

PAM: When Overloaded, Push Your Neighbor Aside!

Jun Bi* Chen Sun* Shuhe Wang* Minhu Wang* Hongxin Hu[†] *Tsinghua University [†]Clemson University

Motivation: Alleviate single NF hotspot at service chain scope. Design: Migrate elements with minimum migration cost.

Offload NFs to SmartNIC: NPU-based (Netronome), FPGA-based (Azure)

NF migration between devices: UNO [SoCC'17]

Migrating overloaded NF may lead to performance degradation

Key Novelty: Push Aside Migration

When overloaded, push your neighbor aside and occupy its resources.

Redundant transmissions avoided & overload alleviated.

Discussions.

Other application scenarios:

Deploy service chains across multiple VMs.

Future Work.

Difference of NF processing on both devices:

• Is it suitable for a certain NF to be offloaded?

Precise analysis on PCIe:

• With PCIe model (pcie-bench [SIGCOMM'18])

More types of SmartNIC:

FPGA-based (ClickNP [SIGCOMM'16])

How to achieve minimum migration cost? – Minimum number of NF to migrate

II Resource Analysis

Resource Utilization

 $heta_i^{\mathcal{C}}$, $heta_i^{\mathcal{S}}$: throughput capacity of vNF i on CPU (\mathcal{C}) or SmartNIC (\mathcal{S}).

 θ_{cur} : current (or estimated) throughput.

vNF i	$m{ heta}_{m{i}}^{\mathcal{S}}$	$oldsymbol{ heta_i^{\mathcal{C}}}$
Firewall	10Gbps	4Gbps
Logger	2Gbps	4Gbps
Monitor	3.2Gbps	10Gbps
Load Balancer	>10Gbps	4Gbps
Payload Analyzer	5Gbps	200Mbps

Assumption

Resource utilization of a vNF increases linearly with its throughput.

$$r_i^{\mathcal{S}} = \frac{\theta_{cur}}{\theta_i^{\mathcal{S}}}, \ r_i^{\mathcal{C}} = \frac{\theta_{cur}}{\theta_i^{\mathcal{C}}}$$

Deduction

The capacity θ' of the chain $E_1 \to E_2$:

$$\frac{\theta'}{\theta_1^{\mathcal{S}}} + \frac{\theta'}{\theta_2^{\mathcal{S}}} = 1 \Rightarrow \theta' = \frac{\theta_1^{\mathcal{S}} \theta_2^{\mathcal{S}}}{\theta_1^{\mathcal{S}} + \theta_2^{\mathcal{S}}}$$

For "Payload Analyzer \rightarrow Monitor": $\theta'_{measure}$ =1.8Gbps $\approx \theta'_{theory}$ =1.9Gbps

Border NF Selection Algorithm

Step 1: Border NF Identification

 \mathcal{B} : border elements on SmartNIC in a service chain.

Step 2: Migration NF Selection

Select the vNF with minimum capacity to alleviate overload with minimum vNF migration:

$$b_0 = \operatorname*{argmin}_{b \in \mathcal{B}} \theta_b^{\mathcal{S}}$$

Step 3: Overload Alleviation Check

(\mathbb{C}_1): Migration will not cause new hot spots on CPU.

$$\sum_{i \in \{NFs \ on \ \mathcal{C}\}} \frac{\theta_{cur}}{\theta_i^{\mathcal{C}}} + \frac{\theta_{cur}}{\theta_{b_0}^{\mathcal{C}}} < 1$$

Remove b_0 from \mathcal{B} . Migrate b_0 if (\mathbb{C}_1) is satisfied. Otherwise go back to **Step 2**.

 (\mathbb{C}_2) : The overload on SmartNIC should be alleviated.

$$\sum_{i \in \{NFs \ on \ \mathcal{S}\}, i \neq b_0} \frac{\theta_{cur}}{\theta_i^{\mathcal{S}}} < 1$$

Algorithm terminates if (\mathbb{C}_2) is satisfied. Otherwise go back to **Step 2**.

Evaluation: PAM v.s. naive migration.

Naive migration: always pick the vNF with minimum capacity (overloaded vNF).

