the real-world measure-
ments into a linear decision boundary. When running online,
the strawman method measures the current network conditions
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Fig. 12. Simple heuristic method and neural network model could not capture the complex temporal relationship of network conditions and result in
sub-optimal performance. (a) The request completion time of using the heuristic method, neural network model and WiseTrans. (b) The protocol switch
frequency of using the heuristic method, neural network model and WiseTrans.

and looks up for the optimal decision based on the pre-
computed boundary.

Fig. 12a shows a significant performance gap (6.23%)
between the strawman method and WiseTrans-v1. WiseTrans-
v1 outperforms using one fixed protocol in two cities, while the
strawman method is sometimes worse than using QUIC only.
For the situation with a client located in BJ, WiseTrans-v1
has a 26.5% reduction in average completion time compared
to TCP and 2.4% to QUIC. As Fig. 12b shows, the strawman
method performs more protocol switching (2-3 times more
than WiseTrans-v1), which suggests that simple heuristic
methods fail to capture the complex temporal relationship of
network conditions. Unlike heuristic methods, WiseTrans can
incorporate a large amount of historical network conditions
into its model to optimize the protocol selection.

These results suggest that simple modeling and linear
mapping method is not sufficient to handle the temporal
fluctuation. Firstly, the three features we extracted in Strawman
method are not enough to model the network conditions. RTT,
throughput and retransmission rate are observation variables,
and there is a certain gap between them and the real state of the
network. Furthermore, the observed variables are not indepen-
dent of each other. For example, the throughput a flow could
achieve is correlated with its RTT and retransmission rate.
Therefore, Feature Extractor extracts more features to
assist the link state mapping. In addition, simple mapping
could not address the complex relationship of network condi-
tions. Coarse-grained user chunking and average performance
statistics may lose important information and reduce accuracy.
However, fine-grained one-to-one mapping based on selected
features will be limited by sparsity of measurement results.
Meanwhile, one-to-one mapping itself could address the com-
plexity of temporal relations. Therefore, we use a mush more
expressive algorithm in Network Monitor.

2) Network Monitor Deep Dive: XGBoost is utilized in
Network Monitor in consideration of the complex tem-
poral correlation as well as the simplicity for large-scale
deployment. Network Monitor outputs probability that
the network condition is changed during online running.
We compare XGBoost with a set of standard machine learning
algorithms (Support Vector Machines (SVM) [29], Decision
Tree [30], Random Forest [31] and Neural Network [32]) to
explore whether XGBoost can address the complex temporal
heterogeneity.
Accuracy. Tab. II and the ROC curves in Fig. 13 show that
XGBoost achieves the best performance. SVM only achieves
an accuracy of 76.87%, which means the decision boundary

Fig. 13. ROC curves used for algorithms comparison. XGBoost achieves the
best performance.

can hardly be found by simply employing hyperplanes
in three-dimensional space < RTT, BtlBw,LossRate >.
Meanwhile, the simple tree model, Decision Tree, cannot
describe the complex relationship between the historical net-
work conditions, decisions, and performance by only one
single tree as well. Among the algorithms with multiple trees,
XGBoost outperforms Random Forest by its faster conver-
gence and higher accuracy. Also, the neural network4 does
not show good performance due to our training dataset with
heterogeneous features, small dataset size, and large extreme
values [33], [34].

The accuracy of WiseTrans’s model is listed in Tab. III.
Its model is trained offline using XGBoost. We apply it to
the real-world network to examine its generalization ability.
The overall accuracy of WiseTrans is about 88.29% in BJ
and 87.19% in SJZ, which is basically consistent with the
performance of offline testing. It proves that our model can
also achieve high accuracy in the real network.
Performance. We compared WiseTrans-v1 with the neural
network model in Fig. 12a and Fig. 12b, and find a perfor-
mance advantage of about 2.27% to 6.81%. This indicates that
XGBoost, which is more accurate at offline training period,
also achieves better performance in the real environment.
Although the neural network model has the highest recall
(more than 95% in Tab. III) for selecting QUIC protocol, it still
performs poorly and fails to make proper decisions when TCP
and QUIC have similar performance (e.g. users in SJZ).

4We adopted a simple three-layer neural network with two hidden layers
with 128 and 64 units respectively. During the training and parameter tuning
process, we found that scaling up the network size and depth could not bring
performance improvement.
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TABLE II
COMPARISON OF MACHINE LEARNING ALGORITHM CANDIDATES. XGBOOST ACHIEVES THE BEST PERFORMANCE

TABLE III
ACCURACY OF CLASSIFICATION

Fig. 14. Grid search results (mean accuracy) of XGBoost for the optimal
model and features.

Hyperparameters analysis. We perform hyperparameters tun-
ing to achieve the best performance. We mainly consider the
maximum depth and minimum child weight in Network
Monitor. Fig. 14 shows the accuracy with different hyper-
parameters using the grid search with 10-fold cross-validation.
The accuracy is improved with the maximum depth increasing,
while the maximum depth deeper than seven can only bring
limited improvement but may introduce additional overhead.
Also, the minimum child weight is robust enough. Therefore,
we utilize the maximum depth of 7 and the minimum child
weight of 1 for both models.

3) Probe Agent Deep Dive: We introduce Probe Agent
to select protocol directly by the online performance. Since
we use both TCP and QUIC in the exploration phase, there
will be several requests sent by the wrong protocol and bring
performance degradation. Therefore, frequent live experiments
will suffer sub-optimal performance in the exploration phase,
while low exploration frequency will lead to the use of wrong
protocol for a long time.

In our evaluations, Probe Agent conducts live exper-
iments with the frequency of about 1.76% in ver. S and
1.85% in ver. E. As shown in Fig. 15, we counted the
probability of live experiments occurring in different network
conditions. Similar to Fig. 2, Probe Agent performs fewer
live experiments when QUIC has obvious advantages, which
is under high packet loss rate, as well as when TCP has
obvious advantages, which is under low packet loss rate and
high bandwidth. Probe Agent is more likely to perform live
experiment when TCP and QUIC have similar performance.

To evaluate the effectiveness of Probe Agent, we ana-
lyze and plot the changes in average request completion
time before and after each protocol switching after the live
experiment in Fig. 16. We observe that about 78% of the

protocol switches bring positive performance gain on average.
The result validates that live experiment can bring performance
improvement. Also, we find that about 75% of the switches
resulted in a slight performance change of less than 20%.
It is because that the network condition did not change
significantly in most cases. It also shows that WiseTrans-v2 is
sensitive enough to capture even small performance improve-
ment. Unfortunately, WiseTrans-v2 still has a probability (i.e.,
20%) of worsening performance. This might be due to the
unexpected network behaviors that not captured by Probe
Agent.

4) Rollback Checker Deep Dive: We introduce the
Rollback Checker to consider the unpredictable
behaviours of network and unexpected protocol selection.
Actually, Rollback Checker works in different situations
in WiseTrans-v1 and WiseTrans-v2, and plays a more
important role in WiseTrans-v1. In WiseTrans-v2, Rollback
Checker captures the sudden network fluctuation in the
exploration phase and avoids the wrong decision of
Probe Agent. Due to the high frequency of requests
and the effectiveness of the Probe Agent, as illustrated
in §III-D, rollbacks have occurred only in rare cases.
While Rollback Checker in WiseTrans-v1 is used to
address both the spatial heterogeneity and the unexpected
behaviour of the protocol classifier. Possible UDP/QUIC
block or rate limit makes that the decision-making is to
compare TCP and QUIC’s performance under two different
< RTT, BtlBw, LossRate >, as shown in Fig. 7, which
cannot be learned by the classifier. Meanwhile, when a mobile
user has only used one protocol before, which may occur
when the first time a user visits a web service or the user
changes ISP, it is challenging for the offline trained classifier
to make a proper choice. In the meantime, when network
conditions suddenly change, the sliding window in Network
Monitor is challenged to capture and react to the instant
changes. Rollback Checker efficiently captures the
change and avoids severe performance degradation.

Therefore, we mainly evaluate the effectiveness of
Rollback Checker in WiseTrans-v1. The probability of
rollback after protocol switching is approximately 2.71% in
BJ and 5.19% in SJZ. We speculate that the more frequent
rollbacks in SJZ may be due to the fact that users may experi-
ence more in-network devices and complicated ISP strategies.
Our evaluations did find that the bottlenecks of the TCP and
QUIC links are not the same in some cases. Specifically, for
some users in SJZ, TCP and QUIC connections have simi-
lar RTT and packet retransmission ratios, but with different
goodput.

As for the effectiveness, Rollback Checker contributes
21.96% and 16.67% to the whole reduction of request com-
pletion time in two cities. As shown in Tab. IV, the selection
accuracy drops by 5% and 9% when Rollback Checker
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Fig. 15. Frequency of live experiments under different network conditions. In general, Probe Agent conducts live experiments with the frequency of
about 1.76% in ver. S and 1.85% in ver. E.

Fig. 16. Request completion time gap before and after protocol switching.

TABLE IV
MEAN ACCURACY OF WISETRANS WITH ROLLBACK CHECKER ENABLED

OR DISABLED. ROLLBACK CHECKER IMPROVES THE
ACCURACY OF CLASSIFICATION BY 5% AND 9%

Fig. 17. Rollback Checker contributes about 20% to the reduction of
completion time.

is disabled. Enabling Rollback Checker reduces the aver-
age request completion time by 7.3% and 2.0%, reduces the
standard deviation request completion time by 19.12% and
8.01%, and shows great improvement for the 99th percentile
(the tail) completion time with a reduction of 21.28% and
12.92%, as shown in Fig. 17.

However, Rollback Checker may introduce additional
performance degradation related to the time interval between
the rollback and the protocol switch. This time interval can
be set by the content providers, and in our experiments it was
set to 10s. A longer time interval could improve the accuracy

of selecting the optimal protocol, but may also spend a long
time using the suboptimal protocol. In contrast, a shorter time
interval may incorrectly switch back to the protocol. Therefore,
we set the Rollback Checker as an optional module,
and the content providers can choose whether to enable it to
achieve their performance targets.

V. RELATED WORK

Performance measurement of TCP and QUIC. QUIC,
a user-space transport protocol over UDP [5], has changed
the landscape of web transport. Given its benefits over TCP,
there has been tremendous effort to analyze and benchmark its
performance both on testbed [6], [7], [11] and in production
environments [5], [25], [35], [36], [37]. Extensive studies have
concluded that neither QUIC nor TCP could achieve consistent
high performance, and QUIC cannot completely replace TCP
at present, which is the basis of our protocol selection method.
However, the specific results of these measurements could
not directly guide the protocol selection. Firstly, most early
research focus on primitive gQUIC (Google’s initial ver-
sion), which is fundamentally different from the standardized
QUIC [5], [7]. Meanwhile, some studies compares a highly
tuned QUIC with an unoptimized TCP [6], [11]. It implies that
those works are biased and are not applicable to a majority
of today’s QUIC [38]. Secondly, even if QUIC has been
standardized [4], consistency between diverse implementations
has not yet reached. Difference of performance measurements
could be due to the optimization strategy adopted, specific
design choices (e.g. the congestion control algorithms) and
even implementation bugs, etc [16], [25], [39]. For the above
factors, we perform an application-specific performance mea-
surements and select protocol through live experiments.
Implementation diversity of QUIC. The standardization of
QUIC has been accompanied by the maturity and widespread
usage of numerous implementations [8]. One of the main
challenges of QUIC is to ensure that any implementation
follows the IETF specification [4]. Several methods have been
proposed to verify QUIC implementations. The most common
approach is interoperability testing, which manually generates
test sets and tests the functionality of other implementations.
This is done both manually and automatically in QUIC-
Tracker [15] and QuicInteropRunner [40]. Another approach
is to generate a mathematical model and use formal valida-
tion to automatically test functionality [41]. Also, a recent
series of works combine the above two ideas [42], [43].
Meanwhile, research have analyzed different implementations,
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such as advanced QUIC debugging and analysis techniques
[16], [44], [45], and performance experiments between dif-
ferent implementations [25]. These works show difficulty to
analyze the performance of TCP and QUIC under different
implementations. Therefore, we performe live experiments to
improve the generalization ability among different implemen-
tations.
Adaptive optimizations on transport parameters. There
are few previous research efforts on adaptively adjusting the
transport protocol online. The earliest related direction of
WiseTrans is congestion control. Traditionally, researchers
design different mechanisms to dynamically adjust the CWND
and adapt to the network conditions [46], [47], [48]. Subse-
quently, recent researchers proposed to dynamically adjust the
configurations of existing protocols [49], [50], [51], [52] to
further enlarge the range of adaptation. However, as discussed
in §II-B, due to the restriction in the network layer, adjusting
the parameters of the transport layer is not enough in the
large-scale deployment of mobile web service. In contrast,
WiseTrans optimizes performance by adaptively switching the
transport protocol between TCP and QUIC to address the
challenges.
Machine learning for network prediction. Due to the
complexity of temporal correlations in network conditions,
existing methods have already employed machine learn-
ing techniques to network prediction. Examples range from
decision trees [49], hidden Markov models [53], to neural
networks [54], [55]. We refer the readers to [56] for a
comprehensive understanding. The major difference between
those research efforts and WiseTrans is that WiseTrans
is discretized at the request level and considers not only
the network conditions but also the previous decisions and
consequences.
Enhancements to the earlier protocol selection work. The
earlier version of this paper [1] first proposed a protocol selec-
tion mechanism, WiseTrans, and evaluated it in the real world.
It is specialized for one of the mobile web services of Baidu,
which is the WiseTrans-v1 in this paper. We have made
substantive enhancements in this manuscript. First, We make
a new observation that the implementation diversity affects
the generalization and performance of the protocol selec-
tion mechanism. Therefore, we expand our design goals to
strong generalization ability among different implementations.
Then, we propose a new general protocol selection scheme,
WiseTrans-v2. WiseTrans-v2 does not use a hardwired map-
ping of network conditions to the advised protocol [1] but
discover the proper protocol by live experiments. Compared
to WiseTrans-v1, this paper delivers an additional 5.15%
improvement, as well as a consistent improvement of over
20% among different implementations. Finally, we updated a
more comprehensive evaluation to give an in-depth analysis
of design and guidance on the deployment options between
WiseTrans-v1 and v2.

VI. DISCUSSION

Integration with mechanisms of adaptive transport param-
eters. WiseTrans could be integrated with mechanisms of
selecting among TCP variants [57], [58] or online configuring
TCP parameters [51], [52]. Selecting among TCP variants is
also a variant of TCP protocol [59]. Both WiseTrans-v1 and v2
could learn the performance of the implemented TCP variant
and QUIC variant, and use the better protocol.

Fig. 18. Overall status of the measured request.

Fig. 19. Distribution of request completion time with different access network
types.

The future of Internet transport protocol. Notwithstanding
the rapid adoption of QUIC in recent years [5], [37], [39], past
measurements suggest that TCP is not about to disappear or
to be completely replaced anytime soon. This mean that using
TCP and QUIC adaptively could be at least an incremental
deployment and adopted by the industry.
Limitations in generalization analysis. Our evaluation only
validates WiseTrans generalization ability among two similar
implementations. Further analysis are required for generaliza-
tion performance among widely varying implementations.

VII. CONCLUSION

In a large-scale real-world deployment of mobile web
service, it is non-trivial to adaptively select transport protocols
due to the huge complex temporal correlation of network
conditions, spatial heterogeneity, implementation diversity, and
limited computation resources on mobile clients. In response,
we propose WiseTrans, the first solution that adaptively
selects the transport protocols in an optimized way and
is deployed in the real world. We introduce Feature
Extractor, Network Monitor, Probe Agent and
Rollback Checker in WiseTrans to address the chal-
lenges above. Our extensive evaluations with hundreds of thou-
sands of requests demonstrate that WiseTrans could improve
mobile web performance compared to a fixed protocol.

This work does not raise any ethical issues.

APPENDIX

A. Methodology
We conduct large-scale passive measurements of one pop-

ular mobile app of Baidu. Users can access the short video
mobile web service of Baidu with this app. We collect and
sample feed refresh request data from the users, which is
sent by the app when a user wants to refresh the current
list of recommended videos. On receiving a feed refresh
request, the web servers of Baidu will return response data
to the app, and the data amount is less than 50 KB, which is
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Fig. 20. Request completion time of users in China.

Fig. 21. Request completion time of users in US.

Fig. 22. Request completion time of users in South Korea.

Fig. 23. Request completion time of users in Netherlands.

independent of the video size. After the request is completed,
the instrumentation collects app-level logs and socket-level
logs describing the finished transport process. The logs include
a timestamp, data amount received, the completion time of the
feed refresh request, RTT, number of retransmitted packets,
geographical location of the user, access network type, etc.
We sampled about 11.6 million requests during two weeks
with a sampling ratio of 0.5‰, covering the users from more
than 50 countries and regions.

The mobile web service supports both TCP and QUIC.
In our measured data, 8.58% requests were using QUIC due to
user choice, and 5% requests were due to our configurations,
i.e., 13.58% in total. Note that QUIC is used only between
the user app and the frontend server of Baidu. The frontend

server acts as a load balancer and a proxy, which chooses a
backend server and establishes a TCP connection. The HTTP
response returned by the backend server is then returned to
the user app, which completes the user request. Fig. 8 shows
the transport model of our measurements. All requests access
the backend resources through several frontend server clusters,
geographically located in 6 cities.

B. Measurement Results
Fig. 18 shows the overall status of the measured requests.

WiFi has the best condition, with small RTT, small packet
retransmission ratio, and large goodput. 4G has better network
conditions than 2G and 3G. 3G has a goodput better than 2G,
a packet retransmission ratio similar to 2G, and the greatest
average RTT among the four access network types. Fig. 19
shows the distribution of the request completion time (RCT)
with each access type. It is not surprising that WiFi is the
fastest and 4G is better than 3G and 2G. Recall that 3G
networks have an RTT, which may be greater than that in
2G networks, and our request and response data have a small
amount (tens of kilobytes). These facts may explain why 2G
is faster than 3G in some cases.

We evaluate the RCT of TCP and QUIC in different access
network types. The results are grouped by regions because
users in different geographical locations may have different
latency due to the distance to servers. Fig. 20 to Fig. 23
show the results in four typical countries. We can see that
the RCT is short in 4G and WiFi for both TCP and QUIC,
and TCP performs a little better in all four countries. The RCT
is greater in 3G and 2G, and QUIC has better performance in
general, except for 2G users in US. The results in different
countries are not similar. For example, the RCT of 2G users
in China is greater than other users, for both TCP and QUIC.
In comparison, the RCT of 2G users in US and South Korea is
less than their 3G users. This reflects the complicated network
conditions in the real world.

Note that a user who uses TCP cannot use QUIC at the
same time, the measurement results cannot tell whether a
user should use TCP or QUIC for better performance directly.
Instead, our passive measurement is like an A/B test, reflecting
the probability that QUIC may outperform TCP with certain
access network types in each area. Due to time-varying
network conditions, the performance gap within one access
network type is bigger than the gap between different types.
For an individual user, it is difficult to ensure that a certain
protocol will consistently achieve better performance under
a certain access network/region. Thus, it is necessary for
individual users to select a proper transport protocol according
to specific network conditions.

REFERENCES

[1] J. Zhang et al., “WiseTrans: Adaptive transport protocol selection for
mobile web service,” in Proc. WWW, 2021, pp. 284–294.

[2] (2020). Desktop vs Mobile vs Tablet Market Share Worldwide. Accessed:
May 5, 2020. [Online]. Available: https://gs.statcounter.com/platform-
market-share/desktop-mobile-tablet

[3] (2017). SPEED MATTERS. Designing for Mobile Performance.
[Online]. Available: https://www.awwwards.com/brainfood-mobile-
performance-vol3.pdf

[4] J. Iyengar and M. Thomson, QUIC: A UDP-Based Multiplexed and
Secure Transport, document RFC 9000, May 2021. [Online]. Available:
https://rfc-editor.org/rfc/rfc9000.txt

[5] A. Langley et al., “The QUIC transport protocol: Design and internet-
scale deployment,” in Proc. ACM SIGCOMM, 2017, pp. 183–196.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: Tsinghua University. Downloaded on February 05,2023 at 12:30:39 UTC from IEEE Xplore.  Restrictions apply. 



ZHANG et al.: REDUCING MOBILE WEB LATENCY THROUGH ADAPTIVELY SELECTING TRANSPORT PROTOCOL 15

[6] A. M. Kakhki, S. Jero, D. Choffnes, C. Nita-Rotaru, and A. Mislove,
“Taking a long look at QUIC: An approach for rigorous evaluation of
rapidly evolving transport protocols,” in Proc. ACM IMC, Nov. 2017,
pp. 290–303.

[7] Y. Yu, M. Xu, and Y. Yang, “When QUIC meets TCP: An experimental
study,” in Proc. IEEE IPCCC, Dec. 2017, pp. 1–8.

[8] (2021). Active QUIC Implementations. [Online]. Available:
https://github.com/quicwg/base-drafts/wiki/Implementations

[9] T. Li et al., “Tack: Improving wireless transport performance by taming
acknowledgments,” in Proc. ACM SIGCOMM, 2020, pp. 15–30.

[10] Z. Meng, J. Chen, Y. Guo, C. Sun, H. Hu, and M. Xu, “PiTree: Practical
implementation of ABR algorithms using decision trees,” in Proc. ACM
Multimedia, 2019, pp. 2431–2439.

[11] P. Biswal and O. Gnawali, “Does QUIC make the web faster?” in Proc.
IEEE GLOBECOM, Dec. 2016, pp. 1–6.

[12] G. Carlucci, L. De Cicco, S. Holmer, and S. Mascolo, “Congestion
control for web real-time communication,” IEEE/ACM Trans. Netw.,
vol. 25, no. 5, pp. 2629–2642, Oct. 2017.

[13] (2020). Article: K07150625—Mitigating UDP Flood Attacks
Using a Rate Limiting IRule. [Online]. Available: https://support.
f5.com/csp/article/K07150625

[14] (2020). Looking for Measurements on UDP Blocking and Rate
Limiting. Accessed: May 5, 2020. [Online]. Available: http://www.
postel.org/pipermail/end2end-interest/2011-March/008129.html

[15] M. Piraux, Q. De Coninck, and O. Bonaventure, “Observing the evolu-
tion of QUIC implementations,” in Proc. EPIQ, Dec. 2018, pp. 8–14.

[16] R. Marx, J. Herbots, W. Lamotte, and P. Quax, “Same standards,
different decisions: A study of QUIC and HTTP/3 implementation
diversity,” in Proc. EPIQ, Aug. 2020, pp. 14–20.

[17] K. Brown and S. Singh, “M-TCP: TCP for mobile cellular networks,”
ACM SIGCOMM Comput. Commun. Rev., vol. 27, no. 5, pp. 19–43,
Oct. 1997.

[18] R. Netravali, A. Sivaraman, J. Mickens, and H. Balakrishnan, “Watch-
Tower: Fast, secure mobile page loads using remote dependency reso-
lution,” in Proc. ACM MobiSys, Jun. 2019, pp. 430–443.

[19] T. Chen and C. Guestrin, “XGBoost: A scalable tree boosting system,”
in Proc. ACM SIGKDD, Aug. 2016, pp. 785–794.

[20] R. Baden, A. Bender, N. Spring, B. Bhattacharjee, and D. Starin,
“Persona: An online social network with user-defined privacy,” in Proc.
ACM SIGCOMM, Aug. 2009, pp. 135–146.

[21] Z. Niu et al., “Network stack as a service in the cloud,” in Proc. ACM
HotNets, 2017, pp. 65–71.

[22] N. Cardwell, Y. Cheng, C. S. Gunn, S. H. Yeganeh, and V. Jacobson,
“BBR: Congestion-based congestion control,” Queue, vol. 14, no. 5,
pp. 20–53, Oct. 2016.

[23] V. Arun and H. Balakrishnan, “Copa: Practical delay-based congestion
control for the internet,” in Proc. Appl. Netw. Res. Workshop, Jul. 2018,
pp. 329–342.

[24] S. Dutton. (2020). Understanding Low Bandwidth and High
Latency | Web Fundamentals. [Online]. Available: https://developers.
google.com/web/fundamentals/performance/poor-connectivity

[25] A. Yu and T. A. Benson, “Dissecting performance of production QUIC,”
in Proc. WWW, Apr. 2021, pp. 1157–1168.

[26] Z. Meng, M. Wang, J. Bai, M. Xu, H. Mao, and H. Hu, “Interpreting
deep learning-based networking systems,” in Proc. ACM SIGCOMM,
Jul. 2020, pp. 154–171.

[27] H. Chen, H. Zhang, S. Si, Y. Li, D. Boning, and C.-J. Hsieh, “Robustness
verification of tree-based models,” in Proc. Adv. Neural Inf. Process.
Syst., 2019, pp. 12317–12328.

[28] F. Pedregosa et al., “Scikit-learn: Machine learning in Python,” J. Mach.
Learn. Res., vol. 12, pp. 2825–2830, Nov. 2011.

[29] C. C. Chang and C. J. Lin, “LIBSVM: A library for support vector
machines,” ACM Trans. Intell. Syst. Technol., vol. 2, no. 3, pp. 1–27,
2011.

[30] L. Breiman, J. Friedman, C. Stone, and R. Olshen, Classification and
Regression Trees. Boca Raton, FL, USA: CRC Press, 1984.

[31] L. Breiman, “Random forests,” Mach. Learn., vol. 45, no. 1, pp. 5–32,
2001.

[32] S.-C. Wang, “Artificial neural network,” in Interdisciplinary Computing
in Java Programming. Boston, MA, USA: Springer, 2003, pp. 81–100.

[33] L. Grinsztajn, E. Oyallon, and G. Varoquaux, “Why do tree-
based models still outperform deep learning on tabular data?” 2022,
arXiv:2207.08815.

[34] V. Borisov, T. Leemann, K. Seßler, J. Haug, M. Pawelczyk, and
G. Kasneci, “Deep neural networks and tabular data: A survey,” 2021,
arXiv:2110.01889.

[35] S. Iyengar, “Moving fast at scale: Experience deploying IETF QUIC at
Facebook,” in Proc. EPIQ, Dec. 2018.

[36] S. Tellakula. (2010). Comparing HTTP/3 vs. HTTP/2 Performance.
Accessed: Aug. 5, 2020. [Online]. Available: https://blog.cloudflare.
com/http-3-vs-http-2/

[37] N. Banks. (2010). QUIC Usage at Microsoft. Accessed: Dec. 7, 2021.
[Online]. Available: https://github.com/epiq21/epiq21.github.io/raw/
main/slides/keynote1_microsoft.pdf

[38] K. Wolsing, J. Rüth, K. Wehrle, and O. Hohlfeld, “A performance
perspective on web optimized protocol stacks: TCP+TLS+HTTP/2 vs.
QUIC,” in Proc. Appl. Netw. Res. Workshop, Jul. 2019.

[39] K. Oku and J. Iyengar. (2010). Can QUIC Match TCP’s Com-
putational Efficiency? Accessed: Aug. 4, 2020. [Online]. Avail-
able: https://www.fastly.com/blog/measuringquic-vs-tcp-computational-
efficiency

[40] M. Seemann and J. Iyengar, “Automating QUIC interoperability testing,”
in Proc. EPIQ, Aug. 2020pp. 8–13.

[41] T. Ferreira, H. Brewton, L. D’Antoni, and A. Silva, “Prognosis: Closed-
box analysis of network protocol implementations,” in Proc. ACM
SIGCOMM, Aug. 2021, pp. 762–774.

[42] K. L. McMillan and L. D. Zuck, “Formal specification and testing of
QUIC,” in Proc. ACM SIGCOMM, Aug. 2019, pp. 227–240.

[43] C. Crochet, T. Rousseaux, M. Piraux, J.-F. Sambon, and A. Legay,
“Verifying QUIC implementations using ivy,” in Proc. EPIQ, Dec. 2021,
pp. 35–41.

[44] R. Marx, W. Lamotte, J. Reynders, K. Pittevils, and P. Quax, “Towards
QUIC debuggability,” in Proc. EPIQ, Dec. 2018, pp. 1–7.

[45] R. Marx, M. Piraux, P. Quax, and W. Lamotte, “Debugging modern web
protocols with qlog,” in Proc. ANRW, 2020, pp. 1–9.

[46] J. C. Hoe, “Improving the start-up behavior of a congestion control
scheme for TCP,” ACM SIGCOMM Comput. Commun. Rev., vol. 26,
no. 4, pp. 270–280, 1996.

[47] S. Ha, I. Rhee, and L. Xu, “CUBIC: A new TCP-friendly high-speed
TCP variant,” ACM SIGOPS Operating Syst. Rev., vol. 42, no. 5,
pp. 64–74, Jul. 2008.

[48] D. X. Wei, C. Jin, S. H. Low, and S. Hegde, “Fast TCP: Motivation,
architecture, algorithms, performance,” IEEE/ACM Trans. Netw., vol. 14,
no. 6, pp. 1246–1259, Dec. 2006.

[49] K. Winstein and H. Balakrishnan, “TCP ex machina: Computer-
generated congestion control,” ACM SIGCOMM Comput. Commun. Rev.,
vol. 43, no. 4, pp. 123–134, Aug. 2013.

[50] A. Sivaraman, K. Winstein, P. Thaker, and H. Balakrishnan, “An
experimental study of the learnability of congestion control,” ACM
SIGCOMM Comput. Commun. Rev., vol. 44, no. 4, pp. 479–490,
Aug. 2014.

[51] M. Dong, Q. Li, D. Zarchy, P. B. Godfrey, and M. Schapira, “PCC:
Re-architecting congestion control for consistent high performance,” in
Proc. USENIX NSDI, 2015, pp. 395–408.

[52] M. Dong et al., “PCC Vivace: Online-learning congestion control,” in
Proc. USENIX NSDI, 2018, pp. 343–356.

[53] A. R. Liu and R. R. Bitmead, “Observability and reconstructibil-
ity of hidden Markov models: Implications for control and net-
work congestion control,” in Proc. IEEE CDC, Dec. 2010,
pp. 918–923.

[54] S. Abbasloo, C.-Y. Yen, and H. J. Chao, “Classic meets modern: A
pragmatic learning-based congestion control for the internet,” in Proc.
ACM SIGCOMM, Jul. 2020, pp. 632–647.

[55] N. Jay, N. Rotman, B. Godfrey, M. Schapira, and A. Tamar, “A deep
reinforcement learning perspective on internet congestion control,” in
Proc. ICML, 2019, pp. 3050–3059.

[56] L. Zhang, Y. Cui, M. Wang, Z. Yang, and Y. Jiang, “Machine learning for
internet congestion control: Techniques and challenges,” IEEE Internet
Comput., vol. 23, no. 5, pp. 59–64, Sep. 2019.

[57] K. Chen, D. Shan, X. Luo, T. Zhang, Y. Yang, and F. Ren, “One rein to
rule them all: A framework for datacenter-to-user congestion control,”
in Proc. APNet, Aug. 2020, pp. 44–51.

[58] Z. Du, J. Zheng, H. Yu, L. Kong, and G. Chen, “A unified congestion
control framework for diverse application preferences and network
conditions,” in Proc. ACM CoNEXT, Dec. 2021, pp. 282–296.

[59] P. Goyal, A. Narayan, F. Cangialosi, S. Narayana, M. Alizadeh, and
H. Balakrishnan, “Elasticity detection: A building block for internet
congestion control,” 2018, arXiv:1802.08730.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: Tsinghua University. Downloaded on February 05,2023 at 12:30:39 UTC from IEEE Xplore.  Restrictions apply. 



16 IEEE/ACM TRANSACTIONS ON NETWORKING

Jia Zhang received the B.Eng. degree from the
Department of Electronic Engineering, Tsinghua
University, in 2018. She is currently pursuing the
Ph.D. degree with the Department of Computer
Science and Technology, Tsinghua University. Her
research interests include learning-based network
systems and network transport optimization.

Shaorui Ren is currently pursuing the bache-
lor’s degree with the Department of Electronic
Engineering, Tsinghua University. His research
interests include transport layer and computing
methodologies.

Enhuan Dong (Member, IEEE) received the B.E.
degree from the Harbin Institute of Technology,
Harbin, China, in 2013, and the Ph.D. degree
from Tsinghua University, Beijing, China, in 2019.
He was a Visiting Ph.D. Student with the University
of Goettingen from 2016 to 2017. He is currently
an Assistant Research Professor with the Institute
for Network Sciences and Cyberspace, Tsinghua
University. His research interests include network
security, network operations, and network transport.

Zili Meng (Graduate Student Member, IEEE)
received the B.Eng. degree from the Depart-
ment of Electronic Engineering, Tsinghua Univer-
sity, in 2019. He is currently pursuing the Ph.D.
degree with the Institute for Network Science and
Cyberspace, Tsinghua University. He has published
papers in ACM SIGCOMM and USENIX NSDI. His
research interests include learning-based networked
systems and video streaming. He was a recipient of
the Microsoft Research Asia Fellowship in 2020.
He is also the Winner of the Student Research

Competition in ACM SIGCOMM 2018 and several best paper awards.

Yuan Yang (Member, IEEE) received the B.Sc.,
M.Sc., and Ph.D. degrees from Tsinghua University.
He was a Visiting Ph.D. Student with The Hong
Kong Polytechnic University. He is currently an
Assistant Researcher with the Department of Com-
puter Science and Technology, Tsinghua University.
His research interests include computer network
architecture, routing protocol, and green networking.

Mingwei Xu (Senior Member, IEEE) is currently
a Full Professor with the Department of Com-
puter Science and Technology, Tsinghua Univer-
sity. He has chaired or participated in more than
30 research projects and published over 200 papers.
His research interests include computer network
architecture, Internet routing, and cybersecurity.
He is the Winner of National Science Founda-
tion for Distinguished Young Scholars of China.
He has served as the TPC Chair or a member for
several IEEE conferences, such as ICPP, Infocom,
GLOBECOM, and ICC.

Sijie Yang received the B.Sc. and M.Sc. degrees
from the Beijing University of Posts and Telecom-
munications in 2008 and 2011, respectively. He is
leading the BFE Open Source Project with CNCF.
He joined Tencent. His research interests include
data center networking, network protocols, and
learning-based networked systems.

Miao Zhang received the B.Sc. and Ph.D. degrees
from Tsinghua University. He was an Assistant
Researcher with the Network Center, Tsinghua Uni-
versity, until 2006. He is currently a Senior Software
Engineer with Baidu Inc. He is also the Founder of
BFE Open Source Project. BFE is a modern layer
seven load balancer written with Go language and it
is a CNCF Sandbox Project. His research interests
include cloud network architecture.

Yang Yue received the B.S. degree from the
Department of Computer Science and Technology,
Tsinghua University, in 2022. He is currently pur-
suing the Ph.D. degree with the Department of
Automation, Tsinghua University. His research inter-
ests include efficient deep learning and computer
vision.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: Tsinghua University. Downloaded on February 05,2023 at 12:30:39 UTC from IEEE Xplore.  Restrictions apply. 


