
SmartChain: Enabling High-Performance Service

Chain Partition between SmartNIC and CPU
Shuhe Wang1,2, Zili Meng1,2, Chen Sun1,2,6, Minhu Wang1,2,

Mingwei Xu1,2, Jun Bi1,2, Tong Yang3, Qun Huang4, Hongxin Hu5

1Institute for Network Sciences and Cyberspace, Tsinghua University
2Beijing National Research Center for Information Science and Technology (BNRist)

3Peking University, 4Chinese Academy of Sciences, 5Clemson University, 6Alibaba Group

{wangshuh18, wangmh19}@mails.tsinghua.edu.cn, zilim@ieee.org, qichen.sc@alibaba-inc.com

{xumw, junbi}@tsinghua.edu.cn, yangtongemail@gmail.com, huangqun@ict.ac.cn, hongxih@clemson.edu

Abstract—Smart Network Interface Cards (SmartNICs) have
been widely used to accelerate software-based network functions
(NFs). However, from the scope of a service chain, a careless
selection of NFs to offload onto SmartNIC could severely degrade
the performance due to frequent communications between CPU
and SmartNIC. In this paper, we present SmartChain, a high
performance and efficient framework that achieves optimal parti-
tion of service chains between SmartNIC and CPU. SmartChain

consists of two logical steps. First, SmartChain analyzes the
suitability of elements in a chain to run on SmartNIC to exploit
its high performance. Besides, SmartChain also ensures the
dependencies between elements. Second, as our key novelty,
SmartChain models the service chain latency and resource
constraints, and solves the partition problem with 0-1 integer
linear programming. We implement a SmartChain prototype
based on Netronome SmartNIC. Evaluation results show that
when used in real world cases, SmartChain could reduce the
service chain latency by up to 87% with throughput maintained
compared with strawman solutions.

I. INTRODUCTION

Network Function Virtualization have replaced dedicated

hardware middleboxes with virtualized Network Functions

(vNFs), providing flexibility to the development and manage-

ment of network functions (NFs). In common NFV scenarios,

network operators usually require flows to be processed by

multiple NFs in a certain sequence, which is known as a

service chain [1]. Meanwhile, recent research proposed to

divide a NF into several functional elements [2] to further

achieve individual scalability and reusability of elements.

Sometimes the processing result of an element decides which

downstream element should process the packet next, turning

a sequential chain into an element graph with branches [2].

However, the major drawback of NFV is its low perfor-

mance. Especially, software-based NF implementations have

high processing latency (e.g., Ananta Software Muxes running

on commodity servers can add from 200 µs to 1 ms latency

at 100 Kpps [3]). Applications, such as real-time analytics

and Online Data-Intensive (OLDI) applications [4, 5], work

under tight latency constraints(a few µs) so the latency above

is hardly acceptable. To reduce the performance degradation,

there is a recent trend of using Smart Network Interface

Cards (SmartNICs) to apply in-network NF acceleration [5–

7]. These researches proposed to offload some specific kinds

of vNFs onto SmartNIC to make improvement.

(a) Conventional SmartNIC-accelerated system

(b) Redundant transmission avoidance with SmartChain

Figure 1. Conventional element graph datapath v.s. SmartChain datapath
with optimal partition and placement. Inter-device transmissions (red arrows)
between SmartNIC and CPU lead to additional element graph latency.

Unfortunately, existing works mainly focused on optimiz-

ing the performance of a single element of a service chain

rather than the entire element graph. When some elements

are offloaded to SmartNIC, the rest in the graph remain in

CPU. Without carefully placing the elements, packets could

be frequently transmitted between CPU and SmartNIC over

Peripheral Component Interconnect Express (PCIe), incurring

drastic performance degradation. For example, in Figure 1(a),

the conventional smartNIC-accelerated way incurs four times

of transmissions between CPU and SmartNIC (red arrows).

Our preliminary evaluation in §II demonstrates that the round-

trip transmission latency between SmartNIC and CPU could

add up to 26µs, the same order of magnitude with element pro-

cessing latency (tens or hundreds of µs in Table I). Therefore,

4 times of transmissions will quadruple the latency to more

than 50 µs, which is unacceptable for those latency-sensitive

applications under microsecond-level constraints.

To address this problem, we observe that redundant

SmartNIC-CPU communications inside the service chain can

be avoided by optimizing the placement of the elements.

For the same element graph in Figure 1(a), if we adjust

element placement into Figure 1(b), the total number of PCIe

transmissions of each forwarding path can be decreased from

4 to 2. Therefore, orthogonal to current solutions that focus

on accelerating a single element within SmartNIC devices,

we consider from the scope of an element graph and exploit

the opportunity to enhance the performance of element graphs



by carefully designing element placement mechanisms across

SmartNIC and CPU to reduce packet transmissions.

However, there exist other inherent factors that also affect

the performance, preventing us from achieving an optimal

placement solution. First, elements have inherent suitability on

SmartNIC. Naively placing adjacent elements onto SmartNIC

to avoid redundant packet transmission may place unsuitable

elements onto SmartNIC and drastically compromise perfor-

mance. For example, offloading I/O-intensive elements, such

as loggers, brings significant latency as PCIe will be frequently

occupied for memory I/O. To address such a challenge, our

intuition is to reconstruct the element graph to ensure that

suitable elements offloaded to SmartNIC are placed together.

However, this raises another challenge that reconstruction

needs to respect the inherent dependencies between graph

elements, i.e., processing packets in sequence.

To address the above challenges, we propose SmartChain

to optimize the element graph latency. SmartChain con-

sists of two logical steps. First, we analyze the suitability

of an element to be offloaded to SmartNIC, and identify

inter-element dependency to quickly extract two types of

dependency constraints between elements. Next, to minimize

communication between devices with respect to element place-

ment suitability, we carefully select the optimization objective

as minimizing the sum of the processing latency and the

transmission latency. We construct models to represent element

dependency constraints and device resource constraints, and

formulate the partition and placement problem using 0-1 linear

programming. The placement may reconstruct the original

element graph, but with the dependency constraints identified

before, we can ensure packet processing consistency of the

placement result. The overview and workflow of SmartChain

framework is shown in Figure 2.

SmartChain makes the following contributions:

• We identify the critical performance problem in SmartNIC-

based NFV systems: redundant packet transmissions at the

scope of element graph. We then propose SmartChain to

eliminate the redundancy with little overhead.

• We design a Suitability Analyzer as well as a Dependency

Analyzer to retrieve the suitability of elements on SmartNIC

and inter-element dependency, and an Optimized Placer to

generate an optimal partition plan with respect to suitability

and dependency.

• We implement the prototype of SmartChain framework

on SmartNICs and 6 categories of elements. Extensive

experimental results show that SmartChain can reduce the

overall latency up to 87 %.

II. MOTIVATION: INTER-DEVICE LATENCY BREAKDOWN

We understand the source of service chain latency by break-

ing down the packet transmission process between SmartNIC

and CPU with a preliminary experiment based on a Netronome

SmartNIC. We present the datapath of packets on SmartNIC

in Figure 3(a) [8]. Packets go into SmartNIC from outside

network via the Enhanced Network Interface (ENI). After

checking checksum and parsing packets, ENI sends packets
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Figure 2. SmartChain Framework Overview.

(a) Datapath.

FPC⇔EHI: 5µs

SRIOV: 15µs

PCIe: 2µs

CPUTime: 4µs

(b) Latency.

Figure 3. Round-trip inter-device latency breakdown.

to Flow Processing Core (FPC) clusters for packet processing.

If no vNF on the remaining service chain is placed onto CPU,

packets will remain on FPC clusters with run-to-completion.

Otherwise, packets will be transmitted to CPU. We implement

a bouncer with DPDK on CPU to bounce all packets back to

SmartNIC, and measure the latency of each stage through the

data path of packets that visit CPU. We send packets of 64B

and present the measurement results of per-packet latency in

Figure 3(b). The average round-trip latency is 26µs in total,

which comprises the following parts:

• FPC↔EHI. When packets need to be transmitted from

SmartNIC to CPU, they are sent from FPC clusters to the

Enhanced Host Interface (EHI) at first [8]. By timestamping

the two components, the forwarding latency in the round

trip between them on SmartNIC takes about 5µs.

• SRIOV. SmartNIC adopt Single Root I/O Virtualization

(SRIOV) [9] to improve cooperation between CPU and

NICs. The round-trip virtualization takes about 15µs.

• PCIe. Packets will then be transmitted over PCIe bus, which

takes about 2 2µs [10]. Moreover, when there are multiple

inter-device transmissions, the competition over PCIe bus

between different vNFs can add insult to injury.

• CPU Preprocessing. Finally, before packets are fetched

into user space, they still need to wait at the enqueue and

batching stage [11]. The processing time on CPU is 4µs,

which is the pre- and post-processing cost since we only

implement a bouncer at the CPU side.

As we discussed in §I, this latency is unacceptable for

latency-sensitive applications. This motivates us to reduce the

inter-device transmission.

Figure 4. An example of element graph with branches that identifies and
drops malicious packets.



(a) Sequential Algorithm (b) Suitability-greedy Algorithm (c) SmartChain Optimized Placer

Figure 5. Placement results of strawman solutions and SmartChain Optimized Placer.

III. DEPENDENCY AND SUITABILITY ANALYSIS

This section efficiently make a dependency (§III-A) and

suitability (§III-B) analysis to yield inputs for the placement

algorithm in Optimized Placer (§IV).

A. Dependency Analyzer

Elements in the same graph may have dependencies on

each other when processing packets [4]. Therefore, we need

to identify element dependencies before graph reconstruction.

We classify the dependencies into two categories:

Branch Dependency means that for an element with multiple

downstream elements, which downstream element will be

executed depends on the processing result of its upstream

element. As shown in Figure 4, the classification result of E1

determines whether E2 or E3 is going to be executed. Thus

E2 and E3 must be placed after E1. With E denoting the

dependency between elements, we have E1 E E2, E1 E E3.

Action Dependency depicts those elements that have read-

write dependencies on each others [4]. For example, NAT

and Load Balancer both modify the IP address on packets.

Switching the execution sequence of them will lead to the

wrong output packets. For each pair of elements, we first

identify the actions that elements exert on packets, including

read-only, write, and other actions (e.g. packet drop or

encapsulation). Then we find the packets fields the two actions

operate, and refer to [4] for further dependency identification.

B. Suitability Analyzer

To decide whether element Ee is suitable to place onto

SmartNIC, we select latency as our decision metric to satisfy

latency-sensitive situations introduced in §I. Nonetheless, the

following analysis can be easily extended to throughput-

sensitive cases by changing the decision metric if needed.

To quantify the suitability of element Ee, we first separately

measure the processing latency when placing it on CPU (tCe )

and on SmartNIC (tSe ). As the latency of the total element

graph is the sum of each element’s latency on the forwarding

path, we intuitively say an element is more suitable to place

on SmartNIC rather than CPU when less processing latency is

required on SmartNIC, and vice versa. Therefore, we define

the suitability of element Ee, denoted se, as the difference of

processing latency between SmartNIC and CPU:

se = tCe − tSe (1)

From the view of Equation (1), elements with a larger

portion of processing latency difference emphatically have

greater impacts on suitability.

max Benefittrans +Benefitproc

s.t.
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Figure 6. SmartChain 0-1 ILP placement algorithm.

IV. OPTIMIZED PLACER

The bump-in-the-wire SmartNICs [12] offer three natural

positions to place elements including the ingress part of

SmartNIC (Sig), CPU (C), and the egress part of SmartNIC

(Seg). Dumbly examining all n elements’ positions one by

one takes up O(3n) time, which becomes impractical as n
grows up to a huge number. We first introduce two strawman

solutions to the problem, and identify their limitations (§IV-A).

We then present our key design of modelling the problem with

0-1 integer programming (§IV-B).

A. Strawman Solutions for Placement

Sequential Placement. A strawman idea is to place elements

onto SmartNIC according to the processing sequence in the

element graph until SmartNIC resources are exhausted. Other

elements are then placed onto CPU. This avoids redundant

packet transmissions. However, it may place elements to un-

suitable places thus increase the processing latency. Figure 5(a)

shows the placement result by the sequential algorithm of an

example 5-element chain. It places the first three elements onto

SmartNIC. However, Logger is I/O-intensive and writes back

to memory frequently. Thus placing it onto SmartNIC leads

to drastic performance degradation.

Suitability-greedy Placement. Another strawman solution is to

place each element onto SmartNIC or CPU solely depending

on its suitability. Elements are greedily checked in sequence.

This can maximize the total suitability on SmartNIC. However,

when the positions of those high-suitability elements are

discontinuous in the element chain, this leads to redundant

packet transmissions over PCIe. As shown in Figure 5(b), for

example, packets have to be transmitted between CPU and

SmartNIC for 4 times, which also increases the total latency.

Combining their strong assets and circumventing their weak

points, we next explain our solution in detail.

B. Our solution: A 0-1 Programming Based Model

In contrast to the strawman solutions above, Optimized

Placer aims at: 1) placing the most suitable elements onto



SmartNIC; and 2) avoiding redundant inter-device packet

transmissions. To achieve both goals simultaneously, we model

the problem into a 0-1 Integer Linear Programming (0-1 ILP)

problem with dependency and suitability considered. We use

a set of variables xp
e ∈ {0, 1} to indicate whether element

e ∈ {1, · · · , Ne} is placed onto p ∈ P = {Sig, C,Seg} or not.

An overview of SmartChain placement algorithm is pre-

sented in Figure 6. There are three steps in optimizing the

placement of the element graph. First, we need to analyze

and model the optimization objective to achieve as much

element graph latency benefits as possible. Next, we need to

formulate the dependency and resource consumption depic-

tions into solvable constraints. Finally, we need to interpret

the placement results to a readily deployable element graph.

1) Optimization Objective: We set the objective of opti-

mization as maximizing the latency benefits after partition and

placement. The latency benefit contains two parts:

SmartNIC-CPU Transmission Benefit. To avoid redundant

inter-device transmissions, there are at most one round-trip

transmission between SmartNIC and CPU. But if all elements

are placed onto SmartNIC, packets won’t have to detour to

CPU. This latency can then be expressed as:

Benefittrans = ttrans ·
[

1− sgn
(
∑

e x
C
e

)]

(2)

sgn(·) denotes the sign of the value inside the parentheses.

We introduce an auxiliary variable for linearization:

y ∈ {0, 1}, s.t. ∀e, y > xC
e (3)

Benefittrans can then be linearized as:

Benefittrans = ttrans · (1− y) (4)

Proof. If ∃E0 s.t. xC
0 = 1, from Equation 3, y > xC

0 = 1. As

y is a 0-1 variable, we have y = 1. If ∀Ee s.t. xC
e = 0, y is

feasible for both 0 and 1. However, as the coefficient of y in

the objective is max (−ttransy), y will equal to 0 to maximize

the objective in the optimal solution.

SmartNIC Processing Benefit. As we have discussed in

§III-B, the processing ability of SmartNIC is different from

CPU and varies across elements. Since suitability is defined as

the difference of processing latency, the latency benefit gained

by processing with SmartNIC can be expressed as:

Benefitproc =
∑

e se ·
(

x
Sig

e + x
Seg

e

)

(5)

Combining two parts of latency benefit together, we present

the linearized optimization objective in Figure 6.

2) Constraints: We identify three types of constraints here:

Dependency Constraint (C1). We denote all dependency con-

straints extracted in §III-A as set D. For each pair (Ei E Ej) in

D, element Ei should be placed at the upstream of or together

with Ej . Thus Ej can be placed onto pj0 if and only if Ei

has already been placed onto pi0 and pi0 6 pj0, i.e.

pi0 6 pj0 where xp
i = δ (p− pi0) , x

p
j = δ (p− pj0) (6)

δ(p) is the impulse function. with the shifting property of δ(p),
we have:

pi0 =
∑

p (p · δ(p− pi0)) =
∑

p (p · x
p
i ) (7)

Figure 7. Topologies for the simulations of placement algorithms.

Resource Constraint (C2,C3). Inspired by discussions on the

appliance capacity [13] and the linearity between throughput

and CPU utilization [14], we use the ratio of throughput to

estimate the resource utilization of elements on SmartNIC and

CPU. For Ee, we measure its maximum throughput capacity

when it is exclusively placed onto CPU (θCe ) and SmartNIC

(θSe ). Thus for an estimated graph throughput θest (can be

estimated with historical traffic or service agreements), the

estimated ratios of resource consumed by Ee are:

rCe = θest

θC
e

(

xC
e

)

, rSe = θest

θS
e

(

x
Sig

e + x
Seg

e

)

(8)

Thus we can sum up all the resource utilization of ele-

ments and get constraints (C2) and (C3) in Figure 6. The

estimation here is the upper bound estimation of resource

utilization because when there are branches in the element

graph, throughput on each branch is less than the total esti-

mated graph throughput. Meanwhile, previous work shows the

bandwidth of PCIe won’t be a limitation [7].

Variable Constraint (C4,C5). All elements should be placed

only once. Moreover, for y, Equation (3) should be satisfied.

After formulating the model above, we can solve the 0-

1 ILP problem and get the optimal placement results quickly

with some state-of-the-art optimization toolboxes. If the solver

is unable to find out a feasible solution, the network operator

may relax the throughput estimation, or add additional devices

(e.g. more CPU cores or SmartNICs).
3) Multiple Servers and Multiple Graphs: For simplic-

ity, we have only discussed the single server scenario. For

multiple servers, SmartChain could integrate with current

inter-server service graph optimization solutions [15–17] to

further improve the performance. Network operators could

take state-of-the-art server placement solutions to decide the

location of NF instances at the server level, and employ

SmartChain to decide the target device inside each server.

For multiple graphs, since SmartChain models at the level of

elements rather than graphs, they could be optimized together

as one big graph with dependencies inside each service graph

constrained. We evaluate the scalability of SmartChain on

multiple servers and multiple graphs in §V-D.

V. IMPLEMENTATION AND EVALUATION

In this section, we first introduce our testbed and the

elements implemented and used for experiments [§V-A]. Then

we evaluate SmartChain with the following five goals:

• We present the measurement methods and statistics of suit-

ability and resource capacity of elements, and demonstrate

the validity of our assumptions [§V-B].

• We demonstrate that SmartChain placement algorithm is

effective with simulations under different topologies and

element dependencies [§V-C].



Table I
ELEMENTS IMPLEMENTED WITH SMARTCHAIN. θCe , θ

S
e , t

C
e AND tSe ARE THE CAPACITY ON SMARTNIC AND CPU, AND THE PROCESSING LATENCY ON

SMARTNIC AND CPU. se = tCe − tSe IS THE SUITABILITY.

Element Descriptions θCe θSe tCe tSe se
Header Classifier Classify the packets based on their 5-tuples. 4Gbps >10Gbps 14.8µs 0.8µs 14µs

Logger Log the current flow processing information periodically. 4Gbps 2Gbps 15µs 245µs -230µs
Monitor Measure the statistics of flows with a k-ary sketch [18]. 10Gbps 3.2Gbps 4µs 24µs -20µs

Payload Analyzer Match the payload in packets with a specific string. 200Mbps 5Gbps 800µs 65µs 735µs
Alert Alert NFV manager with information about packets. 4Gbps >10Gbps 15.1µs 2.1µs 13µs

Load Balancer Balance flows to different ports by hashing packet headers. 4Gbps >10Gbps 14.5µs 0.5µs 14µs
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(c) Topology 3.

Figure 8. Latency benefit of SmartChain and two strawman solutions.

• We demonstrate that SmartChain is efficient and scalable

in terms of computation overheads [§V-D].

• We demonstrate that the robustness of SmartChain place-

ment algorithm to achieve a near-optimal solution even with

inaccurate parameters [§V-E].

• We demonstrate that SmartChain could significantly im-

prove performance with the implementation of two real

world service chains based on our testbeds [§V-F].

A. SmartChain Infrastructure

We take the Netronome R NP-based SmartNIC as our

implementation platform. The testbed consists of two servers.

Each server is equipped with two Intel R Xeon R E5-2620

v2 CPUs (2.10 GHz, 6 physical cores) and 128G RAM.

One server is used as packet sender and receiver. The other

one is equipped with one Agilio CX 2×10 GbE NP-based

SmartNIC [6] and used for packet processing.

We implement six elements in Table I, both on SmartNIC

and CPU with DPDK [11], which cover most of element types

classified in [2]. The element codes are written in C and P4

on SmartNIC and in C with DPDK library in CPU.

B. Suitability and Resource Capacity of Elements

We measure the suitability and resource capacity of the

elements above with our testbed. For each element Ee, we

use timestamps on SmartNIC and profiling tools on CPU to

measure its latency and measure its maximum throughput as a

conservative estimation of its capacity. See Table I for results.

We also verify the assumption of linearity between through-

put and utilization on SmartNIC in Equation (8). Since Smart-

NIC does not provide tools to inspect its utilization, we cannot

verify the assumption directly. Instead, we verify a deduction

of the assumption: If we compose element E1 and E2 to

an element chain and place them onto SmartNIC together,

according to Equation (8) and the resource constraints (C2) in

Figure 6, the capacity θ′ of the chain E1 ⇒ E2 should satisfy:

θ′

θS

1

+ θ′

θS

2

= 1 ⇒ θ′ =
θS

1
θS

2

θS

1
+θS

2

(9)

Thus we measure the capacity of placing “Payload Analyzer ⇒
Monitor” onto SmartNIC together. Our evaluation shows that

the capacity of the element chain is 1.8Gbps, which is close

to the theoretical value of 1.9Gbps calculated from Table I

and Equation (9). This demonstrates the approximate linear

relationship between throughput and utilization in SmartNIC.

However, there is also a minor throughput degradation due to

the coupling of multiple elements since SmartNIC does not

provide mature isolation techniques.

Sometimes the processing latency and the resource capacity

of software-based elements may fluctuate and affect the accu-

racy of measurement. In this case, we can send more packets

and take the average values until the accuracy is acceptable.

C. Simulations of SmartChain Placement Algorithm

We measure the total latency benefits of element graphs.

Three typical graph topologies(Figure 7), including a linear

topology (Topo 1), a two-branch topology (Topo 2), and a

nested multi-branch topology (Topo 3), are used with different

numbers of elements and branches. We pick the elements from

Table I randomly with the probability of their ratios in real

world enterprise networks [4]. We compare the total latency

benefit of SmartChain with the two strawman solutions. The

0-1 ILP problem is solved with the intlinprog function in

MATLAB R2018a on our server. As the branch dependencies

for topologies in Figure 7 have already been decided by the

structure of graph, we vary the number of action dependencies

from 5 to 20. We randomly select element pairs to follow

action dependency. The experiment is repeated for 1000 times

to eliminate the randomness.
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Figure 9. The computation time of SmartChain placement algorithm. Error
bars represent the 10th and 90th percentiles.
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Figure 10. Sensitivity analysis of parameters.

As shown in Figure 8, SmartChain has earned at most

320 µs of the total latency benefit gain and up to 58%

compared to two strawman solutions. Especially, the benefit

in Topo 1 decreases as the number of action dependency

increases. This is due to the scale of the element graph.

Meanwhile, the improvement of SmartChain with Topo 3

is less than that with Topo 1. This is because the numerous

branch dependencies in topology restrict the reconstruction of

SmartChain, which is rare in real world service chains.

D. SmartChain Overhead and Scalability

We measure the computation time of the three placement

algorithms under the simulation environments in §V-C, as

shown in Figure 9(a). Even for the most complex topology,

SmartChain can optimize most of situations within 0.5s.

As the placement calculation is done offline before element

deployment, the time is negligible compared to the minute-

level time for program compilation and element deployment.

We then evaluate the scalability of SmartChain placement

algorithm on multiple-server, multiple-graph scenarios. We can

merely extend the placement destination set P and consider

multiple graphs as one big element graph. We vary the number

of graphs from 1 to 10 by duplicating Topo 2 and vary

the number of servers from 1 to 10. Results are shown in

Figure 9(b). Even with 10 graphs and 10 servers, SmartChain

can optimizes the placement at approximately 1s. Since the

algorithm is obliged to get executed only once before the

deployment, the time is acceptable for offline computation.

E. Sensitivity Analysis

To demonstrate the robustness of SmartChain placement

algorithm, we vary the inaccuracy of parameters. +5% inac-

curacy indicates that if the measured (inaccurate) value is a,

the accurate value is a/(1 + 5%). We define the optimality

ratio of different algorithms alg ∈ {seq, suit, opt} as:

OptRatio(alg) = Q(inaccurate,alg)
Q(accurate,opt) (10)

128 256 512 1024 1500
0

200

400

600

800

L
a
te
n
c
y
 
!
"
#
$

Element Graph #1

Seq Suit SmartChain

128 256 512 1024 1500
0

50

100

150

200

Packet Size (Bytes)
Element Graph #2

Figure 11. Average latency of element graphs.
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Figure 12. Average throughput of element graphs.

where Q(inaccurate/accurate, alg) is the placement results

of algorithm alg calculated with inaccurate / accurate param-

eters. {seq, suit, opt} stands for sequential, suitability-greedy,

and SmartChain placement algorithms respectively.

We measure the optimality ratio under inaccurate suitability

(se) and capacity (θCe and θSe ) of elements. The inaccuracy is

varied from -50% to 50%. We take Topo 1 and randomly select

one out of the 7 elements to change its parameter. Especially,

for capacity, we randomly choose one of θCe and θSe to change.

We adopt the push-aside migration [14] when the inaccuracy

leads to overload. For each element and inaccuracy, we repeat

the experiment for 1000 times. As shown in Figure 10, we

present the average, maximal and minimal results.

For suitability, the optimality ratio of SmartChain is greater

than 99% under different inaccuracy. The latency benefit of

SmartChain still outperforms the benefits of two strawman

solutions significantly. For element capacity, as the inaccurate

parameters may lead to overload and element migration, the

optimality ratio of SmartChain is about 90% on average un-

der different inaccuracy, which still achieve a higher optimality

ratio than other solutions (50%-65%). The parameter inaccu-

racy of an element in the graph has very limited influence on

the optimality of SmartChain placement algorithm.

F. Performance Improvement with Real World Service Chains

We pick two service chains in data centers and break

them into element graphs according to [2]. Element graph

#1 is from the west-east service chain in [4] for intrusion

detection with 6 elements and 2 branches. Element graph #2

is from [20] with three levels of monitors and firewalls for

different purposes and has 18 elements and 6 branches in

total. We compare the performance of placement results on

our testbed of SmartChain with two strawman solutions. We

vary the packet size and measure the latency and throughput

of the element graph. Results are shown in Figure 11 and 12.
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Figure 13. Performance with real-world traffic [19].

SmartChain decreases the element graph latency by at most

87% for the element graph #1 and by at most 38% for

the element graph #2 compared to the sequential algorithm.

Compared to the suitability-greedy algorithm, SmartChain

also decreases the element graph latency by up to 56% for

two element graphs. Meanwhile, SmartChain achieves the

throughput of suitability-greedy algorithm for both graphs at

different packet sizes.

We then measure the performance of two element graphs

with real-world CAIDA traffic [19], as shown in Figure 13.

SmartChain decreases the element graph latency by from

30% to 80% compared to strawman solutions, with line rate

maintained in throughput.

VI. RELATED WORK

NF hardware-acceleration. Many recent researches focused

on accelerating NFV with GPUs [21, 22], SmartNIC [5, 7, 23]

or even programmable switches [24, 25] to certain NFs for

higher performance. Meanwhile, there are also some acceler-

ation mechanisms with last-hop switches [26] or even con-

ventional NICs [27]. However, all works above were mainly

at the single NF level while SmartChain focuses on the

coordination and partition at the scope of service chains.

Service chain placement. There are many researches on

service chains or vNFs placement on different servers un-

der different scenarios in NFV [15–17], discussing trade-

off between link capacity, resource efficiency, and service

chain performance. However, they focused on the placement at

network-wide level across multiple servers instead of device-

level across CPU and SmartNIC in a single server. [12]

took a step on the placement between offloading devices and

CPUs. But it focused on optimizing the energy efficiency

without considering element dependencies in a service chain.

In contrast, SmartChain is designed to optimize the latency

benefit based on the dependency and suitability of elements.

VII. CONCLUSION

This paper presents SmartChain, a high performance el-

ement graph partition framework between SmartNIC and

CPU. We identify the problem of redundant packet trans-

missions when applying hardware acceleration techniques to

element graphs. SmartChain innovatively proposes a high-

performance element graph partition and placement algo-

rithm based on 0-1 programming. Evaluation shows that

SmartChain could reduce the total latency by up to 87%

with real world element graphs compared with strawman

solutions. In the future, we plan to enhance SmartChain with

more complicated scenarios such as vNF dynamic migration,

priorities on different branches inside element graphs, and

generality of SmartChain on other types of hardware devices.
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