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Abstract—BGP is the only inter-domain routing protocol that
plays an important role on the Internet. However, BGP suffers
from route leak, which can cause serious security threats. To
mitigate the effects of route leak, accurate and timely route
leak location is of great importance. Prior studies leverage AS
business relationships to locate route leak in real time. However,
they fail to achieve high location accuracy. Recent studies apply
machine learning to accurately detect route leak from statistical
features of massive BGP messages. Nevertheless, they have high
detection latency and cannot further locate route leak. In this
paper, we propose a real-time and accurate route leak location
system named RoLL. It leverages distinctive AS triplet features
to accurately locate AS triplets with route leak from each BGP
update message in real time. Our experimental results on real-
world BGP route leak data demonstrate that RoLL can achieve
91% location accuracy with less than 10 ms location latency.

Index Terms—Border Gateway Protocol (BGP), Route Leak,
Real-time and Accurate Location

I. INTRODUCTION

Border Gateway Protocol (BGP) plays an important role on
the Internet since it is the only inter-domain routing protocol
to connect heterogeneous networks, aka Autonomous Systems
(ASes), around the world. Unfortunately, BGP lacks security
guarantees for route exchange, resulting in many security
incidents [1–5]. One of the most BGP security threats is route
leak, i.e., routes of ASes propagate to unintended ASes. Route
leak can cause large-scale network performance degradation
and network unreachablity [6]. Besides, attackers can leverage
route leak to intercept or drop AS-level traffic [7]. According
to the report [8], there are more and more route leak events
in recent years, causing severe global impacts. For example,
Google goes down for about 2 hours due to route leak [4].
Another route leak incident [5] disrupts the connectivity for
thousands of networks globally.

To mitigate the effects of route leak, accurate and timely
route leak location is of great importance. AS operators can
clearly understand which ASes leak routes and take coun-
termeasures in time, such as filtering out leaked routes [9].
Moreover, the effects and economic loss due to route leak
can be effectively reduced as soon as possible. Researchers
have presented several methods on locating route leak in
real time according to AS business relationships [10–12].

Specifically, they check whether the AS relationships on a
BGP path violate the valley-free principle [13]. Although they
can accurately infer the AS relationship for one AS link, they
fail to achieve accurate route leak location. As it requires
knowing the business relationships of two AS links at the same
time [14], the final location accuracy will drop substantially
due to multiplication rule of probability. Besides, they cannot
locate route leak happening in AS links that are invisible
before [15].

Rather than locate route leak based on AS relationships,
some studies [16–18] apply machine learning to directly
identify route leak from statistical features of massive BGP
messages. Although they can achieve accurate route leak
detection, they cannot locate which ASes have route leak.
Consequently, it still takes many BGP security experts a long
time to locate route leak. Besides, these methods require
a long time interval to periodically calculate statistical fea-
tures, which results in a long detection delay. For example,
MSLSTM [17, 19] collects and extracts statistical features
from BGP messages every 8 minutes for high accuracy. There
remain great challenges for them to conduct real-time route
leak location while maintaining high accuracy.

In this paper, we propose a real-time and accurate route
leak location system named RoLL. It extracts AS triplets from
the AS PATH of each BGP update message, and identifies AS
triplets with route leak via AS triplet features. Unlike statistical
BGP features that must be collected in a long time interval,
our AS triplet features are relatively static and stable features
that can be collected in advance from multiple sources [20–
23]. Hence, it enables RoLL to locate route leak from each
BGP update message in real time. To find out AS triplet
features that can effectively distinguish AS triplets with route
leak from legitimate AS triplets, we conduct a comprehensive
measurement study on real route leak data. We identify five
distinctive triplet features, i.e., AS distance triplet, AS degree
triplet, AS address space triplet, AS geographic location triplet,
and AS type triplet. Combined with these triplet features,
RoLL applies a machine learning model to accurately locate
AS triplets with route leak from BGP messages in real time.

We collect 1130 real-world route leak events, extracting
578 route leak AS triplets and 2333 legitimate AS triplets.



We conduct extensive experiments to evaluate the route leak
location performance of RoLL. It achieves high route leak
location performance, e.g., 91% location accuracy and 92%
recall rate. Compared to the prior location methods based on
business relationships [14, 24, 25], RoLL has more than 11%
improvement both on accuracy and recall rate. Compared to
the prior methods based on machine learning that can only
detect route leak [16, 17, 19], RoLL also has more than 1%
accuracy improvement. Furthermore, RoLL can locate route
leak from a BGP message within 10 ms. In contrast, it takes
at least 1 min for the prior machine learning based methods
to detect route leak. Our experimental results demonstrate that
RoLL can accurately locate route leak in real time.

To summarize, our paper makes the following contributions:

• We design a system named RoLL that can accurately
locate route leak from BGP messages in real time.

• We conduct a comprehensive measurement study on real
route leak data to identify distinctive AS triplet features.

• We conduct extensive experiments to demonstrate the
location performance of RoLL.

We have released our source code of
RoLL and the evaluation dataset on Github:
https://github.com/yangtzeriverli/RoLL.git.

II. BACKGROUND

Border Gateway Protocol (BGP). BGP [26] is a policy-
based routing protocol to exchange routing and reachability
information among Autonomous Systems (ASes). As BGP
update messages contain the IP prefix that AS originates and
the AS path along which receiver ASes can reach the prefix,
ASes can choose their best routes mainly according to their
business relationships with neighbor ASes [27]. There are
mainly two kinds of business relationships between ASes,
i.e., provider-to-customer (or customer-to-provider) and peer-
to-peer. In the provider-to-customer relationship, a provider
AS provides transit service to a customer AS and the latter
pays the former for the transit service. In the peer-to-peer
relationship, the two ASes exchange their traffic and their
customers’ traffic without charge. Based on the AS business
relationship, Gao et al. [13] propose the Gao-Rexford routing
principle. It specifies that BGP update messages should always
propagate along a valley-free path. For an AS, routes from
its customer ASes can be advertised to its neighbor ASes.
However, routes from its peer ASes can only be advertised to
its customers, and routes from its provider ASes can only be
advertised to its customers.
Route Leak. Route leak occurs when BGP update messages
propagate to unintended ASes, i.e., violating the Gao-Rexford
model [13]. Fig. 1 shows nine scenarios on the propagation
of BGP update messages. Here, all the BGP update messages
in the figure propagate from left to right. The four AS triplets
marked red violate the Gao-Rexford principle, and thus result
in route leak. The others are legitimate AS triplets.
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Fig. 1. Scenarios on BGP update message propagation. Here, the red AS
triplets have route leak due to the violation of the valley-free principle.

III. AS TRIPLET FEATURES FOR ROUTE LEAK

In this section, we study the AS triplet features that can be
used to distinguish whether there are route leak incidents in
AS triplets. For simplicity, we use leak AS triplets to denote
AS triplets with route leak, and legitimate AS triplets to denote
AS triplets without route leak. Based on our analysis, we have
identified five discriminative AS triplet features between leak
and legitimate AS triplets, which are summarized in Table I.
These features can be divided into two categories, i.e., AS
topology features and AS node features. AS topology features
come from the AS topology, which describe the topological
attributes of ASes. AS node features come from the features of
ASes themselves. We detail them in the following subsections.
Dataset Collection. We build a dataset containing legitimate
AS triplets and AS triplets with route leak from BGPstream
[28]. We collect 1130 route leak events, extracting 578 leak
AS triplets and 2333 legitimate AS triplets from AS PATHes
that BGPstream [28] provides. For example, considering the
AS PATH of [205148, 9002, 3356, 3257, 3320, 8373], the
route is leaked by AS3257 to AS3356. We extract an AS triplet
with route leak, i.e., ⟨3356, 3257, 3320⟩. The remaining AS
triplets such as ⟨3257, 3320, 8373⟩ are legitimate AS triplets.

TABLE I
DISCRIMINATIVE AS TRIPLET FEATURES

Category Triplet Feature Description

AS Topology
Feature

AS Distance Triplet
⟨d1, d2, d3⟩

di denotes the average distance
from ASi to clique ASes

AS Degree Triplet
⟨η1, η2, η3⟩

ηi denotes the
degree of ASi

AS Node
Feature

AS Address Space Triplet
⟨a1, a2, a3⟩

ai denotes the IPv4 address
space of ASi

AS Geographic Location Triplet
⟨g1, g2, g3⟩

gi denotes RIR, country
or IXP in which ASi is located

AS Type Triplet
⟨t1, t2, t3⟩

ti denotes the type of ASi,
i.e., content, enterprise and transit/access

A. AS Distance Triplet

As the Internet is hierarchical, each AS has an implicit
position in the Internet hierarchy. Clique ASes or Tier-1 ASes
[29] are at the top of the hierarchy and connect with each
other to form a full-mesh structure for settlement-free peering.
Typically, high-layer ASes provide transit service to low-layer
ASes. However, if there are route leak incidents in AS triplets,
low-layer ASes may provide transit service to high-layer ASes.
Hence, the hierarchy relationship among the three ASes in
an AS triplet can reflect potential route leak. We can use the
distance from an AS to clique ASes to denote the hierarchy of
the AS. As there are multiple clique ASes, we use the average



−3 −2 −1 0 1 2 3
Value

0.0

0.2

0.4

0.6
Pr

ob
ab

ili
ty

 d
en

si
ty

Leak
Legitimate

(a) d1 − d2 + d3 − d2

1.0 1.5 2.0 2.5 3.0 3.5
Value

0.0

0.5

1.0

1.5

2.0

Pr
ob

ab
ili

ty
 d

en
si

ty

Leak
Legitimate

(b) (d1 + d3)/d2

Fig. 2. The differences of the distance to clique ASes between leak and
legitimate AS triplets.

hops from the AS to all the clique ASes as the distance. Here,
we do not use the minimum hops because most ASes have the
same minimum hops but different average hops to the clique
ASes. For an AS triplet ⟨AS1, AS2, AS3⟩, we can construct
an AS distance triplet ⟨d1, d2, d3⟩ from AS topology [30].

Fig. 2 shows the differences of the distance to clique
ASes between leak and legitimate AS triplets. As we cannot
draw figures to directly denote the differences among distance
triplets, we show the processed result after simple calculations.
Fig. 2(a) shows the probability density of d1 − d2 + d3 − d2,
which is the sum of distance difference in an AS triplet
⟨AS1, AS2, AS3⟩. Fig. 2(b) shows the probability density of
(d1 + d3)/d2, which means the relative distance difference
in an AS triplet. As we can see, there is a clear distinction
between leak and legitimate AS triplets. This is because for a
leak AS triplet ⟨AS1, AS2, AS3⟩, d1, d3 < d2 holds at most
cases. However, for a legitimate AS triplet ⟨AS′

1, AS
′
2, AS′

3⟩,
d′1, d

′
3 > d′2 holds at most cases.

B. AS Degree Triplet

AS degree is the number of neighbors that an AS directly
connects to. It reflects the connectivity of an AS on the
Internet. Provider ASes such as Tier-1 AS typically provide
transit service to a number of customer ASes, which results in
rich connectivity and high degree. On the contrary, customer
ASes like stub ASes, purchase transit service from a few
provider ASes, which results in low degree. Thus, high-degree
ASes probably provide transit service to low-degree ASes.
However, when route leak incidents occur, low-degree ASes
probably provide transit service to high-degree ASes. Hence,
the degrees of the three ASes in an AS triplet may reflect
potential route leak. For an AS triplet ⟨AS1, AS2, AS3⟩, we
construct an AS degree triplet ⟨η1, η2, η3⟩ from AS topology
[30].

Fig. 3 shows the proportion of different AS degree triplets
between leak and legitimate AS triplets. We sort the AS degree
of each AS triplet in descending order, resulting in 6 categories
of AS degree triplets. We can see that the proportion of
legitimate AS triplets is larger than that of leak AS triplets for
the first, third and fourth and sixth categories. This is because
high-degree ASes provide transit service to low-degree ASes
at most cases. However, the proportion of leak AS triplets is
larger than that of legitimate AS triplets for the second and
fifth categories. These two categories imply that low-degree
ASes provide transit service to high-degree ASes at most cases
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Fig. 3. The proportion of different AS degree triplets between leak and
legitimate AS triplets. We sort the AS degree in each AS triplet in descending
order, resulting in 6 categories of AS degree triplets.
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Fig. 4. The proportion of different AS address space triplets between leak and
legitimate AS triplets. We sort the number of AS addresses in each AS triplet
in descending order, resulting in 6 categories of AS address space triplets.

when route leak incidents occur. We also notice that there are
a few leak AS triplets in the first, third and fourth and sixth
categories, as well as a few legitimate AS triplets in the second
and fifth categories. It is because there exist some cases where
high-degree ASes do not provide transit service to low-degree
ASes.

C. AS Address Space Triplet

Each AS originates a number of IP addresses that constitute
the address space of the AS. ASes with big address space pro-
vide transit service to ASes with small address space at most
cases since the former have more powerful network capacity.
If ASes with small address space provide transit service to
ASes with big address space, there are likely to be route leak.
Hence, the address space relationship among the three ASes
in an AS triplet can reflect potential route leak. We can obtain
AS address space from CAIDA prefix2as dataset [31] and
construct an AS address space triplet ⟨a1, a2, a3⟩ for an AS
triplet ⟨AS1, AS2, AS3⟩.

Fig. 4 shows the proportion of different AS address space
triplets between leak and legitimate AS triplets. We sort the
number of AS addresses of each AS triplet in descending
order, resulting in 6 categories of AS address space triplets.
We find that the proportion of leak AS triplets is larger than
that of legitimate AS triplets in the second and fifth categories.
For a leak AS triplet ⟨AS1, AS2, AS3⟩, a2 < a1 and a2 < a3
typically holds. The proportion of legitimate AS triplets is
larger than that of leak AS triplets in the other four categories.
These four categories imply that ASes with big address space
usually provide transit service to ASes with small address
space. We also notice that the proportion of legitimate AS
triplets and leak AS triplets have little difference in the first
and sixth categories. There exist a few cases where ASes with
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Fig. 5. The proportion of different AS geographic location triplets between
leak and legitimate AS triplets. We classify AS geographic location triplets
based on if the ASes in an AS triplet are in the same geographic location.

big address space do not provide transit service to AS with
small address space.

D. AS Geographic Location Triplet

ASes have geographic locations in the real world. Here,
we consider AS geographic locations in two dimensions, i.e.,
country location and Internet Exchange Point (IXP) location.
Typically, two ASes in the same location will not use transit
service of ASes in another locations to reach each other. Thus,
for an AS triplet ⟨AS1, AS2, AS3⟩, if AS1 and AS3 are in the
same location while AS2 is in another location, it is likely that
route leak occurs. Besides, ASes in the same IXP typically
have peer-to-peer relationship with each other. Therefore, if
all three ASes of a triplet are in the same IXP, there is
probably route leak in the AS triplet. Hence, AS geographic
location relationship among the three ASes in an AS triplet
can reflect potential route leak. We can get AS geographic
location triplet ⟨g1, g2, g3⟩ for an AS triplet ⟨AS1, AS2, AS3⟩
from CAIDA AS organization, CAIDA IXP [32, 33]
and PeeringDB datasets [34].

Fig. 5 shows the proportion of different AS geographic
location triplets between leak and legitimate AS triplets. We
classify AS geographic location triplets based on if the ASes
in an AS triplet are in the same geographic location. We
find the proportion of leak AS triplets is larger than that
of legitimate AS triplets in the second category for both
location dimensions. For the third category, the proportion of
legitimate AS triplets is larger than that of leak AS triplets. It
is because ASes typically first purchase access service from
ASes in the same location for convenience. Then, the access
service ASes purchase transit service from ASes in another
locations for global Internet connectivity. We can see that the
first category presents similar results as the third category for
both location dimensions. In the fifth category, leak AS triplets
own larger proportion than legitimate AS triplets in the IXP
dimension. It is consistent with our insight, i.e., if all the
three ASes of a triplet are in the same IXP, there is likely
to be route leak. Here, we focus on the relationship among
geographical locations of ASes in triplets rather than the exact
AS geographical location.

E. AS Type Triplet

There are different types of ASes playing different roles
on the Internet, which can be typically divided into content
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Fig. 6. The proportion of different AS type triplets between leak and
legitimate AS triplets. We use 0, 1, and 2 to denote an AS belonging to
content, enterprise, and transit/access, respectively.

ASes, enterprise ASes, and transit/access ASes. Content ASes
provide content hosting and distribution. Enterprise ASes are
owned by various organizations, universities, and companies
at the network edge. Transit/access ASes are transit or access
providers. Typically, transit/access ASes provide transit/access
service to enterprise and content ASes. However, if enterprise
and content ASes provide transit service to transit/access ASes,
it may be due to route leak. Hence, AS types of the three ASes
in an AS triplet can reflect potential route leak. We can obtain
AS types from CAIDA AS classification dataset [35]
and construct an AS type triplet ⟨t1, t2, t3⟩ for an AS triplet
⟨AS1, AS2, AS3⟩.

Fig. 6 shows the proportion of different AS type triplets
between leak and legitimate AS triplets. Theoretically, there
should be 27 kinds of AS type triplets. However, our collected
data show that there are only 15 kinds of AS type triplets in
practice. In Fig. 6(a) and Fig. 6(b), we find that most AS type
triplets are ⟨2, 2, 2⟩ since about 65% ASes are transit/access
ASes [35]. ⟨2, 2, 1⟩, ⟨2, 2, 0⟩ and ⟨0, 2, 2⟩ are the common
legitimate AS type triplets. It means that access ASes provide
access service for content and enterprise ASes, and transit
ASes provide transit service for access ASes. For ⟨2, 0, 0⟩, the
proportion of legitimate AS triplets is larger than that of leak
AS triplets. This is possibly due to content redirection between
two content ASes [36]. However, we find that there are more
leak AS triplets than legitimate AS triplets for ⟨2, 0, 2⟩ and
⟨2, 1, 2⟩. It is likely to cause route leak when content and
enterprise ASes provide transit service to transit/access ASes.
In Fig. 6(c) and Fig. 6(d), there are almost no leak AS triplets.
⟨1, 2, 2⟩, ⟨0, 2, 1⟩, ⟨0, 2, 0⟩ and ⟨1, 2, 1⟩ indicate that transit
ASes provide transit service for content and enterprise ASes.
These are all legitimate AS type triplets. For ⟨0, 0, 2⟩, this is
like the case for ⟨2, 0, 0⟩ as before. There are more triplets in
⟨2, 0, 0⟩ than ⟨0, 0, 2⟩ in our dataset because route collectors



are often closer to transit/access AS than content AS. For
⟨2, 0, 1⟩, ⟨2, 1, 1⟩ and ⟨2, 1, 0⟩, these triplets are legitimate,
which may be due to dedicated connection between enterprise
and content ASes.

IV. ROLL ARCHITECTURE

The architecture of RoLL is shown in Fig. 7, which consists
of three modules, i.e., preprocessor, AS triplet feature extrac-
tor, and leak locator. The preprocessor module receives live
BGP update messages from route collectors, including RIS
Live [37] and Route Views Stream [22]. It extracts AS
triplets from AS PATH in update messages and delivers them
to AS triplet feature extractor. The AS triplet feature extractor
collects feature data from multiple sources periodically and
stores the data in the database. Then, it delivers AS triplets and
AS triplet features to the leak locator. The leak locator filters
out legitimate AS triplets and locates AS triplets with route
leak. For each leak AS triplet, it sends a real-time notification
to subscribers.
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Fig. 7. RoLL Architecture.

Preprocessor. The module extracts AS triplets from received
BGP update messages. It scans the AS PATH in update mes-
sages and extracts AS triplets one by one. For example, given
AS PATH [1,2,3,4,5], the module extracts ⟨1, 2, 3⟩, ⟨2, 3, 4⟩
and ⟨3, 4, 5⟩. As AS SET is used in the route aggregation [26],
the module also generates the corresponding triplets for each
AS in AS SET. For example, given AS PATH [1,2,{3, 4, 5}],
the module extracts ⟨1, 2, 3⟩, ⟨1, 2, 4⟩ and ⟨1, 2, 5⟩. Moreover,
the module filters out three kinds of anomaly BGP messages in
advance. First, it drops the update message whose AS PATH
contains a loop since BGP router always drops it for loop
prevention. Second, it removes the continuous repeated ASes.
It is typically a result of path padding for traffic engineering
[38]. For example, given AS PATH [1,3,3,3,5], it only extracts
⟨1, 3, 5⟩. Third, the module removes the reserved AS number
in the AS PATH introduced by configuration errors. These
AS numbers should not appear in inter-domain routing [39].
For example, given AS PATH [1,2,65000,3], the module only
extracts ⟨1, 2, 3⟩.
AS Triplet Feature Extractor. The module collects features
of ASes mentioned in Section III from multiple data sources.
The module stores each AS’s features in a database for
quick access. Since these AS features are relatively stable,
the module just needs to update the database periodically.
After receiving AS triplets from the preprocessor module, it
generates the corresponding AS triplet features and delivers
them to leak locator.

Route Leak Locator. The module takes AS triplets with cor-
responding triplet features as inputs and identifies AS triplets
with route leak. It leverages a machine learning model to
classify legitimate and leak AS triplets. In our implementation,
we apply Random Forests [40] as our classifier, since it is one
of the most effective machine learning models for classifica-
tion and performs well in our experiments. Once the module
finds an AS triplet with route leak, e.g., ⟨AS1, AS2, AS3⟩, the
module will send a real-time notification to RoLL subscribers.
Hence, subscribers can know that AS2 leaks the routes from
AS3 to AS1. Therefore, subscribers can take actions to handle
route leak events in time. For example, if subscribers are AS
operators, they can configure routers to drop the BGP update
messages containing the AS triplet with route leak. A real-
time and accurate route leak locator can speed up operator’s
response to route leak incidents and reduce the impact they
bring.

V. EVALUATION

In this section, we conduct experiments to evaluate the
performance of RoLL and compare it with prior methods.

A. Experiment setup
We implement RoLL with Python and scikit-learn.

We implement Random Forests as the route leak locator to
identify leak AS triplets. Note that other algorithms, such as
RNN and SVM, can achieve similar performance. Following
the source code of the prior work ISP-Self Operated [16, 41],
we use 80% data from our dataset mentioned in Section III to
train our model and 20% data to test our model. We balance
the training dataset via under-sampling since there are more
legitimate AS triplets than the leak ones. During the training
phase, we use a grid search to find the best hyperparameters of
the random forest model. For detailed hyperparameters, please
refer to our public source code [42]. We implement AS-Rank,
Problink, TopoScope, ISP Self-Operated and MSLSTM using
their source codes [41, 43–45]. We apply them to our collected
dataset for comparisons with RoLL. For CAIDA AS Relation-
ship, we use its public results [30]. All our experiments are
conducted on Dell PowerEdge R740 Rack Server with Intel(R)
Xeon(R) Gold 6230R CPU @ 2.10 GHz and 128 GB RAM.

B. Experimental Results
Location Performance. Table II shows the route leak location
performance of different methods. As the methods based on
business relationship are highly affected by AS link invisibil-
ity [25], they cannot always give the business relationships
of two ASes in AS triplets. Therefore, whether there are route
leak incidents for a proportion of AS triplets are unknown. Our
results show that at least 6% AS triplets cannot be judged
by them. Even though we show their location performance
without unknown business relationships in Table II, they only
achieve about 80% location accuracy, 65% recall rate, and less
than 75% F1-Score.

The two prior methods based on machine learning can
achieve acceptable route leak detection performance. In par-
ticular, ISP Self-Operated [16] can achieve 90% F1-Score and



TABLE II
ROUTE LEAK LOCATION PERFORMANCE OF DIFFERENT METHODS

Category Method FPR Recall Precision Accuracy F1-score Unknown

Based on Business Relationship

CAIDA AS Relationship [30] ¶ 0.09 0.65 0.87 0.78 0.75 6%
AS-Rank [24] ¶ 0.10 0.67 0.86 0.79 0.75 19%
Problink [14] ¶ 0.09 0.65 0.87 0.79 0.75 20%

TopoScope [25] ¶ 0.10 0.64 0.85 0.77 0.73 10%

Based on Machine Learning
ISP Self-Operated [16] † 0.04 0.90 0.89 0.90 0.90 0

MSLSTM [17, 19] † 0.34 0.94 0.73 0.80 0.82 0
RoLL (Ours) 0.11 0.92 0.90 0.91 0.91 0

¶ The methods based on business relationships cannot always give the business relationship of two ASes in an AS triplet. Hence, whether there
are route leak incidents for a proportion of AS triplets is unknown.

† For the two methods, the table shows their route leak detection performance since they cannot locate route leak.
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Fig. 8. Route Leak Location Latency of RoLL.

MSLSTM [17, 19] can achieve 94% recall rate. However,
they fail to locate route leak since they use coarse-grained
statistical features. They just detect whether there is route leak.
Compared to the prior methods, RoLL can enforce accurate
route leak location based on AS triplet features and machine
learning. It achieves 90% precision, 91% accuracy, and 91%
F1-score, which are all the best results.
Location Latency. As RoLL analyzes route leak directly from
AS triplets of BGP update messages, it thus can achieve real-
time route leak location. Specifically, we define the location
latency as the interval between the time when RoLL receives
a BGP update message and the time when it locates route leak
in AS triplets from the message. As Fig. 8 shows, more than
90% AS triplets with route leak can be located in less than 8
ms. Moreover, all the route leak events can be located within
10 ms.

TABLE III
LATENCY OF DIFFERENT METHODS

Category Method Average Latency

Based on Business
Relationship

Caida AS Relationship [30] 0.21 ms
AS-Rank [24] 0.18 ms
Problink [14] 0.19 ms

TopoScope [25] 0.24 ms

Based on Machine
Learning

ISP Self-Operated [16] 1 min
MSLSTM [17, 19] 8 min

RoLL (Ours) 7.86 ms

We also compare the latency of RoLL with prior methods,
which is shown in Table III. The methods based on business
relationship achieve the fastest route leak location due to
the pre-inferred business relationship. However, the two prior
methods based on machine learning require at least 1 min. It is

because they accurately detect route leak based on statistical
features extracted from massive BGP update messages in a
long time interval. The time interval of ISP Self-Operated
and MSLSTM is 1 min [16] and 8 min [17, 19], respectively.
However, RoLL only requires about 8 ms to locate route leak
while achieves high location accuracy.

VI. RELATED WORK

Route Leak Location Based on Business Relationship.
As the business relationship between ASes is confidential, a
number of studies [14, 24, 25] infer AS business relationship
according to heuristic rules on the Internet’s inter-domain
structure and probabilistic models. One of their important
applications is to locate route leak based on AS business
relationship in real time. Although the state-of-the-art inferring
algorithms can achieve approximately 90% accuracy for one
AS link, they fail to achieve accurate route leak location.
As it requires knowing the business relationships of two
AS links at the same time, the final location accuracy will
drop substantially due to multiplication rule of probability.
Furthermore, since inferring business relationships is highly
affected by AS link invisibility [25], it cannot always give the
business relationship of two ASes. Therefore, these methods
may fail to locate route leak in some cases.
Route Leak Detection Based on Machine Learning. Recent
studies [16–18] apply machine learning to detect route leak.
They extract numerous statistical features from massive BGP
update messages in a long time interval. These statistical
features include the number of update messages, the number
of new peers, the number of new prefixes announced by ASes
per unit time, etc. Although they can achieve high accuracy
of route leak detection, they fail to locate AS triplets with
route leak. Moreover, collecting and extracting features from
massive BGP messages in a long time interval causes high
detection latency. Different from them, RoLL leverages fine-
grained AS triplet features to accurately locate leak AS triplets
from a BGP update message in real time.
Route Leak Prevention. Researchers [46–48] have presented
several countermeasures to effectively prevent route leak in ad-
vance. However, compared to route leak detection or location
methods, they are much more difficult to implement in practice
due to the lack of incentive and cooperation of ASes [46].



Peerlock [46] requires neighboring ASes to cooperate with
each other, and may cause the disclosure of confidential busi-
ness relationships. ASPA [47] relies on RPKI that is not yet
widely deployed [49]. Besides, recent studies show RPKI faces
various security threats [50, 51]. Internet Routing Registries
[48] (IRRs) are databases where AS operators record their
routing policy information. Hence, AS operators can get the
information from IRRs to configure filters to prevent route
leak. However, data from IRRs are inaccurate and outdated
since AS operators have less incentive to timely update its
accurate policy information in IRRs.

VII. CONCLUSION

In this paper, we analyze and identify AS triplet features
that can effectively distinguish legitimate and leak AS triplets.
Based on the triplet features, we design a system named
RoLL that can accurately locate route leak from a BGP
update message in real time. We implement the prototype
of RoLL and evaluate it with real BGP data. Comprehensive
experiments demonstrate that it can achieve high route leak
location accuracy with low latency.
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