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Abstract
Despite the rapid rise of cloud gaming, real-world evalua-

tions of its quality of experience (QoE) remain scarce. To fill
this gap, we conduct a large-scale measurement campaign, an-
alyzing over 60,000 sessions on an operational cloud gaming
platform. We find that current cloud gaming streaming suffers
from substantial bandwidth wastage and severe interaction
stalls simultaneously. In-depth investigation reveals the un-
derlying reason, i.e., existing streaming adopts coarse-grained
Forward Error Correction (FEC) encoding, without consider-
ing the adverse impact of frame length variation, which results
in over-protection of large frames (i.e., bandwidth waste) and
under-protection of smaller ones (i.e., interaction stalls). To
remedy the problem, we propose Tooth, a per-frame adaptive
FEC that aims to achieve the optimal balance between satis-
factory QoE and efficient bandwidth usage. To build Tooth,
we design a dual-module FEC encoding strategy, which takes
full consideration of both frame length variation and network
dynamics, and hence determines an appropriate FEC redun-
dancy rate for each frame. Moreover, we also circumvent the
formidable per-frame FEC computational overhead by design-
ing a lightweight Tooth, so as to meet the rigid latency bound
of real-time cloud gaming. We implement, deploy, and evalu-
ate Tooth in the operational cloud gaming system. Extensive
field tests demonstrate that Tooth significantly outperforms
existing state-of-the-art FEC methods, reducing stall rates by
40.2% to 85.2%, enhancing video bitrates by 11.4% to 29.2%,
and lowering bandwidth costs by 54.9% to 75.0%.

1 Introduction
Cloud gaming, as an increasingly embraced application, in-
volves high-quality video streaming from remote servers to
diverse devices, thereby obviating the need for advanced local
hardware and enabling pervasive gameplay across all con-
nected devices, particularly mobile devices with limited com-
putation and storage capacity. In recent years, several gaming
platforms have launched acclaimed cloud-based versions of
games, such as Cloud Genshin Impact [12] and Tower of Fan-
tasy [13]. Market analyses reveal that the global cloud gaming
market, which stood at US$ 1,905.6 million in 2023, is pro-
jected to reach US$ 48,552.2 million by 2032, demonstrating
a compound annual growth rate of 42% [5].

To ensure a satisfactory interaction QoE, cloud gaming
requires consistently ultra-low latency from player request to

game response, typically less than 100 milliseconds [29]. To
better understand the real-world QoE of cloud gaming, we
conduct a comprehensive field measurement involving 66,128
players across 22 cities worldwide, as detailed in Table 1. Our
measurements reveal that the downlink delivery of game video
content (i.e., from the remote server to the end devices) is the
primary bottleneck impacting interactive QoE. To mitigate
this, besides usual retransmission mechanisms [21,36], cloud
gaming commonly adopts Forward Error Correction (FEC)
from the current video streaming works [18, 20, 31, 33, 42]
to recover lost data packets. However, our analysis indicates
that existing FEC algorithms significantly increase bandwidth
usage, adding an additional 0.26× to 1.0× redundancy than
the original data streaming. We further conduct an in-depth
exploration of existing FEC schemes and identified their two
primary limitations.
• Frame length affects the redundancy rate for recovering a

frame. Specifically, FEC can recover the lost packets within
a frame when the redundancy rate can cover the Loss Rate
In Frame (LRIF). However, we observe that the video frame
length (number of packets) in cloud gaming varies largely,
i.e., spanning from 2 packets to over 80 packets, and frame
LRIF is a random variable that follows a binomial-like
distribution with a function of the frame length. Especially,
the LRIF of a small frame is as high as 30+% and that of
a large frame is as low as 2%, differing by over 10× and
requiring completely different redundancy rates (§2.3).

• Existing FEC algorithms are coarse-grained, ignoring
frame LRIF differences but applying a uniform redundancy
rate across almost all video frames. As a result, they tend to
over-protect large frames by adding significantly more re-
dundancy than necessary, with median values ranging from
5.2× to 9.2×. Worse still, they under-protect small frames,
failing to recover their lost packets and resulting in frequent
interaction stalls, occurring more than once per minute. Fur-
thermore, our findings indicate that coarse-grained FECs
exacerbate stall frequency in operational cloud gaming sys-
tems due to excessive redundancy, which leads to increased
network congestion bursts. This, in turn, elevates the LRIF
for video frames, particularly for smaller frames, making
them more difficult to recover.
In this paper, we aim to address a key problem: How to

follow frame LRIF to ensure successful recovery in small
frames meanwhile avoiding wasting redundant bandwidth in



large frames, so as to propel cost-effective cloud gaming in
the real world? To accomplish this, we propose Tooth, a novel
fine-grained FEC tailored for cloud gaming at the frame level.
It precisely determines the delivery probability of each frame
through the frame length distribution, and adaptively applies
the per-frame redundancy rates for different frames to align
the delivery probability. Although conceptually simple, build-
ing Tooth in practice introduces two significant challenges.

Firstly, the realistic LRIF pattern is more complicated than
the binomial distribution, and identifying the critical factors
that influence the binomial distribution of per-frame LRIF
is essential for enabling precise FEC. Our field measure-
ments reveal that both the application-layer frame length and
the transport-layer network loss patterns significantly impact
LRIF. In particular, the frame length can be readily acquired
from the video encoder, while inferring the network loss pat-
tern is a non-trivial task. Traditionally, loss patterns are simply
characterized by the loss rate [18,20,27,31,38]. However, our
evaluations show that this metric does not accurately depict
the distribution of network loss events on a per-video-frame
basis. To address this deficiency, we introduce a novel metric–
network loss aggregation, which quantifies whether network
packet loss events are more dispersed across multiple video
frames or concentrated within a few frames, thereby aligning
more effectively with fine-grained FEC encoding strategies.

Secondly, effectively mapping LRIF-related factors to
per-frame redundancy rate, while ensuring Tooth lightweight
enough for practical deployment. In particular, the relation-
ship between per-frame redundancy rate and LRIF-related
factors is non-linear. Straightforward mapping methods like
linear function or neural network models, cannot guarantee
the video QoE and running cost simultaneously (as will be
validated in §5.3). Furthermore, the key factors we inves-
tigated, such as network loss rate and loss aggregation, are
highly volatile due to network dynamics, i.e., only historical
network loss pattern cannot reliably reflect future conditions.
Therefore, we design a dual-module FEC encoding for Tooth,
which consists of (i) a slow-module, which learns network
volatility to estimate the future network loss pattern (loss rate
lr and loss aggregation la) based on historical loss patterns
and packet-by-packet reception. It utilizes a compressed
neural network model to improve prediction accuracy and op-
erates with lower frequency, i.e., once for each network RTCP
feedback cycle. (ii) a fast-module, which formulates the
non-linear and discontinuous mapping between LRIF-related
factors and redundancy of each frame as a regression problem,
and then uses a lightweight random forest method to model
the relationship. The fast-module runs every time a video
frame is encoded, thus ensuring that redundancy is immedi-
ately determined and applied to each newly generated video
frame. As a result, the above decoupled dual modules avoid
implementing frame-level FEC through heavy neural network
models and also reduce the execution frequency, which
allows Tooth agile enough to operate in real-world scenarios.

We have implemented Tooth in a commercial cloud gam-
ing system, one of the popular cloud gaming platforms
(anonymized as Company W), and deployed it in its produc-
tion environments, involving about 2,300 sessions and lasting
6 weeks in total. Compared to state-of-the-art FEC solutions
such as RL-AFEC [18] and RTC-FEC [9, 28], Tooth achieves
an ideal balance between optimized video QoE and efficient
redundancy cost. For instance, it significantly reduces stall fre-
quency by 40.2%-85.2%, increases perceptual video bitrate
by 11.4%-29.2%, and reduces bandwidth costs by 54.9%-
75.0%. Moreover, we also evaluate Tooth’s effectiveness in
different (i) network types like WiFi, 4G, and 5G; (ii) game
types like 2D games and 3D games; (iii) Internet Service
Providers (ISP); (iv) distances of game server to end devices,
i.e., cross-city sessions and intra-city sessions. The above ex-
tensive experiments (§5.2) validate that Tooth can achieve
excellent QoE consistently in real-world cloud gaming sce-
narios. We also conduct a series of ablation studies to verify
the key design modules of Tooth.

To summarize, our main contributions are:
• We conduct a large-scale measurement on an operational

cloud gaming system and uncover underlying reasons for
the inefficiencies of existing loss recovery solutions (§2).

• We propose Tooth, a lightweight dual-module approach
that can map the application-layer frame length and
transmission-layer network loss pattern to per-frame re-
dundancy in real-time, thus achieving a fine-grained FEC
for enhancing cloud gaming streaming (§3).

• We implement and deploy Tooth in the operational cloud
gaming system and conduct real-world evaluation, which
outperforms state-of-the-art solutions significantly and con-
sistently across environment variation (§5).

2 Background and Motivation
2.1 Background

2.1.1 Packet Loss Recovery

In conventional real-time applications such as video con-
ferencing, playback delays of 200 to 500 milliseconds are
typically tolerable [28, 43, 47]. However, in cloud gaming
scenarios, stronger interactivity is critical, with significantly
stricter latency constraints, i.e., the application-layer interac-
tion latency must consistently remain below 100 milliseconds
to ensure optimal user QoE [22–24]. Here we clarify that the
application-layer interaction latency refers to the duration
between a user’s operation input (e.g., run and hit) in the
game client and the moment the user receives the corre-
sponding screen feedback. It contains the system processing
delay and data round-trip network delay, the measurement
method is given in Appendix A. Given the stringent latency
requirements of cloud gaming, it significantly influences the
design considerations for packet loss recovery. In particular,
there are typically two loss recovery mechanisms, which are
usually adopted jointly in cloud gaming:
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Figure 1: Frame length de-
tails at different video bitrates.

2D 3D-1 3D-2 3D-3
Game type

0

20

40

60

80

Fr
am

e 
le

ng
th

 (#
 o

f p
kt

s)
   

   
 

Figure 2: Frame length de-
tails in 2D and 3D games.

Feature
Hairpin

[36]
Tambur

[42]
Xu et al.

[51]
Ours

User sessions 3,308 9,700 2,430 69,426
Playtime (hours) 600+ - 121.5 31,316
Players 3,308 9,700 1 66,168
Player’s City - - 1 22
Edge server’s City 1 - 1 17
ISP 3 - - 4
User device models - - 1 83
Cloud game products 2 2 3 4

Table 1: Datasets statistics of our large-scale measurements
on an operational cloud gaming system, compared with other
existing measurement efforts.

• Forward Error Correction (FEC) [18, 20, 31, 42], which
proactively supplements original data with additional en-
coded data as redundancy before each transmission. In this
case, the lost original data packets will very likely be recov-
ered by the receiver. FEC reduces the delay by not requiring
retransmission but increases the bandwidth cost since future
packet losses are uncertain.

• Retransmission [21, 36]. There are also recent proposals
that call for the revitalization of retransmission due to the
reduction of RTT. When the packet is lost and detected, the
sender will transmit the lost data packets again. This will
introduce additional RTT delays to the data delivery, but
will only consume the bandwidth of the lost packets.

2.1.2 Variation in Frame Length

A key observation in this paper is the variation of frame length
in cloud gaming, for the following two reasons:
• Rate adaptation. The available network bandwidth is highly

dynamic, sometimes dropping by a factor of 50× in wireless
real-time communications [35], so the encoding bitrate will
also change accordingly. This is determined by the rate
adaptation algorithms such as GCC [17]. Such an adaptive
bitrate will result in the variation in frame length (number
of packets). We emphasize that the frame length variation
here is different from the segment length variation reported
in [45], which has a far loose latency requirement.

• Variable bitrate (VBR). Meanwhile, due to the internal de-
sign of video codecs, even if the bitrate is fixed, the frame
length can also vary due to the VBR encoding. For example,
under the same video bitrate, the frame length of a static

scene will be shorter than that of a dynamic scene.
We conduct a measurement campaign over our operational
cloud gaming system (later described in §2.2), and the statis-
tics are shown in Table 1. The video codec we use is NVENC
[1, 8] following H.265 [7] and it adopt infinite GOP encoding
manner to meet the low-latency transmission characteristics
of cloud gaming. Unlike the traditional finite GOP manner
sets a fixed GOP length, such as 30 in RL-AFEC [18], infi-
nite GOP disables the server to send I frames periodically, to
reduce latency surges, more explanations in Appendix B. The
congestion control algorithm is GCC [17]. We present the
distribution of frame lengths when the encoding bitrates are
fixed to different levels in Fig. 1, and this length difference
exists in both 2D and 3D cloud games, as shown in Fig. 2.

2.2 Inefficacy of Existing Solutions

Unfortunately, when deploying FEC and retransmission into
production-scale systems, we find that existing solutions suf-
fer from a fundamental trade-off between bandwidth cost and
interaction latency.
Measurement Setup. We conduct a large-scale measurement
campaign over our operational cloud gaming system. The
measurement covers 22 cities across China and 4 ISPs, with
other statistics shown in Table 1. It is worth noting that the
dataset we collect is the largest dataset in the field of cloud
gaming to the best of our knowledge.
FEC algorithms often over-protect data packets with
drastically high bandwidth costs. An interesting observa-
tion is that many existing FEC solutions often add much
more redundant packets than necessary. For example, when
there are 5 packet losses out of 25 data packets, ideally only
5 additional redundant packets will protect the data packets.
However, existing solutions [18, 36, 42] often add much more
than 5 packets. This reason is quite intuitive – more redun-
dancy is added to get prepared for unforeseen packet losses,
however, which leads to drastic bandwidth waste. Especially
considering that bandwidth cost is the major contributor to the
operational expenses for streaming applications such as cloud
gaming, this will directly lead to a revenue loss [2, 3, 42].

We validate the observation by deploying two representa-
tive FECs in our cloud gaming platform:
• RTC-FEC [28], the de-facto rule-based solution in WebRTC

[9] based on the current video bitrate and network loss rate.
• RL-AFEC [18], a reinforcement learning driven FEC so-

lution. It defines the first I frame and the following K-1 P
frame of one GOP (length is N) as the K “critical” frames1,
and the remaining N-K P frames as “non-critical” frames.
RL-AFEC finds that non-recoverable critical frames have
a more serious negative impact on video quality, so it sets
different redundancy rates2 for the critical frames of each

1In RL-AFEC [18], there are 6 candidate values for K, i.e., 5, 10, 15, 20,
25, and 30. Here we use the recommended optimal value, i.e., K = 15.

2Here we set 10 candidate redundancy rates for RL-AFEC, i.e., 10%,
20%,...100%, completely consistent with [18].
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GOP. As for the remaining non-critical frames, it still uses
the same uniform redundancy rate.
As shown in Fig. 3, both algorithms add much more redun-

dant packets to frames than necessary, with a median number
of 5.2×-8.6× in 4G/5G networks and 6.6×-9.2× in WiFi net-
works, resulting in serious bandwidth waste. In Fig. 4, we
show the overall redundancy bandwidth costs of two repre-
sentative FECs, both are very high, i.e., 45.9%-100% and
26.3%-39.4% respectively. To show the potential optimiza-
tion space, we compare the existing FECs with an “Oracle”
approach, i.e., we count the actual data loss rates of all video
frames as the ideal bandwidth cost. As shown in Fig. 4, only
5.4%-12.1% redundancy is required.
Retransmission-oriented solutions still suffer from severe
stalls. Including the recent effort, Hairpin [36], there has been
an understanding that since the RTT is low enough, merely
relying on retransmission might be sufficient to recover the
lost packets. However, our experiments show the contrary:
• The network RTT measured in our cloud gaming system is

23 ms for WiFi users and 35 ms for 4G/5G users. This is
because as the scale of the product expands, the users with
worse network conditions are naturally included.

• The detection of packet loss also takes time in the com-
monly used negative acknowledgement (NACK) methods.
For example, in WebRTC, it will take the receiver up to 20
ms before sending NACK through RTCP protocol.

• Affected by the congestion control and pacing rate of the
sender, the transmission duration of video frame data pack-
ets often exceeds 10 ms.
Therefore, considering the stringent deadline requirement

of around 100 ms [22–24, 36, 37, 48], it is still insufficient
to rely on retransmission to recover the lost packets, and the
stall frequency even reaches 41.9 times per minute. We will
provide the detailed experimental results in §5.2.

2.3 Observation – Frame length matters

In Fig. 3, we have shown that existing FEC algorithms often
over-protect many video frames while under-protecting some
others (the ratio < 1), leading to both bandwidth waste and
interaction stalls. In this subsection, we will show that the
root cause of this inefficiency is the neglect of the frame
length in the FEC algorithms. For the sake of clarity, we first
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Figure 5: The CDF of video
frame LRIF binomial distribu-
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denote the loss rate in each frame as LRIF, which is defined as
# o f lost packets in f rame
# o f all packets in f rame . We later have the following findings:

Finding 1: The distribution of video LRIFs vary signif-
icantly with the frame length. As we all know, network loss
events are random and bursty [33, 36, 42]. Now let’s begin
with a simple probability question: assume that the loss rate
of each packet is 10% and they are independent from each
other, if we want to protect the delivery of the frame with
the confidence of 99%, how many redundant packets do we
need to add when (a) the frame has 10 data packets; and
(b) the frame has 50 data packets? In this case, we need to
calculate the per-frame LRIF as it is the necessary redun-
dancy rate to be set. The LRIF in this example follows the
Binomial Distribution [11], with the probability of each trial
being 0.9, and we want the minimum number of trials such as
P(X ≥ f ramelength) ≥ 0.99. The answer is: when the frame
length is 10 packets, we need to add 4 redundant packets;
when the frame length is 50 packets, we need to add 12 redun-
dant packets. The redundancy rate for smaller frames (40%)
is much higher than that for the larger frames (24%)3.

The reason behind this phenomenon is a basic law in prob-
ability theory – the law of large numbers. As shown in Fig. 5,
when the number of trials (in our case, frame length) increases,
it requires a lower redundancy rate to successfully recover
99% of all frames. Therefore, the redundancy rate needed to
protect the frame will decrease as the frame length increases.
Here we clarify that a lower redundancy rate does not directly
represent adding fewer redundant packets. For a video frame,
the ideal redundancy rate is its LRIF and the ideal number
of the redundant packets is f ramelength×LRIF . Next, we
further simulate the necessary redundancy rates with different
confidence levels and frame lengths, and the results are shown
in Fig. 6. This phenomenon is general – the redundancy rate
for small frames is much higher than that for large frames.

Finding 2: Existing FEC algorithms ignore the LRIF
variation caused by frame length, either over-protect
large frames or under-protect small frames. We delve
anew into existing FEC algorithms and find the underlying

3One can validate the result at https://stattrek.com/online-cal
culator/binomial.aspx. The parameters we use are (0.9, 14, 10) and (0.9,
62, 50).

https://stattrek.com/online-calculator/binomial.aspx
https://stattrek.com/online-calculator/binomial.aspx
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The statistical results come from video frames that suffered
packet loss in our commercial cloud gaming platform. Only
these frames can reflect the optimal redundancy rate to protect
each video frame, more explanations in Appendix D.
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(c) Stall frequency under different
redundancy rates.
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Figure 8: Video frame recovery and wasted bandwidth under
coarse-grained redundancy rates. The results are obtained
from the controlled analysis to FEC. We replay real-world
stream traces in the simulator and don’t consider the damage
to network condition caused by excessive data transmission.

reason: most of them are coarse-grained, ignoring the impact
of frame length, and set a uniform redundancy rate r (defined
as redundant data

original data ) for all frames based on network conditions.
While RL-AFEC [18] proposes setting varying redundancy
rates for each of the first K critical frames in one GOP, it
overlooks the remaining N-K non-critical frames. This is es-
pecially unsuitable in the context of cloud gaming, where
N-K non-critical frames can comprise up to 99.9% of all
frames in one GOP (details in Appendix B). Thus the vast
majority of frames will still be set the uniform redundancy
rate, even though these frames behave with significant LRIF
variations. Therefore, all existing FEC methods tend to set a
higher redundancy rate, as we presented above. Unfortunately,
even if the redundancy rate is high enough for most frames, it
might still be insufficient for small frames. For example, in
the line of (lr=10%, conf=99%) in Fig. 5, when setting the
redundancy rate to 40% (4× the average loss rate), frames
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Figure 9: As redundant rate
increases, the over-sent redun-
dancy even exacerbates inter-
action stalls.
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Figure 10: As redundant rate
increases, the over-sent re-
dundancy exacerbates small
frames’ LRIF.

smaller than 10 packets are still likely to fail to recover even
though for frames larger than 10 packets the redundancy will
be significantly wasted. We further validate this observation
by our online measurements as well. As shown in Fig. 7, as
the frame length increases, the LRIF mean of the frames that
suffered packet loss decreases significantly. This indicates
that large frames will easily be over-protected while small
frames will be under-protected by the coarse-grained FECs.

The adverse impact of coarse-grained FECs on opera-
tional cloud gaming systems. Here we demonstrate how ex-
isting coarse-grained FECs impact the performance of cloud
gaming in practice, for which we use all traces as listed in
Table 1. Firstly, we apply a uniform redundancy rate of 20%
to each gaming stream and observe the frame recovery. As
shown in Fig. 8a, the non-recoverable frames are relatively
small, i.e., 98% of them are small frames (length ≤10). Further-
more, we also apply other 4 redundancy rates to each video
stream in turn, i.e., 10%, 15%, 25%, 30%. Fig. 8b plots the re-
covery results under all five redundancy rates. We can observe
that: increasing the redundancy rate can indeed recover more
video frames, but some small frames still fail to be recovered,
which requires a higher redundancy rate, exceeding 30%. To
examine the impact on QoE, we present the interaction stall
frequency in Fig. 8c and the wasted redundancy in Fig. 8d.
Obviously, the stall frequency decreases along with the in-
crease of redundancy rate, but the marginal effect diminishes
very fast, e.g., we barely have extra gain when the redundancy
rate rises from 25% to 30% but the wasted bandwidth keeps
increasing substantially, from 4.5 Mbps to 5.6 Mbps.

More importantly, in the real world, our measurement re-
sults show the counter-intuitive fact: more redundancy instead
exacerbates cloud gaming’s interaction stall. Specifically, we
measure the interaction gains of FEC under different redun-
dancy rates of 10%, 15%, 20%, 25%, 30%. As shown in Fig. 9,
when the redundancy rate is relatively low, i.e., 10%, 15%,
20%, FEC can continuously reduce the interaction stall fre-
quency. However, as redundancy rate keeps increasing, FEC
fails to further optimize and even worsens the stall perfor-
mance. We investigate the traces and find the root reason:
adding too much redundancy will lead to more bursting net-
work congestion, thus the LRIF of a video frame especially a
small frame will be even higher, as shown in Fig. 10.



Figure 11: Design overview of Tooth.

To sum up, existing FEC algorithms are commonly coarse-
grained and ignore the LRIF differences across video frames.
Hence they are trapped in the dilemma of improving frame re-
covery and avoiding bandwidth waste. Nowadays, cloud gam-
ing applications are becoming more bandwidth-demanding
(with higher image quality), it is more imperative to break the
dilemma with a novel FEC design.

2.4 Design Challenges

Although we have revealed the significant impact of frame
length on per-frame redundancy rate, adapting it to achieve
fine-grained FEC is non-trivial, which faces 3 key challenges:
(i) Besides frame length, LRIF also intertwines with the
transport-layer network loss pattern. Identifying the critical
factors that influence the per-frame redundancy rate is es-
sential for enabling precise FEC at the fine-grained level.
(ii) The relationship between per-frame redundancy rate and
the related factors is non-linear and discontinuous, making it
difficult to represent using a straightforward mapping func-
tion. Meanwhile, network loss pattern fluctuates, meaning
the historical observations cannot reliably reflect the future
network conditions. (iii) Fine-grained FEC necessitates im-
mediate determining and executing redundancy rate upon
generating a new video frame (e.g., 16.7 ms at FPS=60). The
high frequency and stringent time constraints make existing
learning-driven approaches impractical.

3 Design
3.1 Design Overview of Tooth

We first perform the field measurements to identify critical
factors influencing the per-frame redundancy rate, including
application-layer frame length and transmission-layer network
loss pattern. Notably, in addition to the loss rate introduced
in the conventional approaches [16], we based on the FEC
operation to supplement loss pattern with loss aggregation,
which further describes the temporal distribution of network
packet loss events (§3.2). Then, we design Tooth as a de-
coupled dual-module architecture (Fig. 11), which can map
the LRIF-related factors to per-frame redundancy rate and
meanwhile minimize computational and inference time over-
heads. It consists of a slow-module and a fast-module, which
circumvents the need for bulky large neural networks but

0 5 10 15 20 25 30
Video frame LRIF (%)

0.0

0.5

1.0

C
D

F

(5,0.73)

(5,0.43)

Network
loss rate

~1%
~2%
2+%

(a) Network loss rate lr.

0 5 10 15 20 25 30
Video frame LRIF (%)

0.0

0.5

1.0

C
D

F

Network loss 
aggregation

low
medium
high

(5,0.85)

(5,0.18)

(b) Network loss aggregation la.

Figure 12: Other related factors affecting video frame LRIF.
Fig. 12b is obtained by analyzing the data with a network loss
rate of ∼1% in Fig. 12a. The network loss rate is analyzed
from the RTCP feedback (every 100ms in our system).

also lowers the execution frequency, effectively tackling the
computational complexities and inference time constraints in
real-world environments. Specifically,
• Slow-module utilizes a compressed neural network model

to discern network fluctuations and estimate future loss
pattern. It does not need to execute frame by frame but is
activated only upon receiving new RTCP network feedback
to avoid unnecessary computational overhead (§3.3).

• Fast-module incorporates an exceedingly lightweight ma-
chine learning model to determine per-frame redundancy
based on the frame length and future network loss patterns
obtained from the slow-module (§3.4).

3.2 Investigating the Impact Factors of LRIF and Eval-
uating Strawman Solutions

We make an in-depth analysis of the large-scale measure-
ment dataset in §2.2, and find that besides the frame length,
transport-layer network loss rate (lr) and loss aggregation
(la) also significantly influence over video frame LRIF. Next,
we give more analysis: (i) in Fig. 12a, we plot the CDF of
the video frame LRIFs related to network loss rate lr. The
result clearly demonstrates a trend where frames experience
increasing LRIF as the network loss rate escalates. For in-
stance, when lr is 1%, 73% of the frames have LRIFs below
5%. However, when lr increases to 2% or higher, only 43% of
the frames maintain LRIFs below 5%, marking a significant
difference of 30%. (ii) Previous study [42] has noted that
continuous packet loss severely impacts video frame recov-
ery. However, we argue that for advanced FEC methods like
Reed-Solomon codes [41], there is no distinction between
losing n packets continuously or discretely within a single
frame. Therefore, we introduce a novel metric, i.e., network
loss aggregation la, to reflect whether packet loss events will
be more dispersed in many frames or concentrated in a few
frames. la can be represented as follows,

la =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0 n ≤ 1
n

n
∑ ∣tn−centroid∣+α

n > 1 (1)

Here n represents the number of packets lost within a network
feedback period, and tn denotes the ideal arrival time of the nth

lost packet, measured in milliseconds. We define the timing



Figure 13: Slow-module’s model design.

centroid of all lost packets as ∑
n tn
n , and α is set to 0.5 to

avoid∑n ∣tn−centroid∣ being 0, which means packets are lost
within 1ms. To intuitively illustrate the impact of la on LRIF,
we briefly divide all la values into 3 levels according to the
numerical distribution (i.e., low: 0-1, medium: 1-5, high: 5-
max) and categorize the video LRIFs. As shown in Fig. 12b,
elevated la will increase the video frame LRIF. For instance,
when la is low, 15% of frame LRIFs exceed 5%, but when la
is high, this jumps to 82% of frame LRIFs exceed 5%.
Strawman solutions for fine-grained FEC. To assess the
impact of video frame length ( f l), network loss rate (lr), and
loss aggregation (la) on per-frame redundancy rate, one pre-
liminary approach is to manually establish the mapping re-
lationship. However, this task proves to be non-trivial due
to several challenges: (i) The relationships among the three
factors and per-frame redundancy are not straightforwardly
linear. Instead, they are implicit and complex, making manual
modeling difficult. (ii) Both lr and la are subject to continual
changes due to network fluctuations. Notably, there is also a
dependent relationship where an increase in lr can sometimes
lead to a higher la, though not invariably. Thus, it is impera-
tive for Tooth to accurately determine per-frame redundancy
amid varying network conditions.

Another strawman idea is to leverage powerful neural net-
work models [18–20,31]. Existing approaches generally oper-
ate at a coarser granularity, typically making decisions every
100 ms or longer [32,42], which is inadequate for Tooth’s fine-
grained frame-by-frame optimization. On one hand, Tooth
necessitates frequent redundancy execution within the tight
frame encoding period of 16.7 ms at a frame rate of 60 FPS.
On the other hand, Tooth must maintain exceptionally low
overheads in both computation and inference time to enable
feasible deployment in production environments. However,
even neural network models with optimized architectures and
parameters, such as pruning, often fail to satisfy these strin-
gent overhead requirements, which will be validated in §5.3.

3.3 Slow-module: Estimating Future Network Loss Pat-
tern

Slow-module is tasked with learning network fluctuations to
estimate future network loss rate lr f and loss aggregation la f ,
and update them to the fast-module. Obviously, estimating
la is very challenging since it is potentially affected by lr in
addition to its own intrinsic characteristics. Existing simple

methods, like arithmetic average of the heuristic observations,
will bring serious deviations to the judgment of per-frame re-
dundancy, as verified in §5.3. Thus, we introduce a NN model
to build slow-module, and we provide more details next.

Input and output. As illustrated in Fig. 13, slow-module’s
input is the historical network loss pattern vectors: the net-
work loss rate sequence in the past n RTCP feedback, i.e.,
P⃗lr = (lr1, lr2, ..., lrn), the loss aggregation sequence (P⃗la =
la1, la2, ..., lan), and the spatial distribution features P⃗ls of his-
torical packet loss events. P⃗ls is extracted from the packet loss
events in the past n network feedback periods. In particular,
we encode the arrivals of all N packets in the past n RTCP
feedback periods into a 0, 1 vector l⃗s, i.e.:

l⃗s = (x1,x2, ...,xN), xi =
⎧⎪⎪⎨⎪⎪⎩

1 packet lost

0 packet received,
(2)

Here we build a 1D-CNN block to process l⃗s, which consists
of two cascaded one-dimensional convolution layers with
kernel sizes of 100 and 4, respectively. Each convolution layer
in the 1D-CNN module uses ReLU activation and a pooling
layer with a kernel size of 2 to extract the spatial features P⃗ls.

The output of Tooth’s slow-module is the future network
loss rate (lr f ) and loss aggregation (la f ).

Neural network model. We pass the concatenated se-
quences of P⃗lr (10×1), P⃗la (10×1), and P⃗ls (12×1) to the slow-
module’s cascaded FC networks, with 64, 32 and 16 units
respectively. For the loss function, we emphasize that the
overestimated lr f and la f will guide Tooth add excessive re-
dundancy, increasing bandwidth cost. But the underestimated
future lr f and la f may lead to insufficient redundancy, thus
incurring stalls, more unacceptable than wasting bandwidth.
Therefore, we set a larger loss for the underestimated case
and the final loss function LS is defined as follows:

LS =
(lr f − l̂r)2+(la f − ˆla)2

2
×( e(l̂r−lr f )+( ˆla−la f )

∣l̂r− lr f + ˆla− la f ∣+β
),

(3)
where l̂r and ˆla are the true values of network loss rate and
loss aggregation. The first part calculates the difference be-
tween the estimated lr f , la f and the true l̂r, ˆla. For the second
part, if lr f , la f are larger than l̂r, ˆla, the loss can be appropri-
ately reduced and when lr f and la f are smaller than l̂r, ˆla, the
loss will be enlarged. β is a constant and is set to 1 to avoid
∣l̂r− lr f + ˆla− la f ∣ being 0.

3.4 Fast-module: Determining Per-frame Redundancy

Fast-module takes the future network loss rate lr f , loss ag-
gregation la f , frame (to be encoded) length f l as inputs, and
outputs the per-frame redundancy decision. In crafting fast-
module, we gather lr, la, f l, and LRIF from historical frames
as label to build sample dataset. Next, we incorporate a ma-
chine learning approach different from complex NN models
to reduce the computation complexity.

Incorporating Random Forest model. We clarify fast-



Figure 14: Fast-module’s model design.

module’s inputs (lr, la, f l) exhibit the following characteris-
tics: (i) High cardinality, especially lr and la boast hundreds
of non-continuous potential values, while f l may also have
dozens, thus rendering the feature space inherently variable
and intricate. (ii) These features exert distinct and non-linear
impacts on per-frame redundancy. For instance, a marginal 1%
increase in lr may result in the loss of several more packets
within a frame, whereas a similar increase in f l may not yield
a substantial damage. In light of these issues, we leverage Ran-
dom Forest (RF) model to construct fast-module as multiple
LRIF decision trees. On one hand, RF model can effectively
handle high-cardinality samples. Each redundancy decision
tree of RF model will be built by randomly selecting training
samples, ensuring strong generalization ability. On the other
hand, each redundancy decision tree will split its nodes based
on different input features during the establishment process,
enabling to learn the degree to which each feature affects the
per-frame redundancy. As shown in Fig. 14, we first parti-
tion the dataset based on lr, la, and f l, while ensuring that
the elements in each dataset are evenly distributed to avoid
situations where a large amount of data is concentrated near a
certain value. Subsequently, we adjust the features carried by
each subset, and the explicit features carried by each subset
are divided into (lr, f l), (la, f l), and (lr, la, f l). This strategy
prevents the decision trees from overly relying on a certain
feature. Moreover, we choose MSE (Mean Squared Error) as
the criteria of RF model to train the fast-module.

The final redundancy decision of the RF model is taken
as the average of all decision trees’ outputs. We emphasize
that (i) the combination of multiple decision trees can help
fast-module learn the non-linear relationship between lr, la,
f l, and per-frame redundancy. (ii) Each tree examines dis-
tinct features and autonomously assesses the significance of
each input feature, culminating in the integration of multi-
ple decision trees’ outputs. This can significantly enhance
fast-module’s ability to generalize across varied network con-
ditions and gaming environments, as validated in §5.2.

4 Implementation
Tooth’s implementation workflow. As the workflow illus-
trated in Fig. 15, Tooth serves as a pivotal control module of
the game server, positioned between Video Codec and FEC
Codec. For each gaming session, Tooth acquires the receipt

FEC Codec

Network
MonitorData Sender

Tooth
Video Codec

Cloud Game Server Player Devices

Internet

Figure 15: The implementation of Tooth.

information of past data packets from Network Monitor and
the frame length from Video Codec, subsequently control-
ling FEC Codec to add redundancy for each newly generated
frame. In terms of data flow, the server generates the real-time
game content, which is encoded by Video Codec and FEC
Codec. Then, Data Sender transmits the data packets to play-
ers’ devices (e.g., smartphone, laptop, iPad) via the Internet.
Tooth’s dual-module training methodology. In §2, we have
collected extensive cloud gaming traces from the production
environment, which records (i) transmission and reception de-
tails of transport-layer RTP packets. From which, we count the
network loss rate and aggregation at a granularity of 100ms to
construct the network loss pattern dataset; (ii) Each packet’s
sequence number and the associated video frame ID, loca-
tions of all lost packets. For each frame, we count its length,
number of lost packets, and integrate its current network loss
pattern to construct the video frame LRIF dataset. Based on
these two datasets, we complete the training of Tooth.
System implementation details. (i) Tooth’s integration. Our
commercial cloud gaming system has been running online for
nearly two years and has more than 100,000 players. It fol-
lows the RTP protocol stack [44] and is implemented based on
WebRTC [9, 10]. On game server, there is a real-time stream-
ing service (RTSS) module, responsible for handling the game
video content and streaming it to the client. Tooth is integrated
as an RTSS sub-module, embedded into RTSS’s media and
network stack to 1) obtain the frame information and network
information 2) return to RTSS main process the redundancy
rate decision. (ii) Redundancy encoding method. We lever-
age the Reed-Solomon (RS) codes [41] to build FEC Codec.
Through our engineering refinement, it empowers an FEC
block to handle up to 256 packets and the encoding time con-
sistently remains below merely 1 ms. Also, we use WebRTC’s
FlexFEC codec to support existing FEC solutions. For protec-
tion of uplink client-to-server data flow, see Appendix C. (iii)
Network Monitor discerns the RTP packets’ arrival via the
client’s RTCP feedback (per 100 ms) then provides it for Tooth
as the basis for FEC decision-making. Moreover, it calculates
the frame LRIFs and archives comprehensive network metrics
(e.g., RTT, throughput) into the trace database based on the
MQTT protocol [4]. These massive network traces facilitate
continuously optimizing Tooth in the offline environment.
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Figure 16: Interaction QoEs of all baseline
methods. Tooth exhibits the optimized perfor-
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Figure 17: Redundancy rate and recovery
failure rate of different FEC methods. Tooth
recovers more frames with less redundancy.

Figure 18: CDF of the ratio of per-
frame redundancy rate to LRIF. A
ratio of 1 means FEC adds the most
appropriate redundancy to a frame.

5 Evaluation
5.1 Experimental Methodology

Comparison baselines. Here we compare Tooth with four
state-of-the-art loss recovery baselines:
• RL-AFEC [18], which we have already introduced in detail

in §2.2. Here we maintain its K as the recommended op-
timal value of 15 in [18] and provide the further ablation
experimental results for other K values in the Appendix E.

• RTC-FEC [28], as the default FEC solution of WebRTC
framework [9], is widely used in the industry. We integrate
the m119 release from Chromium [10] in 2023 into our
cloud gaming system.

• RTC-FEC+, which replaces RTC-FEC’s FlexFEC codec
with more powerful RS codec [41]. We also tune RTC-
FEC+’s redundancy table to suit the RS codec.

• Hairpin [36], which is the latest effort in interactive video
streaming. It noticed that the loss of retransmission packets
will bring multiple RTT overheads and ultimately incur
stalls. So it adds redundancy to retransmission packets.

Evaluation metrics. For each cloud gaming session, we log
the following metrics to conduct a comprehensive evaluation.
• Our direct optimization goals, i.e., FEC performance, in-

cluding 1) bandwidth cost from FEC redundancy; 2) recov-
ery failure rate, which is the percentage of video frames
that fail to recover when suffering packet loss. We clarify
that adding redundancy will lower the video bitrate because
production systems often have a bitrate cap (20 Mbps in
our case) to control overall bandwidth costs, which is a
common industry practice. Moreover, when FEC fails to
recover a video frame, retransmission is used to ensure the
data integrity of non-recoverable frames (whether I frame
or P frame). Otherwise, the subsequent video frames won’t
play normally, leading to interaction stalls.

• Player interaction QoEs, including 3) stall frequency, i.e.,
how many times a player experiences stall per minute. We
consider an interaction latency of more than 100ms as a
stall, for which players will feel that the game is laggy; 4)
video bitrate, which does not include redundancy, represents

better picture quality when it is higher; 5) video PSNR and
VMAF, which are close to the user-perceived feedback and
have been widely adopted in the community and industry
[18, 19, 31, 48].

To avoid the impact of differences in gaming session duration,
we calculate these metrics at a one-minute granularity.
Field deployments. We deploy Tooth and baseline solutions
to a production server, and conduct rigorous A/B tests in the
real world. To ensure fair comparisons, we randomly apply
an FEC solution to a gaming session instead of relying on
manual allocation, and all solutions operate within the con-
sistent system environment. The evaluation spans a duration
of 6 weeks, and the players are in various activity scenarios
(e.g., library, office, cafe, home, park) with various wireless
network conditions (i.e., WiFi, 4G, 5G). We remove the first
minute of each gaming session, during which the game is in
the initial animation phase with no user interaction, and the
system only monitors the user’s network loss conditions.

5.2 System-level Evaluation

Tooth significantly enhances interaction QoE. Here we
first focus on the two key application-layer QoE metrics,
i.e., stall frequency and video bitrate, to explore Tooth’s QoE
gains. As shown in Fig. 16, Tooth achieves the lowest stall
frequency, i.e., only 0.49 times per minute, reducing that of
baseline FECs by 40.2%-85.2%. Furthermore, Tooth achieves
the highest video bitrate, i.e., 17.8 Mbps, which is 11.4%-
29.2% higher than the baseline FECs. As a result, Tooth can
enhance the state-of-the-art FECs’ QoE in terms of both stall
frequency and video bitrate. Next, we delve into all FECs’
bandwidth costs and frame recovery results to further eluci-
date. As depicted in Fig. 17, Tooth can surpass existing FECs
in reducing their bandwidth costs by 54.9%-75.0% while
reducing the recovery failure rate by 51.9%-89.3%. This is at-
tributed to Tooth sets higher redundancy rates for small frames
to prevent recovery failures and lower redundancy rates for
large frames to reduce unnecessary bandwidth costs. Since
there are fewer small frames, the redundancy saved by large
frames far exceeds the redundancy increased by small frames.
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Figure 19: Video PSNR and VMAF results of different loss
recovery methods.

To further clarify this, we calculate the ratio of per-frame re-
dundancy rate and LRIF, where a ratio of 1 means that FEC
adds the most appropriate redundancy to a frame. As shown
in Fig. 18, Tooth is closest to the Oracle solution.

Regarding other baselines: (i) RTC-FEC, constrained by
FlexFEC codec (mentioned in §5.1), behaves with a 45.9%
bandwidth cost and 3.3% frame recovery failure rate. Con-
sequently, RTC-FEC demonstrates a QoE of 3.3× stall fre-
quency and a video bitrate of only 13.8 Mbps, inferior to
Tooth. (ii) RTC-FEC+, optimizes RTC-FEC’s bandwidth cost
and frame recovery failure rate by 35.6% and 77.8%, respec-
tively, thus improving QoE. (iii) RL-AFEC achieves a 13.7%
lower bandwidth cost than RTC-FEC+ via reinforcement
learning, but with a 35.2% degradation in recovery failure
rate. These two competent coarse-grained FECs, RTC-FEC+
and RL-AFEC, can only fall into the inherent trade-off be-
tween saving bandwidth cost and ensuring recovery. (iv) For
the retransmission-based Hairpin, its stall frequency is as high
as 41.9 times per minute due to the additional RTT delays,
despite improving video bitrate. Although Hairpin aims to
recover all lost packets with only one round of retransmission,
even this brings an additional RTT delay, which in our system
will cause the interaction latency to be noticed. In the follow-
ing sections, we will not delve further into the codec-limited
RTC-FEC and retransmission-based Hairpin because they fail
to meet the bitrate or stall frequency demands.
Tooth exhibits better video PSNR and VMAF perfor-
mance. Note that video PSNR and VMAF require frame-
by-frame comparison between the server-side source video
and the client-side received video, which is not yet feasible
in our current commercial platform. Therefore, we recruit 20
volunteers across campus to conduct a small-scale evaluation
4. Specifically, we first build a local testbed using our commer-
cial cloud gaming system, and randomly select 20 network
traces (one per volunteer) from our network dataset to simu-
late the real network environments. Then, every volunteer is
asked to initiate 5 cloud gaming sessions, with each session
lasting 10 minutes and using different packet loss recovery
methods. Finally, we collect 100 groups of gaming session
videos and use the FFmpeg tool [6] to calculate their PSNR

4For campus volunteers, we only collect their operation instructions and
video content from the cloud game client. This data collection process doesn’t
involve any user privacy information and has received approval from the
ethical review committee.
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(b) 4G/5G networks.
Figure 20: Interaction QoE under different network types.
Tooth can decrease stall frequency more in 4G/5G networks.

and VMAF results. As shown in Fig. 19, Tooth outperforms
the baseline methods, with a 3.3% higher video PSNR and an
11.9% higher video VMAF than the next best RTC-FEC+.
Tooth is more effective in 4G/5G networks. Players on
our game platform come from two network types, i.e., WiFi
and cellular5, which represent different network conditions.
WiFi networks exhibit lower RTT than 4G/5G networks, i.e.,
22.9ms vs. 35.1ms in average, which means the retransmis-
sion packets are more likely to timeout to incur stalls if FEC
fails to recover the frames. Moreover, WiFi’s network loss
rate is 1.15% and 4G/5G’s is 0.76%, i.e., fewer frames will
suffer packet loss in 4G/5G networks. In Fig. 20, we give
the QoE results under these two networks. We conclude that:
(i) From WiFi to 4G/5G networks, all three FECs’ stall fre-
quencies increase obviously due to higher RTT. For example,
Rl-AFEC’s stall frequency increases from 1.02 to stunningly
6.03. But Tooth can achieve more QoE gains, from reducing
the baseline FECs’ stall frequency by 35.5%-52.4% on WiFi
to 55.9%-75.6% on 4G/5G. (ii) Due to the lower loss rate,
RL-AFEC and RTC-FEC+ tend to decrease the redundancy
rate, with their video bitrates increasing by 4.6% and 6.7%.
Tooth can achieve a more significant bitrate increase of 7.7%.
As proved in Fig. 7, the LRIF of large frames gradually ap-
proaches the network loss rate. So when the network loss rate
greatly reduces, there are more bandwidth can be saved in
large frames for Tooth, but which is something that uniform
redundancy rate of coarse-grained FECs cannot achieve.
Tooth can still achieve significant QoE gains in 2D games
whose frame length differences are smaller. As mentioned
in Fig. 2, the frame length difference of 2D games is smaller
overall than that of 3D games, with the maximum and mini-
mum values being 50 and 80 respectively. An intuitive worry
is: does Tooth still have QoE gains in 2D games? We break
down the interaction QoE results of 3D games and 2D games
to clarify the issue, as shown in Fig. 21. For 3D games, Tooth
can achieve 39.9%, 49.5% lower stall frequency and 11.4%,
16.4% higher video bitrate than RTC-FEC and RL-AFEC, re-
spectively (Fig. 21a). More importantly, for 2D games, Tooth
still shows significant QoE gains over the baselines (Fig. 21b).
In details, RL-AFEC and RTC-FEC+ both show slightly wors-
ened stall frequency due to more small frames in 2D games,

5Our game APP cannot obtain detailed 4G and 5G access information
from player devices, so they are unified into cellular players. In addition, the
number ratio of WiFi players to cellular players is almost 8.5:1.
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(a) 3D games.
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(b) 2D games.
Figure 21: Tooth can not only benefit 3D game but also 2D
games whose frame length differences are smaller.
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Figure 22: Tooth can achieve consistently lower stall fre-
quency than baseline FECs under different ISP networks.

from 0.82 to 0.89 and from 0.97 to 0.99, respectively, while
Tooth can further decrease the stall frequency from 0.49 to
0.44. In terms of video bitrate, Tooth still achieves consider-
able improvement, 10.4% and 11.1% higher than the baseline
FECs. It can reduce the stall frequency by 76.2%, 77.8% and
increases the video bitrate by 7.8%, 12.5% (Fig. 21b). Be-
cause in both 3D games and 2D games, frequent operations
and dynamic game content will lead to inevitable variations
in frame length. Thus, Tooth can exploit this difference to
adaptively add appropriate redundancy to each frame.
Tooth exhibits exceptional stall performance in various
ISP networks. Our cloud gaming platform encompasses
players from all four major ISPs in China, i.e., ISP-U
(China Unicom), ISP-M (China Mobile), ISP-T (China
Telecom), and ISP-B (China Broadnet), with player ratios
of 1.1:3.1:1.8:0.01 respectively. Despite ISP variations, video
bitrate gain remains largely unaffected, thanks to consistent
CDN egress bandwidth set for each game stream (20Mbps
in our system). Remarkably, there’s a notable contrast in stall
frequency. Illustrated in Fig. 22, players from ISP-T exhibit
the lowest stall frequency, trailed by ISP-U and ISP-M, those
from ISP-B encounter the highest stall frequency. Divergent
stall performances stem from disparities in fundamental
network performance and link load among ISPs: (i) ISP-B,
in its nascent stage, is gradually enhancing its CDN links and
base station infrastructure, showing relatively poor network
RTT, average 28.0ms. (ii) The RTT conditions among ISP-M
and ISP-U are comparable, 24.3ms and 23.8ms respectively,
both are worse than ISP-T’s 21.8ms. Fortunately, irrespective
of the ISP networks, Tooth can achieve exceptional stall
performance, reducing the stall frequency of the next best
RTC-FEC+ by 1.63× to 1.72×.
Tooth can achieve consistent QoE gains in both intra-city
and cross-city sessions. We divide gaming sessions into two
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Figure 23: Stall frequency un-
der different server distances.
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Figure 24: Ablation study of
Tooth’s two modules.

categories: intra-city sessions and cross-city sessions, contin-
gent upon whether the player and game server are in the same
city, accounting for 17.2% and 82.8% of sessions respectively.
As illustrated in Fig. 23, Tooth can decrease the stall frequency
of the baselines by 40.5% and 59.9% in cross-city sessions.
More importantly, in cross-city sessions, Tooth’s stall perfor-
mance can even match that of RL-AFEC in intra-city sessions,
and it demonstrates greater robustness (with smaller error bar).
Additionally, for intra-city sessions boasting superior network
conditions, Tooth shows noteworthy stall frequency gains,
reducing by 38.6% and 64.5% compared to the baselines.

5.3 Micro-benchmark Comparisons

Ablation study of Tooth’s two modules. Here we examine
the separate utility of Tooth’s two modules. For slow-module,
we build its heuristic replica with the arithmetic average
method, estimating network loss rate lr and loss aggregation
la as the averages over the last three RTCP feedback periods.
For fast-module’s heuristic replica, we look for a past RTCP
feedback period where the network loss pattern is closest to lr
and la, then use f l as the observation window to observe the
maximum number N of lost packets in this period. The replica
will add N redundant packets to the frame. Next, we develop
three variants of Tooth: w/o-S&F, w/o-S, S&F, leveraging iden-
tical cloud gaming session traces in the simulator for a fair
comparison. The results in Fig. 24 show that: (i) w/o-S&F can
yield 34.3% lower recovery failure rate than w/o-S, and mean-
while reduce the bandwidth cost by 19.2%. The S&F, employ-
ing a Random Forest model, demonstrates significantly supe-
rior accuracy in determining per-frame redundancy compared
to simple historical observations. (ii) Compared to w/o-S,
slow-module provides a more precise estimation of network
loss patterns through the NN model. This enhancement al-
lows slow-module to further diminish the recovery failure rate
from 0.41% in w/o-S to 0.32% in S&F, marking a noteworthy
22.0% improvement. Additionally, we also evaluate the infer-
ence accuracy of slow-module, more details in Appendix F.
Importance of LRIF-related factors. In §3.2, we expand
the LRIF-related factors beyond just frame length ( f l) to in-
clude network loss rate (lr) and loss aggregation (la). To jus-
tify this expansion, we evaluate various combinations of these
factors as inputs to Tooth’s fast-module, specifically A ( f l,
la), B ( f l, lr), and C ( f l, lr, la). We train the corresponding
fast-module variants with these inputs, naming them fast-A,
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Structure
GPU

usage (%)
CPU

usage (%)
Inference
time (ms)

FEC encode
time (ms)

Single-stage 7.9 7.1 3.6 0.5
Dual-module 1.4 1.8 0.7 0.5

Table 2: Computational and inference time overhead.

fast-B, and fast-C. To eliminate experimental contingency,
each fast-module variant is trained with 400 different sets of
model parameters, obtaining 1200 (3×400) Random Forest
models. These models are then tested on the same dataset,
with higher scores indicating more accurate LRIF judgment.
Fig. 25 illustrates the CDF of model scores for each variant.
It is evident that the maximum normalized scores of fast-A,
fast-B, and fast-C are 0.30, 0.65, and 1.0 respectively. This
highlights the importance of introducing lr and la as LRIF-
related factors, especially la, which further emphasizes the
subtle differences in network loss pattern that have not been
considered by existing works [18, 20, 31, 49, 50].
Overhead comparison of Tooth’s model structures. As
discussed in §3.2, although it is feasible to directly use power-
ful neural networks to build Tooth as a single-stage structure,
the high execution frequency (every 16.7ms) will inevitably
lead to unacceptable computational and inference time over-
head. Instead, the dual-module structure we designed decou-
ples Tooth into two modules to reduce overhead. We test both
structures on a game server (CPU: Xeon 8369HC; GPU: RTX
3060) and then present their detailed differences in Table 2.
Obviously, by decoupling modules and reducing execution fre-
quency, Tooth’s dual-module structure can reduce GPU usage,
CPU usage, and inference time by 5.6×, 3.9×, and 5.1× respec-
tively. Both structures use RSFEC codec (mentioned in §4)
and take 0.5ms for encoding the redundancy, which is a little
lower than the decision-making time of Tooth’s dual module,
i.e., 0.7ms. However, the single-stage decision-making time
is 7.2× longer than the FEC encoding time, which obviously
reduces its timeliness in commercial cloud gaming.

6 Related work
Network transmission optimization in cloud gaming. Tra-
ditional video streaming applications, such as video confer-
encing and live streaming [32, 34, 39, 46, 53], typically toler-
ate end-to-end network delays of several hundred millisec-
onds. In contrast, cloud gaming requires significantly lower
latency, necessitating that the time from the player’s action

to the screen response consistently remains below 100 mil-
liseconds [28, 43, 47]. Cloud gaming currently depends on
congestion control algorithms [14, 15, 25, 26, 30, 52–54] to
dynamically adjust the data transmission rate, aiming to mini-
mize queuing delays of network packets. Our system employs
a custom-optimized variant of GCC [17] for enhanced perfor-
mance (see Appendix G). Despite these advanced measures,
packet loss remains an inevitable challenge, consistently re-
sulting in incomplete data delivery. To address this, cloud
gaming systems have to implement effective loss recovery
mechanisms, such as retransmission, represented by ART [33],
Hairpin [36], and PTO [21]. However, retransmission mech-
anism commonly introduces additional delays—at least one
RTT, and can lead to catastrophic interaction stalls (§5.2).
FEC-based loss recovery. FEC is initially employed to re-
cover lost packets in audio transmissions [38, 40], and has
recently been expanded to various video-related applications.
For instance, CLOSET [50] and PATON [49] utilize FEC to
reduce stalls during TCP-based video playback. DeepRS [20]
and RL-AFEC [18] integrate FEC in real-time video com-
munications to minimize end-to-end delays while optimizing
FEC bandwidth costs. Additionally, R-FEC [31] and ABRF
[19] combine FEC with congestion control to enhance the
overall real-time video QoE. A recent advancement in video-
conferencing, Tambur [42], introduces stream coding [27] to
use multiple sequential frames to recover lost packets from
earlier frames, but brings delay that spans multiple frame inter-
vals. However, the above solutions all utilize coarse-grained
redundancy mechanisms that do not satisfy the stringent inter-
action QoE requirements in cloud gaming scenarios (§5.2).

7 Conclusion
In this paper, we propose Tooth, an innovative fine-grained
FEC method specifically designed for commercial cloud gam-
ing. We highlight two main novelties: the first-of-its-kind
large-scale measurements conducted in real-world environ-
ments to investigate the bottlenecks of existing loss recovery
methods, and the design of fine-grained FEC encoding mech-
anisms to achieve an optimal balance between video QoE
and redundancy bandwidth cost. Our online evaluations sig-
nificantly demonstrate the advantages of Tooth. We believe
that Tooth has the potential to benefit a wide range of latency-
sensitive applications in the future.
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Appendices
A Measurement Method for Application-

layer Interaction Latency
We track user interaction delays frame by frame to identify
whether a video frame is delayed and by how much. The
interaction latency refers to the time it takes from when a user
inputs an operation (e.g., run and hit) into the game client to
when the user receives the screen feedback. To measure this
latency actually, we break down the cloud gaming application-
layer latency into two parts:

(i) System processing delay, which involves tasks like cap-
turing user input, video encoding, decoding, and playback on
the game client and server. These contribute to a total average
delay of 32ms, which is relatively stable.

(ii) Data round-trip network delay, which involves trans-
mitting user operations to game server (uplink) and receiving
all RTP packets of the responded video frame from the game
server to the client (downlink) via the Internet. These delays
depend on network transmission conditions, we record frame
ID and the timestamps of all uplink and downlink packets to
calculate them.

If the sum of these two parts of delays exceeds 100ms, we
determine that the user interaction has timed out, in the same
way, we can know how late the complete frame arrives.

B Applying Infinite GOP Video Encoding in
Cloud Gaming

Traditional real-time video communication usually uses the
finite GOP encoding manner and sets a fixed GOP length for
the video codec, such as 30 set in RL-AFEC [18]. For cloud
gaming, this ultra-low latency interactive video streaming
application, a common practice in the industry is to adopt
the infinite GOP video encoding [1, 8]. Infinite GOP video
encoding disables the server to send I frames periodically,
and the client is allowed to request a new I frame only for
necessary error recovery, e.g., the client frame buffer pool
overflowed after multiple video frames suffering packet loss
and failing to be decoded. As a result, our cloud gaming
system sends an I frame every 4.7 minutes on average, which
means our average GOP length is 16,920 and 564× higher
than that of conventional video streaming in [18].

We explain that the P frame only needs to encode the dif-
ference between the current video frame and the previous
one, while the I frame must encode the entire video frame.
When encoding the next video frame, the size of a P frame
will not exceed that of an I frame, even if the cloud gam-
ing scene changes. Therefore, the infinite GOP encoding can
avoid frequently sending high-load I frames and the accom-
panying latency surge, and is recommended by the popular
NVENC video codec [1, 8] for low-latency cases, especially
game-streaming, video conferencing, etc. We emphasize that
multiple top gaming platforms, including our partner company
W, adopt this encoding method to optimize the cloud gaming
interaction latency. This is a common practice in industry
although less frequently introduced in academic papers.

C Protection of uplink client-to-server data
The client-to-server data flow in cloud gaming, mainly dis-
cussing player operation data here, typically ranges from a
few to several tens of Kbps, which is much smaller than the
available network bandwidth. For such a small operation data
flow, there are no multiple concurrent packets like server-to-
client video flow. Therefore, the industry usually doesn’t add
redundancy using FEC rather than adopting some repeated
delivery strategies (i.e., sending data replicas) to ensure reli-
able transmission. Take our system as an instance, a single
player operation amounts to no more than 10 bytes, and the
total number of concurrent operations remains far below the
maximum capacity of an RTP packet (MTU=1500). Thus, an
operation RTP packet from the client will not only contain
the latest player operations but also the previous n operations.
Additionally, each operation RTP packet will be sent twice,
with a 2ms interval, to further improve reliability.
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Figure 26: LRIF results of all video frames (including those
experiencing no losses) observed in our commercial cloud
gaming platform.
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Figure 27: Ablation experiment results of the RL-AFEC
model with different K values.

D A Deeper Dive into LRIF Results
We make the following explanations to clarify why in Fig. 7
we need analyze the LRIFs of frames that suffered packet
loss rather than all GOP frames. (i) FEC in video streaming
is more interested in higher percentiles of LRIF because only
they can reflect how many redundant packets that FEC should
add to protect all video frames as much as possible from net-
work packet loss events; (ii) As shown in Fig.26, the average
and standard deviation of all GOP frame LRIFs are actually
consistent with the overall network loss rate (about 1%), but
obviously, FEC should not adjust the redundancy rate based
on this insight. So, in Fig. 7, we plot the LRIF average and
std of video frames that suffered packet loss to reveal the
relationship between non-zero LRIF and video frame length,
which is more meaningful for guiding us in designing the
fine-grained FEC in cloud gaming.

E Ablation Study of RL-AFEC Using Differ-
ent K Values

For RL-AFEC [18], we further present ablation study exper-
iments with the variation of K, i.e. setting K as 5, 10, 15,
20, 25, 30, consistent with [15]. As shown in Fig. 27, the six
candidate values of K have little impact on the cloud gaming
interaction QoE, which can be almost ignored. That’s because
the GOP length of cloud gaming streaming is very large, it
is far from enough to optimize only a few K critical frames.
We should set a fine-grained redundancy rate for each video
frame.

More importantly, we emphasize that directly defining K
to be GOP size N with RL-AFEC will not yield a similar
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Figure 28: Estimation errors of network loss rate lr and loss
aggregation la.

outcome as Tooth. We elaborate on the key differences in the
design principles of Tooth and RL-AFEC: (i) RL-AFEC is de-
signed for common video call scenarios, where the length of
the remaining P frames remains relatively uniform, apart from
the initial I frame in each GOP. In other words, RL-AFEC
does not account for significant frame length variations and
the resulting huge LRIF differences in cloud gaming stream-
ing. As a result, RL-AFEC may fall short of fully meeting
the redundancy adaptation design required for specific cloud
gaming scenarios. (ii) In RL-AFEC, the GOP length N is
30 and the authors conclude that the optimal K value is 15,
the reason is that increasing K will cause its reinforcement
learning model to explore huge action space, resulting in an
obvious decrease in its model effectiveness. Especially con-
sidering that the GOP size N will be hundreds even thousands
of times larger than K in cloud gaming scenarios, defining K
to be N is even less feasible. Instead, Tooth, with its unique
dual-module design, makes larger K or even infinite K fea-
sible, and ultimately is fully capable of setting fine-grained
redundancy rate for each frame.

F Micro-benchmark Experiments on Tooth’s
Slow-module

To further evaluate Tooth’s slow-module, we analyze Tooth on-
line dataset to supplement the micro-benchmark experiment
results, including the estimation errors (mean and std) of net-
work loss rate le and loss aggregation la. Then, we calculate
the mean and std of all estimation error rates. Moreover, we
also replay these online traces in the simulator and evaluate
slow-module’s heuristic replica (implementation details in
§5.3) to compare their performance differences. As shown in
Fig. 28, Tooth’s slow-module behaves good inference accu-
racy, with an average error of 6.2% for lr and 10.1% for la,
which are 18.8% and 29.2% lower than the heuristic replica,
respectively.

G Fine-tuning of GCC’s hyper-parameters in
our system

The default GCC congestion control algorithm in WebRTC
[10] isn’t fully adapted for the streaming characteristics of
cloud gaming. We follow the algorithm logic of GCC but



customize its hyper-parameters based on practical engineer-
ing experiments: (i) We increase GCC’s upper bitrate limit
to 20Mbps to meet the production streaming requirement of
cloud gaming; (ii) We shorten the observation window length
in GCC’s trend-line estimator from 20 to 15, making the sys-
tem more aware of delay increases; (iii) We slightly enlarge
the rate increase factor in AIMD-based bitrate control from
1.08 to 1.11 for fast bitrate recovery after the delay stabilizes;
(iv) We disable GCC’s probe action during bitrate reduction
since cloud gaming is more delay-sensitive than bandwidth-
sensitive. Probing at this time can easily harm delay perfor-
mance. (v) When the observed network loss rate is below
0.3%, we block GCC’s loss-driven decision on reducing bi-
trate and rely solely on the delay-driven bitrate adjustments.
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