
2288 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 36, NO. 10, OCTOBER 2018

Enabling NFV Elasticity Control With
Optimized Flow Migration

Chen Sun , Jun Bi, Senior Member, IEEE, Zili Meng, Tong Yang , Member, IEEE,
Xiao Zhang, and Hongxin Hu, Member, IEEE

Abstract— Network function virtualization (NFV) together
with software defined networking (SDN) offers the potential for
enhancing service delivery flexibility and reducing overall costs.
Based on the capability of dynamic creation and destruction of
network function (NF) instances, NFV provides great elasticity
in NF control, such as NF scaling out, scaling in, and load
balancing. To realize NFV elasticity control, network traffic
flows need to be redistributed across NF instances. However,
deciding which flows are suitable for migration is a critical
problem for efficient NFV elasticity control. In this paper,
we propose to build an innovative flow migration controller,
OFM controller, to achieve optimized flow migration for NFV
elasticity control. We identify the trigger conditions and control
goals for different situations, and carefully design models and
algorithms to address three major challenges including buffer
overflow avoidance, migration cost calculation, and effective flow
selection for migration. We implement the OFM controller on
top of NFV and SDN environments. Our evaluation results show
that OFM controller is efficient to support optimized flow
migration in NFV elasticity control.

Index Terms— Elasticity control, optimized flow migration,
service level agreement, SLA, NFV.

I. INTRODUCTION

NETWORK Function Virtualization (NFV) [2] was
recently introduced to replace traditional dedicated

hardware middleboxes with software based Network Func-
tions (NFs) to offer the potential for both enhancing service
delivery flexibility and reducing overall costs. Based on the
capability of dynamic NF creation and destruction, NFV could
support elastic control over NF instances to adapt to frequent
and substantial dynamics of network traffic volumes [3], [4].

Manuscript received May 5, 2018; revised August 18, 2018; accepted
August 28, 2018. Date of publication September 13, 2018; date of current
version November 28, 2018. This work was supported in part by the National
Key R&D Program of China under Grant 2017YFB0801701 and in part by
the National Science Foundation of China under Grant 61472213. This paper
was presented at the IEEE IWQoS 2018, Banff, AB, Canada, June 4, 2018 [1].
(Corresponding authors: Jun Bi; Tong Yang.)

C. Sun, J. Bi, Z. Meng, and X. Zhang are with the Institute for Network
Sciences and Cyberspace, Tsinghua University, Beijing 100084, China,
also with the Department of Computer Science and Technology, Tsinghua
University, Beijing 100084, China, and also with the Beijing National
Research Center for Information Science and Technology, Beijing 100084,
China (e-mail: c-sun14@mails.tsinghua.edu.cn; junbi@tsinghua.edu.cn;
mengzl15@mails.tsinghua.edu.cn; zhang-x16@mails.tsinghua.edu.cn).

T. Yang is with the Department of Computer and Science, Peking University,
Beijing 100871, China (e-mail: yangtongemail@gmail.com).

H. Hu is with the School of Computing, Clemson University, Clemson,
SC 29634 USA (e-mail: hongxih@clemson.edu).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/JSAC.2018.2869953

The elasticity of NFV has been widely exploited in
real world networks such as data centers [5] and 5G
networks [6], [7]. For example, 5G networks provide iso-
lated network slices featuring high throughput, ultra-low
latency, or massive connections. Each slice contains net-
work services (NSs) that are composed of virtual network
functions (VNFs) deployed in virtual machines. To adapt to
increasing traffic loads in a network slice, recent research
has proposed to scale out a single VNF [8] or an entire
NS [9] by dynamically deploying new virtual machines (VMs)
that carry VNF or NS instances. After scaling, flows are
distributed across a set of identical instances using a front-end
physical or virtual switch as a load balancer [5], [9].

Furthermore, NFs typically have to maintain state infor-
mation for processed flows [10], [11]. To ensure the cor-
rectness of packet processing after flow redistribution, some
research efforts [5], [12]–[16] have proposed to transfer flow
states alongside the flow migration. Split/Merge [14] and
OpenNF [5] rely on a centralized controller to transfer states
between NF instances and buffer incoming packets to realize
loss-free and order-preserving migration. On the other hand,
enhanced OpenNF [12] and other recent works [13], [15]
performed migration directly among NF instances to improve
the scalability and performance of flow migration in NFV
networks. Above research efforts mainly focus on designing
mechanisms for safe migration of flow states among NF
instances.

However, selecting suitable flows to migrate is also a signif-
icant problem in NFV elasticity control. A careless selection
of flows for migration would incur three major problems:
• Buffer overflow. From the system’s perspective, flow

migration requires a preallocated buffer in the destination
NF [12], [15] to store in-flight traffic. In-flight traffic refers
to the traffic that arrives at the source instance after the states
have been migrated, or the traffic that arrives at the destina-
tion instance before corresponding states become available.
A careless selection of flows could result in migrating
several elephant flows together, which might overflow the
buffer space and incur packet loss or service degradation.

• High migration cost. From the network tenant’s perspec-
tive, NFV networks should satisfy Service Level Agree-
ments (SLAs). A breach of certain SLAs would incur
penalties. However, flow migration might bring additional
processing latency (tens of milliseconds in [15]), which
may be unacceptable for flows that demand tight latency

0733-8716 © 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0003-2480-2350
https://orcid.org/0000-0003-2402-5854

SUN et al.: ENABLING NFV ELASTICITY CONTROL WITH OPTIMIZED FLOW MIGRATION 2289

TABLE I

NFV ELASTICITY CONTROL SITUATIONS

SLAs (such as flows of algorithmic stock trading or high
performance distributed memory caches [17]), while accept-
able for flows with looser latency constraints (such as
P2P transmission flows). Thus, randomly selecting flows to
migrate may result in serious SLA violation and increase
migration costs significantly.

• Ineffective migration. From the network operator’s per-
spective, realizing NFV elasticity control without a proper
flow selection mechanism may fail to achieve the con-
trol expectation. For instance, when an NF instance is
overloaded, selecting too few flows to migrate might not
effectively alleviate the hot spot, while migrating too many
flows might create new hot spots.
To address the above problems, in this paper, we propose

a novel flow migration controller, OFM Controller, for
optimized flow migration in NFV elasticity control. To the
best of our knowledge, we are the first to design such a
controller that performs optimized flow selection for NFV
elasticity control. We analyze NFV elasticity control situations
and carefully design the OFM Controller to fully achieve
control goals, minimize migration costs, and avoid buffer
overflow. We make the following contributions in this paper:
• We categorize typical NFV elasticity control situations

including NF scaling, NF load balancing, NF failure recov-
ery, and NF upgrading. We analyze in detail the trigger
conditions and flow selection goals of each situation, and
present the design challenges. (§ II)

• We propose the design of OFM Controller for opti-
mized flow migration in NFV elasticity control. The OFM
Controller collects flow statistics and NF loads during
runtime, and identifies situations where flow migration is
required. By effectively modeling the buffer requirements
and migration latency (§ III), OFM could select proper flows
to achieve control goals while minimizing the migration
costs and avoiding buffer overflow (§ IV).

• We implement the OFM Controller based on Floodlight
and perform extensive evaluations. Experimental results
show that OFM could achieve optimized flow migration in
NFV elasticity control, while ensuring full achievement of
control goals. (§ V)
The rest of this paper is organized as follows. Section II

analyzes situations for NFV elasticity control. Section III
elaborates the OFM design. Section IV presents optimized flow
migration calculation in OFM. We present the implementation
and evaluation results in Section V. We summarize the related
work in Section VI, and conclude this paper in Section VII.

II. ELASTICITY CONTROL SITUATIONS ANALYSIS

This section first summarizes the situations where flow
migration is required for NFV elasticity control. Then we
analyze the control goals and constraints of each situation as
well as the design challenges, which guide the design of OFM.

A. NFV Elasticity Control Situations

We list five typical situations of NFV elasticity control
in Table I, and analyze those situations in this section.

1) NF Scaling Out: This happens anytime when the load
of an NF instance exceeds the NF processing load thresh-
old [5], [14], [18], [19]. Network operators could perform
NF scaling out in the runtime to alleviate the hot spot and
avoid performance degrading by migrating some flows from
the overloaded instance to other instances or to the newly
created instance. However, flows on the overloaded instance
have various SLA constraints and sizes. Proper flows should
be selected to alleviate the hot spot and create no new hot
spots while incurring minimal SLA violations and avoiding
buffer overflow.

2) NF Scaling in: To save resources and achieve energy
efficiency, when one or multiple NF instances are under-
loaded, NF scaling in is performed by destroying some VMs
and migrating all flows on those instances to the remaining
ones [5], [14], [18], [19], which could reduce Operating
Expenditures (OPEX). In this article, we refer to the reduc-
tion of OPEX as gaining “revenue benefit” [20]. However,
flow migration incurs additional latency and could violate
SLA of some flows. Therefore, we should select proper
NF instances to destroy for maximum revenue benefit and
minimum migration costs.

3) NF Load Balancing: NF load balancing redistributes
flows across current NF instances to prevent potential NF
overload situations. NF load balancing brings no revenue
benefits since it does not shut down VMs. However, flow
migration might bring additional forwarding latency and incur
SLA violation penalties. Thus, we should select proper flows
for migration to both balance the load and minimize migration
costs.

4) NF Failure Recovery: When an instance fails, we need
to recover from the failure by rerouting all flows on the failed
instance to healthy instances or by creating new instances [5].

5) NF Upgrading: For maximum security, a network
provider may want traffic to always be processed by the latest
NF software [5]. NFV provides the capability to dynamically

2290 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 36, NO. 10, OCTOBER 2018

Fig. 1. Flow selection goals for different control situations.

launch updated NF instances. We need to migrate all flows
and states to the updated instances.

B. Flow Selection Goals for NFV Elasticity Control

From the above analysis, we observe that situations includ-
ing NF scaling out, scaling in, and load balancing require
a careful selection of flows to achieve control goals while
minimizing migration costs and avoiding buffer overflow.
Therefore, we next analyze the detailed flow selection goals
when coping with each situation, and show them in Fig. 1.

1) NF Scaling Out: When an NF is overloaded, NF scaling
out must be performed to avoid packet loss or performance
degradation. Operators expect a quick load alleviation without
creating new hot spots. Besides, minimal migration costs are
desired and buffer overflow should be avoided.

2) NF Scaling In: As merging multiple instances into fewer
ones and destroying free VMs could improve energy efficiency
and bring revenue benefits, we want to minimize the number
of remaining instances. However, flows on different instances
have different SLA constraints, and we want to minimize
the migration costs simultaneously. Therefore, we need to
compare SLA penalties for migrating flows on each instance
with the revenue benefit brought by destroying the VM, and
find the optimal migration plan. Besides, merging multiple
instances onto one requires a safe scaling in without creating
new hot spots. Finally, buffer overflow should be avoided
during migration.

3) NF Load Balancing: Load balancing could balance the
load among NF instances and prevent potential NF overload
situations. However, NF load balancing is neither compulsory
(like scaling out) nor directly rewarding (like scaling in).
Therefore, to minimize the flow migration costs, we should
only redistribute flows with loose SLAs that would not be
violated during migration. Thus, only a limited set of flows
could be reallocated, which might not result in a completely
balanced final load. However, we could ameliorate the load
imbalance situation to some extent with no costs.

A strawman solution for NFV elasticity control proposed
in E2 [18] adopts a strategy of migration avoidance. Exist-
ing flows are still processed by the previously assigned NF
instance, while only new flows are differentially handled.
In this way, no flow migration occurs for NFV elasticity
control. For example, for NF scaling out, we could simply
instantiate a new NF instance and redirect new flows to it.

While the migration avoidance strategy introduces no migra-
tion penalty, it may still result in penalty during runtime.
If an NF is overloaded, we should quickly migrate flows
away from the instance to avoid performance degradation and
SLA violation. We analyze the migration avoidance strategy
in detail in § VI.

C. Design Challenges

To achieve above flow selection goals, we design the OFM
Controller for NFV elasticity control. We encounter three
major challenges in the design of OFM.

1) Buffer Overflow Avoidance: A safe elasticity con-
trol requires buffering in-flight traffic in the destination
instance [12], [15] during migration. However, buffer space
is not unlimited. We observe that migration of different flows
incurs different amount of in-flight traffic. Therefore, care
must be taken while selecting flows to migrate to avoid buffer
overflow. To this end, OFM dynamically measures the size of
flows on NF instances without intrusion into NF logic, and
models the buffer space requirement for the migration of each
flow. (§ III.B).

2) Migration Cost Calculation: Flow migration could bring
additional forwarding latency, violate SLA constraints, and
incur a penalty. However, the penalty depends on the extent to
which the SLA is violated, i.e. the exceeding delay time over
the SLA constraints. Therefore, OFM is challenged to precisely
estimate the migration latency, which could vary significantly
with the number of flows to migrate [5], [15]. In response,
through experiments on real world NFs, OFM builds models
for flow migration latency based on the number of flows to
migrate and use it to calculate migration costs (§ III.C).

3) Effective Flow Selection for Migration: As analyzed
in § II.B, different control situations have unique control goals.
Therefore, we are challenged to design optimized flow selec-
tion mechanisms for the three situations. However, massive
parameters including NF load, flow size (elephant or mice
flows as defined in [21] and [22]), migration latency of
different sized flows, VM revenue benefit, and buffer cost
should be considered to find an optimized migration plan for
each situation, making it challenging to design algorithms for
optimized flow selection. Furthermore, the calculation could
consume significant time, which may be unacceptable for
situations like NF scaling out that requires a quick hot spot
alleviation. To address the above challenges, OFM carefully
designs a unified, optimal, but complex algorithm that could
handle the three situations simultaneously, and propose three
fast but sub-optimal algorithms for the three situations respec-
tively while taking into account all above parameters. (§ IV).

III. OFM DESIGN

To address the above challenges, we design the OFM
Controller to implement optimized flow migration in NFV
elasticity control situations. Components and workflow of the
OFM Controller are shown in Fig. 2. OFM Controller
monitors the status of every NF instance and detects traffic
overload, underload, and imbalance conditions. At the same
time, the OFM Controller collects the statistics of flows

SUN et al.: ENABLING NFV ELASTICITY CONTROL WITH OPTIMIZED FLOW MIGRATION 2291

Fig. 2. OFM Controller components and workflow.

on each NF for further selection (§ III.A). Once a condition
is detected, based on flow SLA constraints and dynamically
gathered flow statistics, OFM Controller first performs
Buffer Cost Analysis (§ III.B) and Migration Cost Analysis
(§ III.C). The analysis results are inputted into Optimal
Migration Calculation (§ IV) to create the optimized migration
plan. Finally, OFM Provisioning Control and Migration Control
modules would interact with underlying resources to perform
flow migration in the same way as introduced in [5], [12], [14],
and [15], etc.

However, a natural concern would be the practicality of
calculating an optimized plan for future migration based on
the current flow statistics. Actually, as mentioned in [23],
we should be able to use routes based on historical traffic
patterns for the last 1 second for effective flow scheduling.
Furthermore, as shown in § V-B, OFM can finish gathering
statistics and calculating within 1 second for all situations,
which demonstrates the timeliness of OFM. Next we introduce
each module of OFM in detail.

A. NF & Flow Status Collection and Condition Detection

The OFM Controller needs to collect NF processing
load, i.e., throughput, for elasticity control condition detec-
tion, as well as the flow sizes for flow selection. A naive
approach to obtaining these statistics is to modify NF logic
to maintain flow-level packet counters. However, doing so
would intrude NF logic and increase NF development burden
of statistics gathering and communication with the controller.
To precisely collect above statistics in a light-weight manner,
we exploit the flow table entry counters of OpenFlow [24].
Physical or virtual OpenFlow switches are widely used to
connect physical servers or VMs in the same server in NFV
networks [5], [25]–[27]. OpenFlow switches maintain a byte
counter for each flow table entry, while the controller queries
counters from switches during runtime. However, flow entries
in OpenFlow flow tables are usually aggregated [28]. Directly
querying counters cannot provide flow-level byte counters.
Therefore, we utilize OpenFlow’s multi-stage flow tables [24],
assign the first flow table of an edge switch connected with
NFs as the counter table, and issue fine-grained rules to it
to maintain flow-level counters. The action of each entry in
the counter table is to directly send packets to the next flow
table. As shown in Fig. 3, we periodically query flow counters
from the counter table, and calculate the flow size by dividing
the counter difference by the query interval. Since the OFM

Fig. 3. NF status collection in OFM.

Controller can acknowledge the target NF of each flow,
it groups the flows based on the target NF and adds up the
sizes of flows targeting at the same NF to get the real-time
throughput of the NF.

Suppose there are n NF instances of the same type,
such as firewalls, running in the NFV network. The OFM
Controller periodically queries flow statistics from the
data plane, and calculates the load lj of instance j ∈ [1, n].
For condition detection, we define thtop as the peak process-
ing load threshold of an NF instance, and thbottom as the
bottom load threshold. We use the variance of the NF
loads var(l1, ..., ln) to quantify the load imbalance grade.
We define the maximum allowed variance of NF loads
as thvar. We define conditions for NFV elasticity control as:

• Overload: lj � thtop,j for any j ∈ [1, n]
• Underload: lj � thbottom,j for any j ∈ [1, n]
• Imbalance: var(l1, ..., ln) � thvar

Based on above rules, NFV elasticity control conditions
can be detected, which would trigger optimal flow migration
calculation to handle the situation.

B. Buffer Cost Analysis

During the migration, in-flight traffic needs to be buffered
until the end of the state installation. Then, in-flight traffic will
be flushed to the destination NF instance for processing. The
OFM Controller adopts the distributed buffering mecha-
nism in [12] and buffers the in-flight traffic in the destination
instance. We target at avoiding buffer overflow by estimating
the in-flight traffic in the following way.

Suppose flow k of byte rate sizek needs to be migrated,
and the migration time of flow k is denoted as lamigration,k.
During flow migration, all in-flight packets of this flow
are buffered at the destination instance. Therefore, the total
buffered packet size required could be modeled as:

bufferk = sizek × lamigration,k (1)

In this way, we could calculate the buffer requirement for
migrating each flow, and select proper set of flows to avoid
buffer overflow in the destination instance. The estimation of
the flow migration time will be introduced later in this section.

C. Migration Cost Analysis

Due to the additional latency incurred by flow migration,
NFV elasticity control might break flow SLAs [20] and cause
penalty [29]. Furthermore, for NF scaling in, shutting down
underloaded VMs could bring revenue benefit and ameliorate
the migration cost. Next we introduce the SLA violation
penalties and revenue benefit estimation in detail.

1) Penalty for SLA Violations: Latency related SLAs in
cloud services regulate maximum processing latency for spe-
cific request types [29]. Similarly, we define latency related
SLAs in NFV: it regulates the maximum latency for each

2292 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 36, NO. 10, OCTOBER 2018

Fig. 4. Four-step flow migration workflow from [12]. The switch could be physical/virtual.

flow processed by NFV networks, where NFV provides packet
processing services by NFs including firewall, IDS, VPN, load
balancing, etc [18], [19].

Given an Instance j with m flows, given a flow k, let lak

be the latency of flow k, and let LAk be the SLA latency of
flow k. Obviously, lak should be no larger than LAk. During
runtime without flow migration, the total latency of flow k on
NF instance j is equal to the NF processing latency, i.e. lak =
laprocessing,j for k ∈ [1, m]. However, flow migration might
introduce additional latency overhead. Therefore, in order to
meet the latency related SLA during migration, the migration
latency should satisfy:

lamigration,k � LAk − laprocessing,j for k ∈ [1, m] (2)

During flow migration, the above inequality might be
breached and incur penalty. The untimely-processed traffic of
a flow k is exactly the buffered in-flight traffic, i.e. bufferk.
According to [29], we could model the SLA violation penalty
as a linear function. We denote the penalty rate as β, and the
delay time for migrating a flow as DT . We have:

Penalty = α + β × buffer × DT (3)

However, for a flow k, if its latency SLA is not violated,
the delay time is set to zero, and the penalty should be zero.
Otherwise, the delay time is the exceeded latency over the
SLA constraint. Therefore, we have:

DTk = max (0, lamigration,k + laprocessing,k − LAk) (4)

The migration penalty of flow k could be modeled as:

Penaltyk =
{

α + β × bufferk × DTk DTk > 0
0 DTk = 0 (5)

Next, we need to estimate the migration time of a flow to
calculate the SLA violation penalty. Fig. 4 shows the four-step
workflow of state migration in [12] with four major time
usages.

• t1: the time of the controller informing the destination
instance to accept state.

• t2: the time of the controller informing the source
instance to transfer state.

• tsk: the state transfer time for the flow k
• tu: the flow rule update time.

The total migration time for flow k could be represented as:

lamigration,k = t1 + t2 + tsk + tu (6)

Among them, t1, t2, and tu are not related to the specific
flow to migrate. We could easily measure them in NFV net-
works and consider them as constants. However, as illustrated
in [12], the state transfer time depends on the number of
flows to migrate, regardless of flow sizes. Our evaluation in
Section V demonstrates a linear relationship between state
transfer time of a flow (tsk) and the total number of flows
(fn) to migrate. We describe their relationship as:

tsk = γ + η × fn (7)

γ and η are two constants and could vary for different NF
types. In this way, we could estimate the migration time of
the selected flows and calculate the penalty. When migrating
fn flows, for an individual flow k, the delayed time, buffer
requirement, and migration cost are modeled as:

DTk = (t1 + t2 + tu + γ + η ∗ fn)
+ laprocessing,k − LAk (8)

bufferk = sizek × (t1 + t2 + tu + γ + η × fn) (9)

costk = Penaltyk

=
{

α + β × bufferk × DTk DTk > 0
0 DTk = 0 (10)

2) Revenue Benefit Estimation: For NF scaling in situations,
shutting down VMs could bring revenue benefit and neutralize
the migration cost. We denote the price (i.e. the cost of the
VM per time slot [29]) of the VM j as PriV Mj . Furthermore,
we need to estimate the VM runtime saved by VM scaling in.
Suppose we always destruct a VM when it is underloaded.
The running time saved in this approach is the time when
VM load is under thbottom. Therefore, we collect the historical
data and calculate the average time interval TINTavg when
an VM is underloaded, and take it as the estimated saved
time. Therefore, we model the revenue benefit and the total
migration cost of destructing VM j as:

benefitj = PriV Mj × TINTavg for j ∈ [1, m] (11)

costj =
n∑

k=1

Penaltyk − benefitj (12)

IV. OPTIMIZED FLOW MIGRATION CALCULATION

Based on above modeling and analysis, in this section,
we present algorithms used by the OFM Controller to
achieve optimized NFV elasticity control. As analyzed in § II,

SUN et al.: ENABLING NFV ELASTICITY CONTROL WITH OPTIMIZED FLOW MIGRATION 2293

the three NFV elasticity control situations have unique flow
selection goals. Before going to the algorithm design, we first
analyze the flow selection goals in detail.

First, when one or multiple NF instances are overloaded,
OFM Controller performs NF scaling out by migrat-
ing some flows from the overloaded instances to other
instances or to the newly created instances. A strawman
solution for NF scaling out is to migrate half of the traffic
load away to effectively alleviate the hot spot. However, flows
on the overloaded instance may have tight latency SLAs,
and migrating half of these flows could incur large penalties.
Actually, the basic control goal of NF scaling out is to migrate
some flows away to reduce the NF load below the peak
threshold. To achieve this control goal, we introduce the peak
safe threshold thsafe, which regulates the peak load of the
overloaded instance after scaling out. For example, suppose
the peak threshold thpeak = 80% of the total capacity while
thsafe = 60%. Suppose there is an overloaded (80%) instance.
Instead of migrating half (40%) load, we could simply ensure
that 20% is migrated away for effective overload mitigation.
Note that the actual threshold values could be dynamically
configured by network operators based on network traffic
statistics. The determination of the threshold values is out of
the scope of this paper.

Second, when there are Nus � 1 underloaded NF instances
of the same type, OFM Controller would perform NF
scaling in by merging some instances onto one and shutting
down the free VMs. During instance merging, we pursue the
maximum revenue benefit and avoid creating no new hot
spots by ensuring the load of the remaining instances are
below thsafe.

Finally, we periodically perform NF load balancing to
prevent potential NF overload situations. An optimal migration
plan should ensure that the variance of NF load is below
the peak variance threshold thvar while resulting in minimal
migration penalty.

Based on the above analysis, below we first propose the
unified optimal flow migration calculation algorithm based
on Integer Linear Programming (ILP) (§ IV-A). However,
we observe that the ILP formulation cannot be quickly solved
within a limited time. Therefore, we exploit the opportunity
of relaxing the constraints in the three situations respectively.
For each situation, we introduce an optimal formulation for
flow selection, as well as a heuristic algorithm to guarantee
the timeliness of OFM (§IV-B for NF scaling out, §IV-C for NF
scaling in, and §IV-D for NF load balancing). Finally, as we
use different algorithms for different situations, we propose a
coordination mechanism to handle different combinations of
the above situations (§IV-E).

A. Optimal Flow Migration Calculation

First, we propose an algorithm that could produce the
optimal flow migration plan for the NFV elasticity control
situations. Let Ns be the number of NF instances, and let Nd

be the number of instances after migration. During NF scaling
out, at most Ns new NF instances will be created in the worst
case when all Ns NF instances are overloaded at the same

time. During NF scaling in, at least 1 NF instance will remain.
Therefore, 1 � Nd � 2 × Ns. We use xfsd ∈ {0, 1} as an
indicator of whether flow f is migrated from source instance
s to destination instance d. if s = d, a flow is considered
to be not migrated and incurs zero penalty. For simplicity,
we assume that recycling a VM brings a constant revenue
benefit of benefit. Suppose there are ms flows on instance s.
The ILP formulation to solve x is:

min (Penalty − Benefit), (13)

where

Penalty =
Ns∑
s=1

Nd∑
d=1,d �=s

(
ms∑
f=1

xfsd × Penaltyfsd) (14)

Benefit = (Ns −
Nd∑
d=1

sgn(
∑
f,s

xfsd)) × benefit (15)

s.t.
(1) xfsd ∈ {0, 1} for s ∈ [1, Ns], d ∈ [1, Nd], f ∈

[1, ms]
(2)

∑Nd

d=1 xfsd = 1 for s ∈ [1, Ns], f ∈ [1, ms]
(3)

∑Ns

s=1

∑ms

f=1 xfsd × bufferf � Bufferd for all d ∈
[1, Nd]

(4) loads+
∑Ns

s=1

∑ms

f=1 xfid×sizef −
∑Nd

j=1

∑ms

f=1 xfsj ×
sizef � thsafe for s ∈ [1, Ns]

(5)* var(loads +
∑Ns

i=1

∑ms

f=1 xfid × sizef −∑Nd

j=1

∑ms

f=1 xfsj × sizef) � thvar

where sizef denotes the size of flow f , bufferf denotes
the buffer required for migrating flow f , Bufferd denotes
the buffer size in destination instance d, and loads denotes
the current load of instance d.

The objective function (Eq. 13) minimizes the total migra-
tion cost. The penalty (Eq. 14) comes from the SLA violation
penalty during migration, and the revenue benefit (Eq. 15)
comes from the destruction of VM instances. We consider a
VM is destructed if all flows on it are migrated away, while no
flows are migrated to it. Constraint (1) regulates that a flow f is
either migrated or not migrated, while Constraint (2) ensures
that a flow is migrated once and only once to any instance
including the instance it belongs to. Constraint (3) avoids
buffer overflow in the destination instances. Constraint (4)
ensures that no new hot spots are created. Constraint (5)*
balances NF loads by constraining the variance of NF loads
under threshold thvar.

However, with Constraint (1) to (4), the algorithm could
generate at least one feasible solution as we could dynamically
create or destruct NF instances to safely accommodate all
flows. Meanwhile, Constraint (5) tries to limit the variance
of NF instance load after migration. Under an extreme situ-
ation where there exist two NF instances, each carrying only
one flow, and the load of the two instances are 50% and
10% respectively. The loads of the two instances cannot be
balanced, leaving the ILP formulation unsolvable. Therefore,
we exploit the goal programming [30] technique by allocating
Constraint (1) to (4) high goal values and assigning a low
goal value to Constraint (5). This ensures that the feasible

2294 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 36, NO. 10, OCTOBER 2018

solutions that satisfy Constraint (1) to (4) can still be generated
if Constraint (5) makes the problem unsolvable.

The above ILP formulation could handle the three situa-
tions simultaneously and generate the optimal migration plan.
However, the ILP problem cannot be quickly solved due to two
major reasons. First, we observe from Eq. 5 that Penaltyfsd

is a piecewise function depending on DTfsd, making the
ILP formulation unsolvable in a short time (e.g., a few
milliseconds [31]). Second, we allocate a parameter xfsd for
every single flow to indicate whether flow f is migrated from
instance s to d or not. The number of parameters is linearly
proportional to the number of NF instances (100s [32]) and
flows on the instances (millions [33]). Massive number of
parameters make it difficult to quickly solve the ILP formu-
lation. However, according to the control goals of NF scaling
out and load balancing in Section II, efficient calculation is
required to quickly generate the migration plan. To address
this challenge, we exploit the opportunity of relaxing the
constraints in the three situations respectively and propose a
fast algorithm for each situation. We introduce the design of
the three fast algorithms in the rest of this section.

B. NF Scaling Out

1) Optimum Formulation for NF Scaling Out: When one
or multiple NF instances are overloaded, OFM Controller
scales out NF instances by migrating some flows from the
overloaded instances to other instances or to the newly created
instances. As analyzed in Section II, NF scaling out requires
a quick hot spot alleviation without creating a new hot
spot or leading to buffer overflow. We could identify over-
loaded instances and consider them as the source instances of
the flows to be migrated. Therefore, the source instance set
only includes the overloaded instances, which brings a sig-
nificant reduction of the number of parameters. Furthermore,
NF scaling out does not pursue balanced load after migration.
The relaxation of constraints could also help accelerate the
ILP solving. We use Nos to denote the number of overloaded
NF instances. We have Ns � Nd � Ns+Nos. Based on above
observations, we modify the objective function for NF scaling
out as follows.

min (Penalty − Benefit), (16)

where

Penalty =
Nos∑
s=1

Nd∑
d=1,d �=s

(
ms∑
f=1

xfsd × Penaltyfsd) (17)

Benefit = (Ns −
Nd∑
d=1

sgn(
∑
f,s

xfsd)) × benefit (18)

We adopt Constraint (1) to (4) in the previous ILP formu-
lation as the constraints here.

2) Fast Heuristic Algorithm for NF Scaling Out: However,
the objective function above is still piecewise, making the
ILP unsolvable in a limited time of a few milliseconds.
According to the control goals of NF scaling out in Section II,
efficient calculation is required to quickly alleviate the hot
spot. Therefore, we propose a three-step heuristic to accelerate

the calculation. We first select flows to be migrated away
from the overloaded instances to ensure effective alleviation
of the overload situation. Next, we calculate whether we can
place the selected flows to other currently deployed instances.
If current instances cannot hold all flows with respect to
the thsafe constraint, we place as many flows into current
instances as possible. Finally, we deploy new NF instances to
accommodate the remaining flows that cannot be placed on
current instances. The intuition is to avoid starting new NF
instances to reduce the migration penalty. Next we introduce
the three steps in detail.

Step 1 (Flow Selection): We start by picking the set of flows
on each overloaded instance to alleviate the hot spot with
minimum migration cost. Since we cannot pre-acknowledge
the total number of flows to migrate, we assume that each flow
is migrated individually and consumes a Single Flow Migrate
Time (SFMT). The SFMT can be measured and calculated for
different NF types, which will be introduced in Section V. For
each overloaded instance s, we perform the following simple
ILP algorithm.

min

ms∑
f=1

xfs × Penaltyf , (19)

where

Penaltyf = sizef × (laprocessing,f +SFMT−LAf) (20)

s.t.
(1) xfs ∈ {0, 1} for s ∈ [1, Nos], f ∈ [1, ms]
(2) loads − thsafe �

∑ms

f=1 xfs × sizef � loads/2
Constraint (1) regulates that a flow is either migrated or not

migrated. Constraint (2) ensures that enough flows are selected
for effective hot spot alleviation. According to our evaluation
in Section V, the above ILP could be quickly solved within a
few milliseconds.

Step 2 (Flow Placement Onto Current Instances): Next we
place previously selected flows to current instances that are
not overloaded. During placement, we try to place as many
flows on current instances as possible so as to minimize the
number of new instances to be deployed. In this process,
the constraints are avoiding new hot spot creation and buffer
overflow. Suppose there are mf flows to be redistributed onto
Nd current instances that are not overloaded. We present an
ILP formulation for this step as follows.

max

Nd∑
d=1

mf∑
f=1

xfd × sizef (21)

s.t.
(1) xfd ∈ {0, 1} for d ∈ [1, Nd], f ∈ [1, mf]
(2)

∑Nd

d=1 xfd � 1 for f ∈ [1, mf]
(3) loadd +

∑Nd

d=1

∑mf

f=1 xfd × sizef � thsafe for d ∈
[1, Nd]

(4)
∑mf

f=1 xfd × bufferf � Bufferdfor d ∈ [1, Nd]
We will demonstrate that the above formulation can also

be solved in a short time of a few milliseconds in Section V.
We examine the solution x to check if all flows are placed
onto current instances. If

∑Nd

d=1 xfd = 1 for f ∈ [1, mf],

SUN et al.: ENABLING NFV ELASTICITY CONTROL WITH OPTIMIZED FLOW MIGRATION 2295

current instances can accommodate all flows and the algorithm
finishes. Otherwise, we start new instances for the remaining
flows.

Step 3 (New Instance Deployment): Finally, we deploy new
instances to accommodate the remaining flows. We denote
the number of remaining flows as mrf . The objective of this
step is to minimize the number of new instances to hold all
remaining flows, so as to minimize the penalty. The load of
the new instances after migration should be below thsafe

and buffer overflow should be avoided. The solution is to
iteratively create new instances to carry the maximum possible
size of flows, until all flows are packed into NF instances. For
each iteration, we formulate the flow packing process into the
following ILP problem.

max

mrf∑
f=1

xf × sizef (22)

s.t.
(1) xf ∈ {0, 1} for f ∈ [1, mrf]
(2)

∑mrf

f=1 xf × sizef � thsafe

(3)
∑mrf

f=1 xf × bufferf � buffer
After each iteration, selected flows are removed from the

remaining flow set, until all flows are removed. We will
demonstrate that the above ILP problem can be quickly solved
in Section V.

C. NF Scaling in

1) Optimum Formulation for NF Scaling in: OFM
Controller would perform NF scaling in by migrating
flows on underloaded instances to the remaining instances
and shutting down the free VMs. OFM Controller applies
an ILP algorithm to minimize the migration cost. Suppose
there are Nus underloaded NF instances. Instance s carries
ms flows. xfsd is an indicator of whether flow f is migrated
from instance s to instance d. The ILP formulation to solve x
aims at maximizing the revenue benefit (Eq. 13. The number
of remaining instances Nd, satisfies 0 < Nd � Ns. We omit
the repeated ILP formulation here for brevity.

2) Fast Heuristic Algorithm for NF Scaling in: However,
the objective function of the above formulation is still piece-
wise since only when all flows on one instance are migrated
away can we destroy the instance and gain revenue benefit.
To accelerate the calculation, we no longer migrate each
flow individually to other instance. Instead, we merge current
instances by migrating all flows on one underloaded instance
to another instance and destroying the free instance. To achieve
this goal, we propose a two-step heuristic algorithm for NF
scaling in.

Step 1 (Beneficial Instance Identification): First we need to
identify the NF instances whose destruction brings a higher
revenue benefit than the migration cost of all flows on it.
We filter instances that satisfy benefit − penalty > 0 and
name them candidate instances. Suppose there are Ncs such
instances.

Step 2 (Optimal Instance Merging): Next we merge the
candidate instances to other instances with respect to the load
constraint thsafe and buffer size constraint buffer. We use

xsd ∈ 0, 1 to indicate whether instance s is merged onto
instance d. We model the problem as:

max

Ncs∑
s=1

Nd∑
d=1

xsd × (benefits − Penaltys) (23)

s.t.
(1) xsd ∈ {0, 1} for s ∈ [1, Ncs], d ∈ [1, Nd]
(2)

∑Nd

d=1 xsd = 1 for s ∈ [1, Ncs]
(2) loadd +

∑Ncs

s=1 xsd × sizes � thsafe

(3)
∑Ncs

s=1 xsd × buffers < buffer for d ∈ [1, Nd]
By solving the above ILP formulation, we could calculate

the optimized flow selection for NF scaling in within accept-
able time. We evaluate the algorithm in Section V.

D. NF Load Balancing

1) Optimum Formulation for NF Load Balancing: Despite
that NF load balancing could prevent potential NF overload
situations, it is neither compulsive (like NF scaling out to alle-
viate the hot spot) nor immediately rewarding (like NF scaling
in which brings revenue benefit). Therefore, we migrate flows
on NF instances with heavier load, i.e. greater than the average
load, to NF instances with lighter load under the condition that
no SLA violations occur, incurring zero migration costs. Note
that flows that are migrated away from one instance might be
placed onto different NFs. OFM Controller is challenged
to avoid generating hot spots and achieve a relatively balanced
load. A straightforward solution is to divide flows into several
groups of equal size, and redistribute all flows to all instances
according to the division, in order to minimize the load
variance of NF instances. We use xfsd as a indicator of
whether flow f is migrated from instance s to instance d.
Here we only migrate flows f whose migration penalty is zero.
We present the ILP formulation for this solution as follows.

min var(loadd +
Ns∑
s=1

mfs∑
f=1

xfsd × sizef −
mfd∑
f=1

xfsd × sizef)

(24)

s.t.
(1) xfsd ∈ {0, 1} for s ∈ [1, Ns], d ∈ [1, Nd], f ∈

[1, ms]
(2)

∑Nd

d=1 xfsd = 1 for s ∈ [1, Ns], f ∈ [1, ms]
(3)

∑Ns

s=1

∑ms

f=1 xfsd × bufferf � Bufferd for d ∈
[1, Nd]

2) Fast Heuristic Algorithm for NF Load Balancing:
Above global flow redistribution may lead to the migration of
massive flows, which may bring negative impact on normal
packet processing. Furthermore, the piecewise object function
prevents the problem from being solved within a limited time.
In response, our key idea is to fetch flows from instances
whose loads are above the sum of the average load lavg plus
the standard deviation lstdev and relocate the selected flows
to instances with loads lower than lavg − lstdev. We design
a three-step heuristic, and the pseudo code is presented
in Algorithm 1.

Step 1 (Instance Classification): We calculate the average
load lavg of NF instances and put the NF instances whose

2296 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 36, NO. 10, OCTOBER 2018

Algorithm 1: Heuristic Algorithm for NF Load Balancing
Input: Flow Parameters: size, SFMT , LA, laprocessing

Input: NF Parameters: load, lavg , lstdev , Buffer.
Output: Flows to Migrate, their sources, and Their

Targets: migrationplan[f, s, d].
NFListheavy = [], NFListlight = [], F lowList =1

[], migrationplan = [];
// Step 1: Instance Classification2

foreach s ∈ [0, Ns] do3

if loads > lavg + lstdev then4

NFListheavy.append(s);5

if loads < lavg − lstdev then6

NFListlight.append(s);7

// Step 2: Flow selection8

foreach s ∈ NFListheavy do9

lextra,s = loads − (lavg + lstdev);10

totalSize = 0;11

// Sort flows in according to flow sizes in12

decending order;
foreach f ∈ [1, mfs] do13

Penaltyf =14

sizef × (laprocessing,f + SFMT − LAf);
if Penaltyf == 0 then15

if totalSize + sizef > lextra,s then16

break;17

FlowList.append(f, s);18

totalSize = totalSize + sizef ;19

// Step 3: Destination NF selection20

foreach d ∈ NFListlight do21

// P lace flows to instance d using Eq. (22),22

// while ensuring loadd does not exceed lavg;23

foreach f ∈ FlowList do24

if flow f should be placed on instance d then25

migrationplan.append(f, s, d);26

load is greater than lavg+lstdev (heavily loaded instances) into
NFListheavy and the others with loads lowever than lavg −
lstdev (lightly loaded instances) into NFListlight.

Step 2 (Flow Selection): For each heavily loaded instance s,
we calculate the extra NF load above lavg + lstdev as lextra,s.
We select flows on instance s whose SLA would not be
violated during migration. Considering the fact that flows
migrated away from one instance might be placed on multiple
other instances, we assume that each flow is migrated indi-
vidually and consumes a SFMT. We store the qualified flows
into the FlowList, and sort the flows with a descending order
of flow sizes. Then we select flows one by one for migration,
and stop when adding one more flow would overflow the extra
load lextra,s. The intuition here is to quickly reduce the load
of the overloaded instance, since network traffic could vary
significantly, and a fast load balancing is desired to avoid
potential hot spots. Migrating large flows would reduce the
total number of flows to migrate and accelerate the balancing.

Step 3 (Destination NF Selection): In this step, we mix up
selected flows of all heavily loaded instances from Step 2 into
the final FlowList and split them onto light-loaded instances
to achieve a balanced load. We fill up the processing load
below lavg of each lightly loaded instance with selected flows
in FlowList using the bin-packing algorithm. The reason why
we use lavg instead of lavg−lstdev as the peak threshold is that
we want to accommodate the maximum number of flows on
lightly loaded instances. However, some flows in FlowList
might still not be assigned to any destination instance. These
flows are placed back to the original NF instances.

Based on our evaluation in Section V, the above three-step
algorithm could quickly generate a migration plan to achieve
relatively balanced load among NF instances with no penalty.

E. Coexistence of Multiple Situations

Finally, we discuss how OFM Controller reacts when
two or three NFV elasticity control situations appear simul-
taneously. Our strategy is simple: when there is coexistence
of multiple situations, we first strive to make network work
well and then consider the benefit of shutting down VMs.
First, if there are NFs overloaded. We choose to first handle
NF overload since NF overload probably results in high
SLA violation penalty. Specifically, we move flows from
heavily loaded instances to lightly loaded instances, which
could mitigate the underload and load imbalance situations to
some extent. If there is no lightly loaded instance, we create
new NFs. After NF overload is well handled, we need to
decide which situation to handle first if underload and load
imbalance situations coexist in the NFV network. NF load
balancing prevents potential NF overload situations. However,
NF scaling in merges instances for revenue benefit and may
augment the load of heavily loaded instances, leading to a
higher possibility of NF overload. Therefore, we choose to
balance NF load first. Note that the process of balancing
NF load will not incur NF overload. After load balancing,
if any instance carries a processing load lower than thlow,
OFM performs NF scaling in and recycles free VMs. To con-
clude, the reaction order to the three NFV elasticity control
situations is: overload → load imbalance → underload.

V. IMPLEMENTATION AND EVALUATION

A. Implementation

We implemented the OFM Controller on top of the
Floodlight [34] controller. Specifically, we maintain flow SLAs
in a simple key-value storage data structure, and expose
REST interfaces which can be used to dynamically append,
modify, and delete SLAs. The NF Status Collection and Flow
Statistics Collection modules collect NF loads and flow sta-
tistics through OpenFlow interfaces during runtime, which are
utilized by the Condition Detection module to detect situations
for NFV elasticity control. Note that for the deployment of
OFM, no modification to OpenFlow is required. OFM simply
requires the switches to be able to report flow statistics and
forward flows according to flow table rules. However, NFs
should expose state management interfaces to the controller
for safe and efficient state migration, as required by [5], etc.

SUN et al.: ENABLING NFV ELASTICITY CONTROL WITH OPTIMIZED FLOW MIGRATION 2297

Fig. 5. LBNL/ICSI trace statistics (broken down by srcIP-dstIP pairs).

The Buffer Cost Analysis module calculates required buffer
costs, and the Migration Cost Analysis module calculates
migration costs for different situations. Then, the Optimal
Migration Calculation module would calculate the optimized
set of flows using algorithms presented in Section III.
To solve the ILP formulation for NF scaling in situations,
we use lpsolve, a Java based mixed integer linear program-
ming (MILP) solver [35].

B. Evaluation

We evaluate OFM based on a testbed with ten servers, each
of which is equipped with two Intel(R) Xeon(R) E5-2690
v2 CPUs (3.00GHz, 10 physical cores), 256G RAM and two
10G NICs. The servers run Linux kernel 4.4.0-31. We use
a server to run the OFM Controller, a server for Open
vSwitch (OVS) [36], and eight servers for eight NF instances
of the same type. To avoid affecting performance due to
virtualization and demonstrate OFM’s feasibility on real world
physical devices, each software NF runs on bare metal servers
without VM or Docker encapsulation, and all servers are
connected to a Pica8 P-3922 physical switch. However, in a
real world virtualization environment, operators often use VMs
to carry software NFs, and multiple VMs may co-locate
in the same physical server. In this case, virtual switches
such as Open vSwitch are used for packet delivery within
the server [26], [27]. We could use the virtual switch to
collect flow statics and handle flow distribution across multiple
identical instances.

For test traffic, we use a DPDK based packet generator
that runs on the fifth server and is directly connected to
the server carrying OVS. The generator sends and receives
traffic to measure the forwarding latency. We use two types of
traffic patterns including (1) Real-world traffic trace: we use
the LBNL/ICSI enterprise trace [37], a typical traffic trace
collected from real-world enterprise networks, whose flow
size distribution and flow duration distribution are shown as
Fig. 5, and (2) Randomly generated traffic trace, in which we
create flows with random source and destination addresses.
We configure the generator to create traffic according to the
pattern type, flow number, and flow size.

We evaluate OFM with the following goals.
• Demonstrate the relationship between flow migration time

and the number of flows to migrate. This justifies OFM’s
estimation of flow migration latency (Section V-B1).

Fig. 6. Relationship between migration time and flow number.

• Demonstrate the timeliness and practicability of
OFM status collection during runtime measurement
(Section V-B2).

• Demonstrate that the OFM scaling out algorithm can find
an optimized migration plan that effectively alleviates the
hot spot (Section V-B3).

• Demonstrate that the OFM scaling in algorithm can find
an optimal migration plan that brings the maximum
migration benefit (Section V-B4).

• Demonstrate OFM load balancing algorithm’s capabil-
ity to effectively mitigate the load imbalance situation
(Section V-B5).

• Demonstrate that OFM algorithms can efficiently solve the
problem within limited calculation time and are scalable
in real world network scales (Section V-B6).

1) Flow Migration Time: In this experiment, we examine
the relationship between the flow migration time, lamigration

and the number of flows to migrate, n. We start two NFs
instances of the same type on two servers. We randomly
generate and send a different number of flows into one of
the NF instances to create initial flow states in it. Then
we configure the OFM Controller to perform flow and
state migration of all flows on this instance to the other free
instance, and measure the migration time. We have tested three
types of NFs including Prads [38], Bro [39], and IPtables [40].
Prads maintains the state of flow meta data, end-host operating
system and service details. Bro maintains the connection
information of TCP, UDP, and ICMP. IPtables tracks the
5-tuple, TCP state, security marks, etc. for all active flows.
For each NF type, we vary the number of flows to migrate
from 10 to 100, and randomly vary the flow rate. Evaluation
results are presented in Fig. 6 reals a linear positive correlation
between the migration time and the number of flows for
migration, regardless of the flow rate. Furthermore, we present
the result of linear regression for each NF type.
• Prads: lamigration = 86.982 + 5.7892× n, R2 = 0.998
• Bro: lamigration = 39.205 + 2.9545× n, R2 = 0.997
• IPtables: lamigration = 32.595+4.5222×n, R2 = 0.998

R2 is a measure of accuracy of fit with a value of 1 denoting
a perfect fit. Above regression expressions demonstrate a
strong linear correlation between the migration time and the
number of flows to migrate and can be utilized to estimate
the migration latency. Especially, we could use the regression
expression to estimate the SFMT (by assigning n = 1), which
can be used for the scaling in and load balancing algorithms.

2298 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 36, NO. 10, OCTOBER 2018

Fig. 7. Latency of the OFM Controller querying counters.

2) Timeliness of OFM: OFM collects flow statistics and cal-
culates a migration plan during runtime. To ensure timeliness,
statistics have to be gathered quickly and the algorithms
should run efficiently. We enable the OFM Controller to
query different numbers of flow counters from one underlying
switch. As shown in Fig. 7, the OFM Controller could
fetch 100 counters within 1.5 ms. Furthermore, as shown
in the rest of this section, the entire control loop of sta-
tistics gathering and calculation could finish within 1 sec-
ond, which demonstrates the timeliness and practicality
of OFM.

3) NF Scaling out Algorithm: We evaluate the optimization
effect and computation time of the NF scaling out algorithm
using the Prads NF. In order to simulate NF overload situa-
tions, we assume that there are 10 NF instances, and set the
number of overloaded instance as 2, 4, 6, 8. As the number of
overloaded instances increases, the new instance deployment
phase of the OFM scaling out algorithm is more likely to
be triggered, which introduces a higher penalty. We set the
thsafe as 60%, 55%, and 50%, respectively, and assume that
in each situation, 5%, 10%, 15%, and 20% of flows (size-
wise) need to be migrated for each overloaded instance. The
decrease of thsafe indicates that current instances can hold
fewer flows and new instances are more likely to be deployed.
In order to quantify the migration cost, due to the lack of
real world SLA settings for NFV networks, we set the SLAs
of the flows by following the uniform random distribution in
[0.5×(SFMT +laprocessing), 1.5×(SFMT +laprocessing)].
This could ensure that some flow SLAs are violated during
migration, and some are not.

We compare the OFM scaling out algorithm with an optimal
algorithm and a size-greedy algorithm. The optimal solution
produces the flow set that covers enough flows for migration
with minimal cost. For the size-greedy solution, it picks the
flow with the largest size until enough flows are selected
to alleviate the hot spot, so that the flow selection process
can finish as quickly as possible. For the flow placement
onto current instance step, it chooses large flows to place on
current instances over small flows. The intuition here is to
maximize the size of flows placed on current instances. Finally,
for the new instance deployment process, the size-greedy
strategy always packs large sized flows into new instances
so as to minimize the number of new instances. As shown
in Fig. 8, OFM scaling out algorithm could reduce the

migration cost to a large extent compared with the size-greedy
algorithm, while suffering slightly higher cost compared with
the optimal solution. This proves the effectiveness of the OFM
algorithm.

4) NF Scaling in Algorithm: OFM exploits ILP to calculate
an optimal solution that could minimize the migration cost
for NF scaling in situations. In order to evaluate the opti-
mization effect, we set thbottom as 10%, 15%, 20%, 25%
and thsafe as 40%, 50%, 60%. Above thresholds could be
dynamically configured by the operator during the runtime.
We scatter flows from the LBNL/ICSI enterprise trace to NF
instances to ensure that a certain number of NF instances are
underloaded. We configure the SLA of the flows following the
same uniform random distribution as in the NF scaling out
experiment.

The performance of this approach depends almost fully on
the ILP formulation and solving. The ILP performance is
mainly influenced by the number of underloaded NF instances
of the same type. We set the number of underloaded instances
as 10, 20, 30, 40, and 50 out of a total number of 100 instances.
We use the Prads NF to perform the evaluation. We compare
NF scaling in algorithm in OFM with a random solution that
randomly picks NF pairs to merge while assuring that the total
NF load after merging does not exceed the thsafe. As shown
in Fig. 9, the OFM solution could achieve a linear increase
in the migration benefit with the increase of the underloaded
instance number and always outperforms the random solution
significantly.

5) NF Load Balancing Algorithm: NF load balancing in
OFM targets on reducing the load variance of NF instances
belonging to the same NF type. Therefore, we vary the
number of NF instances from 10 to 50, calculate the
load variance of NF instances before (varbefore) and after
(varafter) the load balancing algorithm, and calculate the
variance reduction ratio = varbefore/varafter . We randomly
arrange flows from the LBNL/ICSI enterprise trace on NF
instances to ensure that no overload or underload situations
happen.

We compare the NF load balancing algorithm in OFM
with a pairwise solution that greedily pairs the overloaded
and underloaded NF instances by sorting the load of NF
instances and iteratively picking instances with the lowest
and highest loads as pairs. It then redistributes flows between
the two instances in each pair for load balancing. As shown
in Fig. 10, the load variance of NF instances could be
reduced by a factor of 1.5 to 2.5 by the OFM load balancing
algorithm, which is 20% to 60% better than the pairwise
solution.

6) Scalability of OFM Algorithms: We evaluate the scala-
bility of OFM with respect to real world network parameters.
According to the design of OFM algorithms, the number of
flows, packet rate, and the number of instances may affect the
computation time. As packet rate can be easily converted to
the number of flows based on flow size distribution of real
world network traffic [3], below we focus on the scalability of
OFM algorithms with respect to different numbers of flows and
numbers of instances. For test flows in our experiment, we use

SUN et al.: ENABLING NFV ELASTICITY CONTROL WITH OPTIMIZED FLOW MIGRATION 2299

Fig. 8. Effect of OFM scaling out algorithm. We mark the (#overloaded instances, thsafe) on subfigures’ top-right corner.

Fig. 9. Effect of OFM scaling in algorithm. We mark the
�
thbottom, thsafe

�
on subfigures’ top-right corner.

TABLE II

THE SCALABILITY OF OFM ALGORITHMS WITH RESPECT TO DIFFERENT PARAMETERS

real world flows from the LBNL/ICSI enterprise trace, whose
statistics is presented in Fig. 5. We summarize the scalability
evaluation of OFM in Table II.

For OFM scaling out algorithm, we first measure the compu-
tation time under different number of instances with the same
evaluation setup as Section V-B3. As shown in Fig. 12(a),

2300 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 36, NO. 10, OCTOBER 2018

Fig. 10. Effect of OFM NF load balancing algorithm.

the OFM algorithm consumes less than 1 ms computation time,
which occupies only a tiny portion of the entire migration time.
Despite the size-greedy algorithm could finish more quickly
within 0.1 ms, its optimization effect falls far behind OFM,
as mentioned in Section V-B3. Second, we vary the number of
flows on one instance and set the number of instances to one.
As shown in Fig. 12(b), the computation time of OFM is below
0.1 ms under different numbers of flows and increases slowly
as the number of flows increases. Moreover, OFM calculation
time is significantly shorter than that of the optimal solution.
Above results demonstrate the scalability and efficiency of the
OFM scaling out algorithm.

For OFM scaling in algorithm, as the number of flows is
not considered in algorithm design, we vary the number of
underloaded instances to evaluate its scalability. According to
Fig. 13, the computation time of the OFM NF scaling in algo-
rithm is below 200 ms when handling 10 to 50 underloaded
instances, which is acceptable in real-world network scale.

For OFM load balancing algorithm, we first set the average
number of flows on each instance to 10, vary the number of
instances, and measure the computation time. We then set
the number of instances to 10, vary the average number of
flows on each instance, and measure the computation time.
As shown in Fig. 11(a) and Fig. 11(b), the computation
time of the OFM algorithm is well below 100 μs for all
parameter configurations, which demonstrates the scalability
of the algorithm to quickly balance NF load in real world
NFV networks.

VI. RELATED WORK

Some research efforts [5], [12]–[16], [41] have addressed
the necessity of state migration to support NFV elasticity
control. Split/Merge [14] and OpenNF [5] rely on a centralized
control plane to buffer states during migration, while enhanced
OpenNF [12] and other efforts [13], [15], [16], [41] perform
state and packet transfer entirely in the data plane to improve
scalability and performance. Above efforts mainly focus on
safe and efficient state migration in NFV. In contrast, OFM
addresses the challenge of optimized flow selection for NFV
elasticity control to minimize penalty, and is complementary
to above works.

Kablan et al. [42] proposed to extract state from NFs and
store state in a data store layer, thus eliminating the necessity
to migrate flows for NFV elasticity control. However, such a

design could add to the NF processing latency by a maximum
of 500 μs, which might be unbearable for latency sensitive
applications [16], [17]. In comparison, OFM carefully considers
the SLA requirements of flows and selects appropriate flows
to migrate to achieve optimized NFV elasticity control.

A strawman solution for NFV elasticity control proposed
in E2 [18] adopts a strategy of migration avoidance. Existing
flows are still processed by previously assigned NF instances,
while new flows are differentially handled. In this way, no flow
migration occurs for NFV elasticity control. For NF scaling
out, we simply instantiate a new NF instance and redirect new
flows to it. For NF scaling in, we coalesce new flows on a
few selected NFs and terminate other servers after all of their
residual flows are served. For NF load balancing, we exploit
consistent hashing to balance new flows. While the migration
avoidance strategy introduces no migration penalty, it may
still result in penalty. For NF scaling out, flows on existing
NF instances may grow larger, which increases NF loads,
degrades NF performance, and incurs SLA violations. For NF
scaling in, many flows in data centers are long-lived flows that
could last for minutes to hours [3]. The migration avoidance
strategy prevents timely destruction of underloaded instances
and therefore cannot bring as high revenue benefit as OFM. For
NF load balancing, as flows on existing NF instances grow in
sizes, NF instances may become overloaded and trigger NF
scaling out, which would also introduce SLA violation penalty
without careful flow selection.

Flow migration, which is also called flow handover, is also
a significant problem in 5G networks. Two typical recent
researches [43], [44] have illustrated the necessity for the
flow admission control from 5G macro cell networks to small
cells. Above works targeted at minimizing the affection to
the experience of other users during flow handover. Similarly,
OFM aims at minimizing SLA violation penalty during NF
elasticity control and flow migration. However, OFM differs
from above works significantly. For 5G networks, the macro
cell network itself can process all packets, while small cells
are adopted to reduce power and cost. Therefore, migrating
flows to small cells is optional, and an admission control
mechanism is required to ensure user experience. However,
in NFV networks, one NF instance is typically not adequate
to process all flows, making elasticity control inevitable. OFM
could optimize migration penalty.

Finally, comparing to the previous version of this paper [1],
we have made substantive enhancements in this manuscript.
First, we provide a unified ILP formulation for the three NFV
elasticity control situations to generate an optimal flow migra-
tion plan. However, the optimal algorithm cannot be quickly
solved in a limited time when not violating the control goals
of the NFV elasticity control situations. Therefore, we need
to design unique algorithms to handle the three situations
respectively. Second, we have thoroughly modified the opti-
mized flow migration algorithms for the three situations. For
each situation, we first present the optimal algorithm and then
the acceleration solution to effectively and efficiently generate
the migration plan. Furthermore, we discuss how OFM reacts
when two ore three NFV elasticity control situations happen

SUN et al.: ENABLING NFV ELASTICITY CONTROL WITH OPTIMIZED FLOW MIGRATION 2301

Fig. 11. Scalability of OFM load balancing algorithm.

Fig. 12. Scalability of OFM scaling out algorithm.

Fig. 13. Scalability of OFM NF scaling in algorithm.

simultaneously. Finally, we have updated the evaluation to
demonstrate that OFM can enable NFV elasticity control with
optimized flow migration.

VII. CONCLUSION AND FUTURE WORK

We have proposed the design of OFM Controller to
realize optimized flow migration for NFV elasticity control.
We have analyzed different NFV elasticity control situations
including NF scaling out, scaling in, and load balancing, and
identified their control goals and challenges. After modeling
buffer and migration cost, we have introduced a unified
optimal formulation for all three situations, which cannot
be solved within limited time. Thus, to achieve the unique
control goals of each situation, we have designed a unique
optimal formulation and a fast heuristic algorithm for each
situation. Finally, we have introduced that OFM chooses to
handle NF overload, load imbalance, and NF underload in
order when two or three situations coexist in NFV. We have
implemented the OFM Controller on top of NFV and
SDN environments. Extensive evaluation results show that
OFM could achieve near optimal flow migration within rea-
sonable calculation time. As our future work, we will imple-
ment more NFs and integrate OFM into popular open-source

NFV platforms to further demonstrate its effectiveness and
efficiency.

REFERENCES

[1] C. Sun, J. Bi, Z. Meng, X. Zhang, and H. Hu, “OFM: Optimized flow
migration for NFV elasticity control,” in Proc. IEEE/ACM 21st Int.
Symp. Qual. Service (IWQoS), Jun. 2018, pp. 1–10.

[2] R. Guerzoni, “Network functions virtualisation: An introduction, bene-
fits, enablers, challenges and call for action, introductory white paper,”
in Proc. SDN OpenFlow World Congr., 2012.

[3] T. Benson, A. Akella, and D. A. Maltz, “Network traffic characteristics
of data centers in the wild,” in Proc. 10th ACM SIGCOMM Conf.
Internet Meas., 2010, pp. 267–280.

[4] A. Roy, H. Zeng, J. Bagga, G. Porter, and A. C. Snoeren, “Inside the
social network’s (datacenter) network,” ACM Comput. Commun. Rev.,
vol. 45, no. 4, pp. 123–137, 2015.

[5] A. Gember-Jacobson et al., “OpenNF: Enabling innovation in network
function control,” in Proc. ACM Conf. SIGCOMM, 2014, pp. 163–174.

[6] P. Demestichas et al., “5G on the horizon: Key challenges for the radio-
access network,” IEEE Veh. Technol. Mag., vol. 8, no. 3, pp. 47–53,
Sep. 2013.

[7] B. Blanco et al., “Technology pillars in the architecture of future 5G
mobile networks: NFV, MEC and SDN,” Comput. Standards Interfaces,
vol. 54, pp. 216–228, Nov. 2017.

[8] W. Haeffner, J. Napper, M. Stiemerling, D. R. Lopez, and J. Uttaro,
“Service function chaining use cases in mobile networks,” in Proc.
Internet Eng. Task Force, 2016, pp. 1–26.

[9] S. Dutta, T. Taleb, and A. Ksentini, “QoE-aware elasticity support in
cloud-native 5G systems,” in Proc. IEEE Int. Conf. Commun. (ICC),
May 2016, pp. 1–6.

[10] G. Bianchi, M. Bonola, A. Capone, and C. Cascone, “Openstate:
Programming platform-independent stateful openflow applications inside
the switch,” ACM SIGCOMM Comput. Commun. Rev., vol. 44, no. 2,
pp. 44–51, 2014.

[11] M. Moshref, A. Bhargava, A. Gupta, M. Yu, and R. Govindan, “Flow-
level state transition as a new switch primitive for SDN,” in Proc. ACM
SIGCOMM Workshop Hot Topics Softw. Defined Netw. (HotSDN), 2014,
pp. 61–66.

[12] A. Gember-Jacobson and A. Akella, “Improving the safety, scalability,
and efficiency of network function state transfers,” in Proc. ACM
SIGCOMM Workshop Hot Topics Middleboxes Netw. Function Virtu-
alization, 2015, pp. 43–48.

2302 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 36, NO. 10, OCTOBER 2018

[13] B. Kothandaraman, M. Du, and P. Sköldström, “Centrally controlled dis-
tributed VNF state management,” in Proc. ACM SIGCOMM Workshop
Hot Topics Middleboxes Netw. Function Virtualization, 2015, pp. 37–42.

[14] S. Rajagopalan, D. Williams, H. Jamjoom, and A. Warfield,
“Split/Merge: System support for elastic execution in virtual mid-
dleboxes,” in Proc. 10th USENIX Symp. Netw. Syst. Design Imple-
ment. (NSDI), 2013, pp. 227–240.

[15] Y. Wang, G. Xie, Z. Li, P. He, and K. Salamatian, “Transparent
flow migration for NFV,” in Proc. IEEE 24th Int. Conf. Netw. Proto-
cols (ICNP), Nov. 2016, pp. 1–10.

[16] S. Woo, J. Sherry, S. Han, S. Moon, S. Ratnasamy, and S. Shenker,
“Elastic scaling of stateful network functions,” in Proc. NSDI, 2018,
pp. 299–312.

[17] R. Gandhi et al., “Duet: Cloud scale load balancing with hardware and
software,” in Proc. ACM Conf. SIGCOMM, 2014, pp. 27–38.

[18] S. Palkar et al., “E2: A framework for NFV applications,” in Proc. 25th
Symp. Operating Syst. Princ., 2015, pp. 121–136.

[19] J. Sherry, S. Hasan, C. Scott, A. Krishnamurthy, S. Ratnasamy, and
V. Sekar, “Making middleboxes someone else’s problem: Network
processing as a cloud service,” ACM SIGCOMM Comput. Commun. Rev.,
vol. 42, no. 4, pp. 13–24, 2012.

[20] M. Alhamad, T. Dillon, and E. Chang, “Conceptual SLA framework
for cloud computing,” in Proc. 4th IEEE Int. Conf. Digit. Ecosyst.
Technol. (DEST), Apr. 2010, pp. 606–610.

[21] M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, and A. Vahdat,
“Hedera: Dynamic flow scheduling for data center networks,” in Proc.
NSDI, vol. 10, 2010, p. 19.

[22] A. R. Curtis, J. C. Mogul, J. Tourrilhes, P. Yalagandula, P. Sharma,
and S. Banerjee, “DevoFlow: Scaling flow management for high-
performance networks,” Comput. Commun. Rev., vol. 41, no. 4,
pp. 254–265, Aug. 2011.

[23] T. Benson, A. Anand, A. Akella, and M. Zhang, “MicroTE: Fine grained
traffic engineering for data centers,” in Proc. 7th Conf. Emerg. Netw.
Exp. Technol., 2011, p. 8.

[24] Openflow Switch Specification 1.4.0, Open Netw. Found., 2013.
[25] S. Miteff and S. Hazelhurst, “NFShunt: A Linux firewall with openflow-

enabled hardware bypass,” in Proc. IEEE Conf. Netw. Function Virtual-
ization Softw. Defined Netw. (NFV-SDN), Nov. 2015, pp. 100–106.

[26] J. Martins et al., “ClickOS and the art of network function virtu-
alization,” in Proc. 11th USENIX Symp. Netw. Syst. Design Imple-
ment. (NSDI), Seattle, WA, USA, 2014, pp. 459–473.

[27] J. Hwang, K. K. Ramakrishnan, and T. Wood, “NetVM: High per-
formance and flexible networking using virtualization on commod-
ity platforms,” IEEE Trans. Netw. Service Manage., vol. 12, no. 1,
pp. 34–47, Mar. 2015.

[28] N. Foster et al., “Frenetic: A network programming language,” ACM
SIGPLAN Notices, vol. 46, no. 9, pp. 279–291, 2011.

[29] L. Wu, S. K. Garg, and R. Buyya, “SLA-based resource allocation
for software as a service provider (SAAS) in cloud computing envi-
ronments,” in Proc. 11th IEEE/ACM Int. Symp. Cluster, Cloud Grid
Comput. (CCGrid), May 2011, pp. 195–204.

[30] J. P. Ignizio, Goal Programming and Extensions. Lanham, MD, USA:
Lexington Books, 1976.

[31] A. Schrijver, Theory of Linear and Integer Programming. Hoboken, NJ,
USA: Wiley, 1998.

[32] C. Sun, J. Bi, Z. Zheng, H. Yu, and H. Hu, “NFP: Enabling network
function parallelism in NFV,” in Proc. Conf. ACM Special Interest Group
Data Commun., 2017, pp. 43–56.

[33] R. Miao, H. Zeng, C. Kim, J. Lee, and M. Yu, “Silkroad: Making stateful
layer-4 load balancing fast and cheap using switching ASICs,” in Proc.
Conf. ACM Special Interest Group Data Commun., 2017, pp. 15–28.

[34] Project Floodlight. Accessed: Aug. 28, 2018. [Online]. Available:
http://www.projectfloodlight.org/floodlight

[35] M. Berkelaar, J. Dirks, K. Eikland, P. Notebaert, and J. Ebert. (2007).
Lpsolve: A Mixed Integer Linear Programming (MILP) Solver. [Online].
Available: http://sourceforge.net/projects/lpsolve

[36] Open vSwitch. Accessed: Aug. 28, 2018. [Online]. Available:
http://openvswitch.org

[37] LBNL/ICSI Enterprise Tracing Project. Accessed: Aug. 28, 2018.
[Online]. Available: http://www.icir.org/enterprise-tracing

[38] Passive Real-Time Asset Detection System. Accessed: Aug. 28, 2018.
[Online]. Available: http://gamelinux.github.io/prads/

[39] V. Paxson, “Bro: A system for detecting network intruders in real-time,”
Comput. Netw., vol. 31, nos. 23–24, pp. 2435–2463, 1999.

[40] Netfilter/Iptables Project. Accessed: Aug. 28, 2018. [Online]. Available:
http://www.netfilter.org

[41] Y. Lin, U. C. Kozat, J. Kaippallimalil, M. Moradi, A. C. K. Soong, and
Z. M. Mao, “Pausing and resuming network flows using programmable
buffers,” in Proc. SOSR, 2018, p. 7.

[42] M. Kablan, A. Alsudais, E. Keller, and F. Le, “Stateless network
functions: Breaking the tight coupling of state and processing,” in Proc.
14th USENIX Symp. Netw. Syst. Design Implement. (NSDI), Boston,
MA, USA, 2017, pp. 97–112.

[43] T. Taleb and A. Ksentini, “QoS/QoE predictions-based admission control
for femto communications,” in Proc. IEEE Int. Conf. Commun. (ICC),
Jun. 2012, pp. 5146–5150.

[44] A. Ksentini, T. Taleb, and K. B. Letaif, “QoE-based flow admission
control in small cell networks,” IEEE Trans. Wireless Commun., vol. 15,
no. 4, pp. 2474–2483, Apr. 2016.

Chen Sun received the B.S. degree from the Depart-
ment of Electronic Engineering, Tsinghua Univer-
sity, in 2014. He is currently pursuing the Ph.D.
degree with the Institute for Network Sciences
and Cyberspace, Tsinghua University. He has pub-
lished papers in SIGCOMM, ICNP, SOSR, IWQoS,
the IEEE Communications Magazine, and the IEEE
Network Magazine. His research interests include
Internet architecture, software-defined networking,
and network function virtualization.

Jun Bi (S’98–A’99–M’00–SM’14) received the
B.S., C.S., and Ph.D. degrees from the Department
of Computer Science, Tsinghua University, Beijing,
China. He is currently a Changjiang Scholar Dis-
tinguished Professor of Tsinghua University and the
Director of the Network Architecture Research Divi-
sion, Institute for Network Sciences and Cyberspace,
Tsinghua University. His current research interests
include Internet architecture, SDN/NFV, and net-
work security. He successfully led 10 of research
projects, published over 200 research papers and

20 Internet RFCs or drafts, owned 30 innovation patents, received national
science and technology advancement prizes, IEEE ICCCN outstanding lead-
ership award, and best paper awards. He is a Distinguished Member of the
China Computer Federation.

Zili Meng is currently pursuing the bachelor’s
degree with the Department of Electronic Engi-
neering, Tsinghua University. He has authored or
co-authored papers in SIGCOMM, SOSR, IWQoS,
and ICC. His research interest includes net-
work function virtualization and software defined
networks.

Tong Yang (M’18) received the Ph.D. degree in
computer science from Tsinghua University in 2013.
He visited the Institute of Computing Technology,
Chinese Academy of Sciences, China, from 2013 to
2014. He is currently an Assistant Professor with the
Computer Science Department, Peking University.
He has published over 40-refereed technical papers,
many of which appeared in top conferences and
journals, including SIGCOMM, SIGMOD, VLDB,
ATC, ICDE, ToN, INFOCOM, SOSR, and ICNP.
His research interests include routers and switches,
Bloom filters, sketches, and Openflow.

SUN et al.: ENABLING NFV ELASTICITY CONTROL WITH OPTIMIZED FLOW MIGRATION 2303

Xiao Zhang received the B.S. degree from the
Department of Computer Science and Technol-
ogy, Beijing University of Posts and Telecom-
munications, Beijing, China, in 2016. She is
currently pursuing the master’s degree with the
Institute for Network Sciences and Cyberspace,
Tsinghua University. Her research interests include
software-defined networking and network functions
virtualization.

Hongxin Hu (S’10–M’12) received the Ph.D. degree
in computer science from Arizona State University,
Tempe, AZ, USA, in 2012. He is currently an
Assistant Professor with the Division of Computer
Science, School of Computing, Clemson University.
He has published over 100 refereed technical papers,
many of which appeared in top conferences and
journals. His current research interests include secu-
rity in emerging networking technologies, security
in Internet of Things (IoT), security and privacy in
social networks, and security in cloud and mobile

computing. He was a recipient of the Best Paper Awards from ACM
CODASPY 2014 and ACM SIGCSE 2018, and the Best Paper Award
Honorable Mentions from ACM SACMAT 2011, IEEE ICNP 2015, and ACM
SACMAT 2016.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

