Mortise: Auto-tuning Congestion Control to Optimize QoE
via Network-Aware Parameter Optimization
Yixin Shen'2:3, Ruihua Chen!, Bo Wang1*3, Jing Chen!, Haochen Zhang] ,
Minhu Wang!, Yan Liu?, Mingwei Xu'?3, Zili Meng*
YTsinghua University, >Bytedance Inc., 3Zhongguancun Laboratory, *HKUST

Abstract

Congestion control algorithms (CCAs) critically shape the
tradeoff among throughput, latency, and loss, directly impact-
ing user Quality of Experience (QoE). However, most ex-
isting CCAs use static, heuristically chosen parameter set-
tings that fail to adapt to dynamic network states, resulting
in suboptimal QoE. Our key observation is that the optimal
CCA parameter configuration depends on real-time network
states. To bridge this gap, we propose Mortise, a real-time,
network-aware adaptation framework that dynamically tunes
rule-based CCA parameters to maximize QoE. To address the
challenges in modeling the complex parameter-QoE relation-
ship, Mortise introduces a QoS tradeoff proxy to decompose
parameter optimization into two steps: it first infers the appli-
cation’s preferred QoS tradeoff from real-time QoE gradients
and then derives the corresponding parameter settings via
control-theoretic analysis. Implemented atop TCP and evalu-
ated in both emulated and production environments, Mortise
outperforms state-of-the-art solutions, enhancing the QoE of
file downloading service by up to 73% and QoE of video
streaming service by up to 167% in real-world scenarios, with
minimal deployment overhead.

1 Introduction

The Quality of Experience (QoE) perceived by end users is
critical as it directly impacts user retention and the economic
outcomes of content providers. While traditional QoE opti-
mization primarily relies on application-layer mechanisms
such as adaptive bitrate algorithms [5,34] and content deliv-
ery network selection [40,49, 61], recent studies [32,45,60]
highlight the pivotal role of transport-layer congestion control
algorithms (CCAs) in shaping QoE. CCAs govern the trade-
offs among key network Quality of Service (QoS) metrics
— throughput, latency, and packet loss — which fundamen-
tally determine user-perceived performance, including video
stalling and interactive delay. Consequently, modern CCA
research has increasingly focused on QoE-driven design.
Whether rule-based [12,22] or optimization-based [15, 16],
the performance of CCAs hinges on critical parameters. In
rule-based schemes, parameters such as target queue length
and window increase/decrease granularity determine how ag-
gressively the sender probes for bandwidth or backs off under
congestion. In optimization-based CCAs, the relative weights
assigned to throughput, delay, and loss in the objective func-
tion steer the algorithm’s operating point on the Pareto fron-
tier of achievable performance [50,59]. Because the network
state fluctuates continuously, any CCA has to navigate in-
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Figure 1: An illustration of the optimal operating point shifting on
the Pareto frontier with network state.

trinsic trade-offs among the different QoS metrics. Existing
solutions heuristically preconfigure the algorithm parameters
offline, producing static QoS tradeoffs tailored to specific
applications. For instance, latency-sensitive interactive ap-
plications choose small queue targets or high delay-penalty
weights, whereas bulk transfers prioritize high throughput
through throughput-emphasis objectives.

Despite these efforts, existing heuristic and static config-
urations fail to maximize QoE in dynamic networks due to
two key limitations: (1) Heuristic parameter selection: Most
CCAs rely on empirically tuned parameters without rigor-
ously modeling the complex relationship between these pa-
rameters and QoE. This often results in suboptimal tradeoffs
in QoS metrics that misalign with actual QoE requirements.
(2) Static configuration: Using fixed parameters throughout
an entire session ignores the fact that the network states vary
largely over time, which can have an impact on the param-
eter settings. Without dynamic parameter adaptation, it can
prevent a consistently high QoE.

Our key observation is that the optimal configuration of
CCA parameter for maximizing QoE inherently depends on
real-time network states. This is because the application’s
preferred balance among QoS metrics shifts as the network
states evolve. For example, in interactive video streaming,
when bandwidth is abundant, further increasing throughput
yields diminishing QoE gains. Instead, prioritizing a shorter
network queue to reduce playback stall risk can yield a greater
improvement in user satisfaction. Thus, the optimal point on
the QoS Pareto frontier is not static but instead dynamically
moves with the network state. To consistently provide optimal
QOE, frequent and precise parameter adjustments are required
throughout a session.

However, frequent and optimal tuning of CCA parameters
faces two key challenges:

* Challenge in identifying optimal parameters: The rela-
tionship among CCA parameters, network states, and QoE
performance is highly complex and context-dependent.
For example, determining how to set Copa’s target queue
length to minimize video stalling time, or identifying
PCC’s optimal weights for throughput, latency, and loss



to reduce flow completion time, requires solving high-

dimensional, non-convex optimization problems. Exhaus-

tive search is computationally prohibitive, and existing ap-
proaches lack quantitative, interpretable models to predict
how parameter adjustments affect QoE.

Challenge in real-time behavior adaptation: Rule-based

CCAs lack explicit mechanisms to translate desired QoS

tradeoffs into corresponding parameter settings. While

learning-based approaches facilitate QoS tradeoff adjust-
ments by modifying optimization objectives, they often
suffer from significant training and inference delays, limit-
ing their ability to update policies in response to real-time
parameter changes promptly.

To address these challenges, we propose Mortise, a CCA
parameter adaptation framework that continuously optimizes
CCA configurations to maximize QoE in time-varying net-
work conditions. Mortise builds on rule-based CCAs to sup-
port flexible and real-time adaptation, dynamically tuning pa-
rameters (e.g., target queue length, sending rate probe speed)
to maintain QoE-optimal operating points as network states
evolve. Rather than directly modeling the complex parameter-
QOoE relationship, Mortise introduces a QoS tradeoff proxy
that decomposes the problem of identifying the optimal con-
figuration into two tractable sub-tasks. The underlying ra-
tionale is that operating at the optimal QoS tradeoff enables
the CCA to deliver the most favorable conditions for applica-
tion QoE consistently. At a high level, Mortise first infers the
application’s desired QoS tradeoff from real-time QoE gra-
dients, then adjusts CCA parameters to align with this target.
To compute the exact parameter values, Mortise employs a
control-theoretic analysis of system dynamics in rule-based
CCA:s, deriving closed-form mappings between parameters
and their corresponding resulting QoS tradeoffs.

We implement Mortise on TCP and evaluate with both em-
ulation and the CDN production environment at one of the
world’s largest Internet companies. Our real-world A/B test-
ing across 128 cities worldwide over 3 months demonstrates
that we can enhance the average QoE of our file downloading
service by 11%-73% and the average QoE of video stream-
ing services by 20%-167%, compared to other baselines in
wireless scenarios, with negligible deployment overhead.

In summary, we make the following contributions:

* By demonstrating the mismatch between CCA and ap-
plication, we identify the necessity for CCAs to continu-
ously and quantitatively adjust their parameters to cater to
network-dependent application preferences. (§2)

* We develop a user-friendly, deployable framework that ex-
tracts application preferences in real-time and dynamically
adjusts the parameters of CCAs for them to optimize for
QoE performance consistently. (§3)

* We implement (§4) and evaluate our framework with both
trace-driven emulations and real-world production tests
(§5), demonstrating its capability to adapt to application
requirements at all times.
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Figure 2: Operating points of different CCAs under different
scenarios: (a) is stable, and (b) is more fluctuating.

2 Background & Motivation

Each congestion control algorithm (CCA) relies on a set of
parameters to shape its control strategy, whether rule-based or
optimization-based. For example, in BBR, specific parameters
dictate the magnitude of probing, while in PCC, the weight
factors in the objective function determine how different QoS
metrics are balanced. Adjusting these parameters can fun-
damentally alter a CCA’s behavior, enabling it to operate at
entirely different points in the performance tradeoff space. For
example, modifying the parameters of the delay-based CCA
Copa can yield either a delay-sensitive variant (Copa MIT [7])
or a throughput-focused variant (Copa MVFST [18]), as illus-
trated in Fig. 2. This highlights the critical role of parameter
configuration in determining CCA performance.

This work explores how to configure CCA parameters to
achieve high QoE in dynamic networks consistently. §2.1
presents key observations that motivate the need for dynamic
and network-aware parameter adjustment. §2.2 analyzes the
limitations of existing solutions that rely on static and heuris-
tic configuration. §2.3 introduces our core idea for enabling
real-time, optimal parameter adaptation to approach the opti-
mal operating point under dynamic network conditions.

2.1 Observation

Observation #1: CCAs face the tradeoff between through-
put, delay, and loss. In theory, optimal CCA performance is
achieved when the sending rate perfectly matches the avail-
able bandwidth while maintaining an empty network queue.
This ideal state-known as Kleinrock’s point [27]-maximizes
throughput while minimizing both delay and loss.

Achieving Kleinrock’s point consistently is practically im-
possible [24] due to unpredictable network fluctuations and
inevitable control loop delays. To adapt to bandwidth changes,
CCAs have to actively probe the network state by adjusting
their sending rates. These probes help infer key states such
as available bandwidth and propagation delay, which inform
subsequent congestion control decisions.

However, probing is inherently uncertain. Increasing the
sending rate might reveal unused bandwidth, or it could sim-
ply lead to increased queuing delay. This uncertainty leaves
CCAs’ decision-making process facing a dilemma between
conservative and aggressive control strategies. While a con-
servative sending can maintain low latency and minimal loss,



it tends to underutilize the available bandwidth and obtain
lower throughput. Conversely, an aggressive sending could
make fuller use of the available bandwidth but may suffer
from longer queuing delays and even cause packet loss.

As a result, each CCA operates at a different operating
point along the tradeoff spectrum, depending on its con-
trol strategy. We define this operating point as the resulting
transmission performance, including throughput 7', delay D,
and loss L under the current network states, represented by
P(T,D,L). These operating points typically scatter across an
area bounded by a Pareto frontier [44,48,59], as illustrated
in Fig.2, indicating that no single CCA can outperform all
others across all performance metrics. Any improvement in
one dimension often comes at the expense of another.

Observation #2: The optimal operating point P* depend
on network state. The optimal operating point, denoted as
P*(T,D,L), represents the best tradeoff among throughput,
delay, and loss that maximizes QoE. This point lies on the
Pareto frontier and is illustrated as the red star in Figure 1.
Our key observation is that P* is not fixed, but varies dynami-
cally with the network state, which we define as the statistical
characteristics (e.g., mean, variance, skewness) of network
features such as available bandwidth, latency, and packet loss.
We illustrate this with two examples.

The first example involves the level of network bandwidth.

* High bandwidth scenario: When the available bandwidth is

high (e.g., resulting in a high bitrate for video streaming),

further increasing throughput produces diminishing QoE
gains, i.e., video quality metrics such as SSIM [19, 54] or

VMAF [30] tend to saturate. In this case, a more conserva-

tive configuration that prioritizes lower latency and reduced

packet loss can improve user experience more effectively
than aggressively pushing for maximum throughput.

Low bandwidth scenario: When bandwidth is limited, QoE

becomes highly sensitive to throughput changes. Even

modest increases in bitrate can lead to significant improve-
ments in user-perceived video quality. In such cases, a more
aggressive strategy that pushes the sending rate closer to
the estimated available bandwidth is more beneficial.
This behavior arises from the nonlinear relationship be-
tween QoE and QoS. As shown in Fig.3, video quality im-
proves sharply with bitrate at low rates but flattens out at
higher rates. Thus, when throughput is already high, shifting
focus to latency and loss control can enhance responsive-
ness with little impact on video quality. Conversely, under
constrained throughput, improvements in bitrate have an im-
portant effect on user experience and should be prioritized.

Another example concerns bandwidth volatility:

* Stable network conditions: When bandwidth exhibits low
variability, it is generally safe to increase the sending rate
close to the estimated mean bandwidth without risking
sudden queuing delays.

* Fluctuating network conditions: In highly variable net-
works, aggressive sending can lead to rapid queue build-up

and latency spikes due to unexpected bandwidth drops.
In this case, a conservative approach that leaves room for
potential drops is crucial to prevent QoE degradation.
These examples illustrate that the optimal tradeoff among
QoS metrics and thus the optimal operating point is inherently
network-dependent, shaped by the nonlinear relationship be-
tween QoS and QoE under varying network conditions.

Observation#3: Network states experience substantial
changes frequently within a session. Previous studies [17,
46] have shown that network states typically fluctuate on the
time scale of tens of seconds. Our measurements from pro-
duction environments and passive data analysis on datasets
from Salsify [19] and Puffer [57] also confirm this observa-
tion (detailed distributions are presented in the Appendix A).
We find that the duration of segments under the same network
conditions mainly falls within the range of 5-60s, and signif-
icant changes, such as bandwidth changes exceeding 50%,
often occur between segments. The frequent and substantial
shifts in network conditions necessitate real-time identifica-
tion and achievement of optimal operating points, which could
potentially be located anywhere on the Pareto frontier.

Conclusion: Static parameter settings are insufficient for
maximizing QoE in dynamic network environments. To consis-
tently achieve optimal performance, CCAs must adapt their
parameters in real time to track the optimal operating point
P*, which varies dynamically with the evolving network state.

2.2 Limitation of Existing Solutions

CCA design. Modern CCA can be broadly categorized into
two types: rule-based and optimization-based. Rule-based
CCAs (e.g., BBR [12], Copa [7]) rely on explicit network
measurements to guide control actions, while optimization-
based approaches (e.g., PCC [16], Aurora [25]) formulate
congestion control as an objective maximization problem.
In both cases, the design typically involves some form of
network modeling to guide decision-making. Despite these
advances, most CCAs still rely on static parameter configu-
rations, which are ill-suited for dynamic and heterogeneous
application requirements.

CCA adaptation approach. Different applications have vary-
ing QoE requirements: some applications prioritize low la-
tency, while others prefer high throughput. To better accom-
modate such diverse needs, recent studies have introduced
CCA adaptation frameworks. For example, Antelope [64],
Floo [60], and Nimbus [21] can dynamically switch between
CCAs or operational modes based on predefined objectives,
enabling coarse-grained adaptation. Other approaches, such
as MOCC [32], apply multi-objective reinforcement learning
with transfer learning to gradually adjust optimization goals
across different applications, though the adaptation typically
takes several minutes. Additionally, methods like DeepCC [3]
and C2TCP [1] expose tunable parameters to applications, al-
lowing them to steer operating behavior more directly. While
these methods offer configurable knobs that enable adaptation
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Figure 4: A trace to compare the perfor-
mance of static and heuristic parameter
configuration with dynamic and quantita-
tive parameter configuration (Mortise)

among QoS metrics, they fall short in guiding how to set these
parameters to optimally maximize QoE. As a result, they still
suffer from sub-optimal QoE.

However, whether through fixed CCAs or adaptive frame-
works, existing solutions fall short in supporting continuous,
fine-grained parameter tuning for optimal QoE in evolving
network conditions. Their limitations are summarized below:

(1) Heuristic and static parameter configuration fail to
maximize QoE. These solutions set parameter configurations
by intuition or in a qualitative manner, and won’t change them
during a session. For instance, to serve video conferencing ap-
plications, they select delay-sensitive CCAs [7, 10] or assign
a higher weight to the latency term in the objective func-
tion [32,45]. Meanwhile, for the web browser applications,
they switch to throughput-oriented CCAs [12] or assign a set
of parameters to make CCAs probe more aggressively [18].

They all lack an accurate quantitative understanding of
how parameters should be configured. The heuristic configu-
rations can result in imprecise parameter settings in rule-based
algorithms or imprecise weight factors in learning-based algo-
rithms. Moreover, these configurations lack explicit guidance
on how to make adjustments during a session, which leads
existing solutions to use a fixed set of parameter configura-
tions throughout a single session. As a result, whether a single
CCA or an adaptive method, the operating points they achieve
under diverse network conditions often deviate from the opti-
mal points expected to maximize application QoE, as the two
Copa variants displayed in Fig.4.

(2) They have limited flexibility and exhibit poor adaptabil-
ity to changes in parameter configurations. As mentioned
above, existing solutions largely depend on learning-based
methods for adaptation, with a QoS optimization objective
as their guiding principle. While transfer learning provides
an intuitive and straightforward way to adjust inherent QoS
objectives to achieve different operating points, it struggles
to support frequent adaptations with low overhead during a
session. On one hand, the transfer process can take several
minutes or even hours [25, 32, 60], hindering the ability to
swiftly adjust within a session to align with the rapid changes
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in network conditions. On the other hand, the resource over-
head for training and performing transfer learning is substan-
tial [2, 17], making it untenable in a production environment
due to its high cost. Furthermore, CCA selection schemes are
limited to a few discrete operating points, preventing them
from maximizing arbitrary optimization objectives [32].

2.3 Basic Idea

To support frequent, flexible, and low-overhead adaptation,
our framework builds on rule-based CCAs which incorpo-
rate explicit network models in decision-making, such as
BBR [12] and Copa [7]. Compared to learning-based meth-
ods [32,64], rule-based CCAs offer significantly higher com-
putational efficiency, making them well-suited for real-time
operation [2, 17]. Moreover, we observe that with careful pa-
rameter tuning, rule-based CCAs can achieve Pareto-optimal
performance competitive with learning-based methods.

However, dynamically tuning these parameters to maintain
QoE-optimal behavior under evolving network conditions
consistently presents significant challenges:

* Modeling Complexity: The relationship between CCA pa-
rameters, network states, and QoE is highly complex, mak-
ing it difficult to derive an analytical formulation. The joint
parameter space is vast, making real-time optimization
computationally expensive.

Metric Mismatch: CCAs optimize for QoS metrics
(e.g., throughput, latency, loss), whereas QoE depends on
application-level semantics (e.g., SSIM, flow completion
time).

Feedback Latency: QoE metrics (e.g., video stall ratio) typ-
ically require extended observation periods and often only
become available upon session completion [14]. This in-
herent delay makes QoE metrics poorly suited as feedback
signals for real-time control systems, as they introduce
both latency and ambiguity in the control loop.

To address these challenges, we introduce the QoS tradeoff
as a proxy, rather than attempting to model QoE end-to-end.
This tradeoff characterizes the proportional relationship be-
tween throughput, latency, and packet loss. Formally defined
in §3.2, it quantifies how variations in throughput translate
into corresponding changes in delay and loss. For each appli-
cation, the preferred tradeoff expresses the maximum accept-
able degradation in latency and packet loss for a given increase
in throughput, ensuring QoE is preserved. By framing QoE
optimization as a problem of dynamically adjusting to the pre-
ferred QoS tradeoff, we can leverage the native control knobs



of rule-based CCAs (e.g., congestion window, target queue
length), avoiding the need to directly map high-level QoE
metrics (e.g., SSIM or stall ratio) to low-level parameters.

This tradeoff proxy is effective because operating at the
optimal QoS tradeoff enables the CCA to consistently func-
tion at the most favorable operating point for application QoE.
Intuitively, the tradeoff corresponds to the slope of the tangent
line at the current operating point on the Pareto frontier, as
illustrated in Fig.1. Given the convex nature of the Pareto
frontier, tradeoff changes are monotonic. Let point P, de-
note the operating point that aligns with the application’s pre-
ferred QoS tradeoff. As illustrated in Fig.5, pursuing higher
throughput than P, (i.e., moving to points left of F;) results in
greater QoE penalties (from increased delay or packet loss)
while yielding diminishing QoE gains from the additional
throughput. As a result, these points provide lower overall
QoE than P,. Conversely, for points to the right of P, increas-
ing throughput contributes more to QoE improvement than
the associated penalties. Thus, these points also deliver lower
QoE compared to P, as the application would benefit from
moving closer to P,. Therefore, P, is the optimal operating
point P* that optimally balances throughput, delay, and loss
to maximize application QoE.

Moreover, the tradeoff proxy simplifies a complex, high-
dimensional control problem into a manageable scalar metric.
For example, optimizing video QoE no longer requires model-
ing how Copa’s queue length influences SSIM. Instead, it re-
duces to tracking the real-time relationship between through-
put and delay. These tradeoffs can be computed from instan-
taneous QoS measurements (e.g., RTT gradients, through-
put variance), bypassing the need for delayed feedback from
application-level QoE metrics like stall ratio.

Thus, we use the QoS tradeoff as a bridge between applica-
tion QoE requirements and CCA parameter tuning, as shown
in Fig. 6. This approach decouples the optimization process
into two layers: First, it derives the application’s real-time
preferred QoS tradeoff, which serves as a directional signal
and target for control. Then, it adjusts the CCA parameters
to steer the system toward an operating point that achieves
this tradeoff, thereby maximizing QoE. This design preserves
the simplicity and deployability of rule-based CCAs while
enabling continuous, Pareto-optimal adaptation to dynamic
application-level QoE demands.

3 Design

We first provide an overview of the design (§3.1) and then
elaborate on our design components in §3.2 and §3.3.

3.1 Overview

For Mortise to achieve real-time optimal parameter adjust-
ment, there are mainly two challenges:

(1) How to extract the tradeoffs preferred by QoE under cur-
rent situations? The QoE model is dynamic and cannot simply
be fed to the CCA at the start of session. On the one hand,
QoE model may suggest very different preferences under dif-
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Figure 6: High-level block diagram of Mortise

ferent network conditions. On the other hand, QoE model
would also be influenced by real-time non-network applica-
tion factors (e.g., video resolution [33,62], content [14, 53]
or viewing context [62]). In response, we design an applica-
tion preference extractor in §3.2 that uses the ratio of partial
derivatives to dynamically extract the preferred QoS trade-off
hints of various kinds of applications.

(2) How to identify the CCA parameter configuration to
achieve the preferred tradeoff? It is hard to directly determine
the optimal CCA parameter, as it affects both the operating
point and the preferred QoS tradeoff in a cross-dependent
manner. Under the current operating point, when we tune the
CCA towards the preferred QoS tradeoff, we would move
to a new operating point, and the preferred QoS tradeoff at
that point could also be different. In response, we design a
tradeoff controller that iteratively tunes the CCA parameter
based on the current QoS tradeoff in §3.3 and converges to
the optimal CCA parameter in typically a few RTTs.

We present the overall workflow of Mortise in Fig.6. In
essence, Mortise’s application preference extractor obtains
real-time preferred tradeoffs from the application’s QoE
model, taking into account the current operating point. The
tradeoff controller then uses these tradeoff preferences as
hints to adjust parameters, also based on the current operating
point. Through iterative repetition of this process, Mortise is
ultimately able to converge to the optimal operating point that
delivers the best QoE.

3.2 Application Preference Extractor
We start by getting the QoE models of the application.

Getting Explicit QoE Models. An explicit QoE model would
greatly help us calculate the application preference. Many ap-
plications already have well-established explicit QoE models
developed through extensive research and production deploy-
ment experience, such as video streaming [19,34]) and web
browsing [42, 60]. Some have implicit QoE models (e.g.,
Markov-chain [14] or learning-based [45]), which could also
be approximated by explicit ones (e.g., converting them to de-
cision trees [36]). In such cases, Mortise’s only requirements
for application integration are that they provide their QoE
models at connection initialization and inform again when



application factors change.

Extract the Preference Hints. With explicit QoE models,
we now extract the preferred tradeoff. Inspired by local lin-
earization, we observe that the ratio of partial derivatives (we
denote as the hint) could well reflect the preferred QoS trade-
off. Take the ratio of the partial derivative of latency to that of
throughput as an example; it represents the maximum latency
increase that an application can tolerate (and feel worthwhile)
to increase its throughput. Also, we observe that most QoE
models are differentiable or only with discontinuities of the
first kind [28,29], making derivatives practical.

We now present the mathematical expression. we represent
the QoE model as a function F' composed of n metrics M;:

QoE = F (M, 96, 94,) (1)

Given that each metric 9/ is directly associated with through-
put, delay, or loss, we can express the QoFE as its correspond-
ing local QoS format, a function f on throughput 7', delay D,
and loss L:
QoS = f(T,D,L) (@)
Assuming the current operating point is P.(7,,D,,L.), where
throughput, delay, and packet loss are T, D., and L. respec-
tively, we can calculate the partial derivatives in each direction
by solving the gradient:
_ (9f 9of of
V= (W’ D’ W)(TL.‘DC L)

Hence, we can calculate the two application preferred trade-
off hints A (for delay-throughput tradeoff) and B (for loss-
throughput tradeoff) by the ratio of partial derivatives as:

(5%) (T..D¢,Le) / <g%) (T.,D,Le)
=) e/ () o

Extend to Statistical Metrics. In practice, applications may
employ statistical metrics, such as average-based [60] or
distribution-based (jitter, percentile, etc.) [37,38]. The afore-
mentioned form remains applicable for metrics, such as
average-based metrics, which can be expressed as a linear
combination of some simple QoE metrics. However, for
distribution-based metrics, this form falls short of accurately
capturing such situations. Consequently, we extend 7', D, L
to vectors T, D, L to symbolize the distribution of through-
put, delay, and loss, respectively. Similarly, we can derive the
extended application preference hint A,y and By

A=

3

hew = |7 (Be,De +AB,Lo)/Af (T + AT, Be, L)

e @
Bew = [67(Te,Be, L+ AL) /Af (e + AT, Be, Lo)

If none of the metrics take into account the distribution of
throughput, latency, or loss, then A,,; and B, naturally reduce
to the A and [ in Eq.3. For details on how the extractor works
on the specific QoE models of real-world applications, we
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refer the readers to §4, Appendix C.2 and Appendix D.2.
From our online observations, the extracted hints can basi-
cally correspond to the actual application preferences and
user experiences, providing valuable guidance for adjust-
ing CCA strategies. We leave empirical analysis on passive
datasets [57] for more comprehensive validation in the future.

3.3 Tradeoff Controller

As mentioned in §3.1, we could not directly solve the opti-
mal parameters for unknown network conditions. To address
this challenge and inspired by coordinate descent [55], we
adopt a balancing feedback control mechanism with an itera-
tive two-step strategy. We first measure the current operating
point and the delay-throughput and loss-throughput tradeoffs
it achieves. We then obtain the preferred tradeoffs (the hints)
that the application aims to reach at this operating point from
the extractor. Based on the discrepancy between them and
the current tradeoffs, we identify the next tradeoffs to align
more closely with the desired preference. Subsequently, we
estimate the parameters to achieve the tradeoffs and set them
to the CCA, pushing the CCA to a new operating point. Fol-
lowing this, we re-estimate the new preferred tradeoffs at
the new point and continue this cycle of balancing feedback
control. This approach enables our estimation of application
preferences (i.e., hints) to progressively approach the actual
preferred tradeoff at the optimal point, allowing us to con-
tinually reduce the discrepancy and converge to the optimal
operating point that delivers maximum QoE.

Measure Tradeoff of Current Operating Point. Initially, we
need to measure the tradeoffs at the current operating point
P, (represented by the yellow diamond in Fig.7), such as the
delay-throughput tradeoff 7. indicated by the slope of the
yellow dashed tangent line in Fig.7, to compare them with the
application’s preferences hints. By measuring the throughput,
delay, and packet loss at the current and nearby operating
points, we can approximate the tradeoffs (the tangent lines)
at the current operating point using a secant method.

In production environments, measurement noise and net-
work fluctuations always hinder us from obtaining accurate
results in a short period of time. In other words, the longer we
measure, the more accurate the results we can obtain. Thus,
we adapt the time period for measuring the tradeoffs. When
we are still far from the optimal point, rough results are suffi-
cient to guide the direction, so we measure fewer rounds to
save time. As we approach the optimal point, we measure for
longer periods to obtain more accurate results for fine-tuning.



The Balancing Feedback Control. Once we have measured
the tradeoffs at the current operating point and extracted the
real-time application preference hints A and P at this point,
we can proportionally adjust the CCA’s tradeoff based on
their discrepancy. We set the adjustment step length as a pro-
portional factor 6 multiplied by the discrepancy. With the
tradeoff 1. at the current operating point, the tradeoff T, of the
next operating point P, (represented by the green dashed line
at the green triangle in Fig.7) can be calculated as follows:

T, = 6A+ (1 —0)T, 5)

Following the Averaging Principle [6], we default ¢ to 0.5,
aiming to strike a balance between rapid reaction and stability.
Given the inaccuracies in measuring the tradeoff of the oper-
ating point, we limit the frequency of adjustments when the
discrepancy with the preferred tradeoff is sufficiently slight,
thereby avoiding oscillations. Still, the controller persistently
monitors the tradeoffs, preparing for adjustments in response
to changes in network conditions or application preferences.

The Parameters to Adjust. After determining the next trade-
off, we need to achieve it by adjusting the parameters. We
observe that modern rule-based CCAs [7,12] mainly influence
the CCA’s operating point and tradeoffs by influencing either
steady-state queue length (i.e., equilibrium point) or the tran-
sient probing speed (i.e., path to converge to the equilibrium
point). For different CCAs, the parameters influencing these
two factors are those that Mortise can adjust. Also, as illus-
trated by the blue dashed curve in Fig.2, the possible tradeoff
curve obtained by adjusting these parameters can approximate
the Pareto frontier. While we acknowledge the influence of
other parameters, these two types are more straightforward to
comprehend and control. Thus, this work primarily focuses
on them. While the accurate mapping between parameters
and QoS tradeoffs is initially unknown under new network
conditions, rough parameter adjustments that match the direc-
tion guided by the hints are sufficient. As the historical data
accumulated through iterative adjustments, the panorama of
the mapping would be clearer, allowing us to make accurate
decisions for desired QoS tradeoffs. For the detailed process
of how the feedback control advances to convergence, we
refer the readers to §5.2.

Change-Point Detection. The feedback control is adequately
equipped to achieve rapid convergence in common scenarios.
However, for certain transient scenarios, such as drastic band-
width degradation, worsening network conditions can delay
the control loop for tradeoff measurements and feedback ac-
quisition. Additionally, historical data can interfere with the
controller. Together, they prevent the CCA from converging to
the new optimal operating point on time. Hence, we introduce
an online change-point detection (CPD) mechanism [4] on
bandwidth. This mechanism prompts the controller to discard
historical records and initiate a broad exploration under new
network conditions, facilitating faster convergence. Although

the CPD may yield false positives due to outliers, it only trig-
gers a new exploration, with the primary adjustments still
governed by the balancing feedback control. In other words,
incorrect detection exerts minimal impact on performance.

4 Implementation & Experiment Setup

Underlying CCA and stack. We implement Mortise' on
Copa, since it has a clear network model, a simple internal
mechanism, and an explicit parameter § that directly influ-
ences both the steady-state queue length and the probing
speed. Our implementation builds on Linux kernel TCP with
eBPF (Extended Berkeley Packet Filter) [31, 35], eliminat-
ing the need for kernel modifications. Although we focus on
Copa for detailed analysis, Mortise is a general-purpose frame-
work whose design principles can naturally extend to other
CCAs. Additional prototypes on GCC for WebRTC [43] (Ap-
pendix C) and Copa for QUIC [51] (Appendix D) demonstrate
over 10% improvements in both cases, validating Mortise’s
generality. We leave further exploration for future work.

Low system overhead and ease of Deployment. Our user-
space controller exchanges data with the in-kernel CCA via
ebpf_map, which functions as shared memory. The CCA uses
this map to report the measured information of the current
operating point, while the controller uses it to send the param-
eters to the CCA. Given that our control and communication
occur at the RTT level rather than on a per-packet basis, the
data can be aggregated and communicated at low frequency.
This asynchronous communication method fully meets our
requirements and incurs minimal communication overhead.
The main part of the framework implemented for Linux ker-
nel TCP can be reused across stacks and applications (for
QUIC, WebRTC). Additionally, our alterations to the CCA
are minimal. In the case of the 1000-LoC (line of code) Copa,
the feature of applying parameters requires a mere 15 LoC,
and reporting network measurements only 20 LoC.

Applications and their QoE model settings. We evaluate the
CCAs under two types of applications: (1) a file downloading
application (including web browsing), where the client sends
a series of requests and the server provides responses accord-
ingly. (2) a streaming video-on-demand application, where
the client employs the VLC Adaptive Bitrate (ABR) algo-
rithm [41], a method combinedly based on current playback
buffer and throughput estimation, to download video chunks
from the server. We set up different QoE models for them
based on the characteristics of the applications and empirical
values in the production environment as follows:

(1) File Downloading. For file downloading applications, the
main concerns are how fast the file request is completed (re-
flected in the normalized RCT) and traffic costs for the CDN
to complete the request (reflected in the retransmission ratio).
Thus, the QoE model is set to be:

QOE = 87 (1—P(r)) (6)

10pen sourced at: https://github.com/BobAnkh/Mortise




where R is the request size, r is the retransmission ratio, RCT
is the request completion time, and P(r) is a penalty function
for retransmissions:

, ) 0<r<0.05
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The intuition behind this piecewise function is that a few re-
transmissions will not impact QoE, while the penalty on QoE
becomes progressively more severe with increasing volume
of retransmissions. We further translate the QoE model to be
a function of QoS metrics (i.e., throughput 7', delay D, packet
loss rate L) to get the QoS formula:

R[1—(aL+b
QoS = f(T,D,L) = m

We can further extract the application preference hints A and
B given current operating point P.(T,,D¢,L.):

—|9f Jof| _ r(+2>
oD/ oT | —

f of | _ T:[2a(R+T.D.)—(b—1)T.D.]
oT | — 2R(1—aL.—b)

@)

QoS tradeoffs are not only influenced by current network
conditions but also by the size of the requested content.
(2) Video Streaming. The QoE of video streaming applications
is mainly decided by the video quality (reflected in the bitrate)
and the stall events (reflected in the stall time) [34,47]:

QE=YN  q(B))—pXN T, 8)

for a video with N chunks. B, represents the bitrate of chunk,
and g(B,) maps that bitrate to the video quality perceived by
a user. T, represents the stall time that results from download-
ing chunk, at bitrate B, and p is a weight factor to balance
between them (we empirically set p = 2.66).

q is set as a logarithmic function, ¢(B,,) = log(B,/Bmin)s
where B,,;, is the minimal bitrate (400 kbps in our app). The
intuition is that bitrate increase would be marginal to the
perceived quality when it is already high. Stall occurs when
the download time exceeds the remaining playback buffer;
thus, it can be modeled as a piecewise function. Hence, we
can get the empirical QoS formula:

QoS = f(T,D,L) = log(zL-) —

C is the chunk size and V is the length of the current playback
buffer. We can also extract the preferred QoS tradeoff hints:

PIR(1+Ly) pIRDY)
@ B){< flees ,Togpg) if C/Ty + Do(1+Lo) > V
(0, 0)

p-max(0,%+D(1+L)—V)

i ©))
otherwise

The QoS tradeoff is influenced by current network condi-
tions, ABR decisions, video slicing strategies, and user play-
back buffering policies.

Baselines. To evaluate the performance and effectiveness of
Mortise, we compare it with existing solutions as follows:

 Throughput-oriented CCA:

1. Cubic [22]: a classic loss-based heuristic CCA.

2. BBR [12]: a CCA controls the rate with an explicit
model that estimates available bandwidth and RTT.

¢ Delay-based CCA:

3. Vegas [10]: a classic delay-based heuristic CCA.

4. Copa MIT [7] and Copa MVFST [18]: two Copa vari-
ants adopting & = 0.5 for low latency and & = 0.04 for
high throughput, respectively.

* Learning-based CCA:

5. Orca [2]: a single-objective RL-based CCA combined

with the rule-based CCA (Cubic).
* CCA with Adaptability:

6. MOCC [32]: a multi-objective RL-based CCA with
transfer learning to migrate to new objectives.

7. Antelope [64]: a CCA selection method on Cubic, BBR,
Copa’, etc.

8. Antelope Copa: a CCA selection method on five differ-
ent Copa profiles (different & values).

9. C2TCP [1]: a flexible cellular CCA with an interface to
set desired average target delay requirements.

10. DeepCC [3]: an RL-based cellular CCA with an inter-
face to set desired average target delay requirements.
* Our Solution:
11. Mortise Disc. we tweak our complete implementation
to select from only five discrete & values for adjustment.
12. Mortise, our complete implementation which can assign
arbitrary J to the underlying Copa, based on require-
ments.
To ensure a fair comparison, we retrain or fine-tune each
learning-based CCA for different applications.

Real-World A/B Testing. We have deployed Mortise for A/B
testing in our CDN production environment in one of the
largest companies to serve real applications (file downloading
and video streaming) across the Internet with real cross traffic
and packet schedulers. All modifications are on server-side,
requiring no client-side changes. We evaluate in both wired
and wireless scenarios. For each incoming connection, we
randomly assign one of the baselines to handle all traffic on
that connection. To encompass a wide range of real-world
situations, our A/B test covered 128 cities all over the world
and extended over more than 3 months.

Emulation. We also conduct offline experiments’ via
Mahimabhi [42] for detailed analysis with wireless traces from
Orca [2], including 3 common scenarios (walking, driving,
and stationary). We set the minimum RTT to 20ms and the
buffer size to 150KB. We let each CCA operate under real ap-
plications to send traffic over these traces, repeating the tests
5 times. For file downloading, we replay real workloads cap-
tured from production. The characteristics of the workload,
i.e., request interval and response size, are left in Appendix B.

2We retrain it to include Copa as a candidate CCA for fair comparison
3Emulate on a Dell R740 server with 80 CPU cores, 384GB RAM.



5 Evaluation

We evaluate Mortise with emulation and real-world tests from
various aspects, including performance (§5.1 and deep-dive
understanding in §5.2), overhead (§5.3), parameter sensitivity
(§5.4), and fairness and friendliness (§5.5).

5.1 Performance

We present that Mortise consistently achieves superior QoE
performance over various network scenarios for different ap-
plications. Fig.8 shows the performance distribution of all
algorithms tested across two applications and three network
scenarios. For file downloading, we display the distribution
of request completion time (RCT), retransmission ratio, and
overall QoE; for video streaming, we illustrate the distribution
of bitrate, stall ratio, and overall QoE.

Main Takeaway: Existing solutions may perform well for
certain application or network scenarios, but perform poorly
in others. In contrast, Mortise consistently provides the most
suitable operating points for different applications across vari-
ous network scenarios, significantly outperforming other base-
lines. It delivers optimal performance across all cases, boost-
ing the QoE for file downloading by up to 160% and the QoE
for video streaming by up to 167%.

Remark 1 (Mortise): We are the only method that consis-
tently achieves superior performance in QoE and all its con-
stituent metrics, across all application types and network sce-
narios. The only exception pertains to the retransmission ratio
of file downloading in wired scenarios, as depicted in Fig.8c.
Our retransmission ratio of 0.14% is a mere 0.09% higher than
the best one, and such a small ratio is already imperceptible
in a production environment. For fluctuating real-world wire-
less and emulated cellular scenarios, Mortise demonstrates
substantial enhancements, elevating the average QoE for file
downloading by 11.3%-73.5% (Fig.8a) and 10.8%-160.8%
(Fig.8e), and for video streaming by 19.8%-167.2% (Fig.8b)
and 11.4%-32.4% (Fig.8f). In contrast, in the more stable
wired scenarios, the improvements are slightly smaller, with
increases in the average QoE for the two applications by 7.2%-
65.3% (Fig.8c) and 3.7%-11.6% (Fig.8d). Compared to base-
lines, we can especially optimize tail cases a lot by preventing
severe degradation of any particular application metric with
explicit preference as guidance. Furthermore, Mortise, with
its capability to continuously adjust parameters, demonstrates
a performance improvement of up to 16% over Mortise Disc,
the variant limited to a few discrete parameter values. This
underscores the necessity of continuous parameter tuning.
Remark 2 (Delay-Based): Typically, delay-sensitive CCAs
(Copa MIT, Vegas) have a higher RCT in file downloading
while causing less retransmission, due to their small queuing
tolerance. In video streaming, they also get lower bitrates and
higher stall ratios. Increasing the tolerated queue length (Copa
MVEST) can achieve greater throughput, but it comes at the
expense of a higher retransmission ratio.

Remark 3 (Throughput-Oriented): In real-world wireless

scenarios, Cubic can only achieve relatively low throughput
due to its sensitivity to packet loss, a common occurrence in
our wireless production environment. It exhibits acceptable
performance in wired and cellular scenarios where packet loss
is less. BBR provides good throughput support for file down-
loading with higher retransmission ratios. However, as it does
not optimize for QoE, all of its metrics fall short compared to
Mortise, with its overall QoE trailing ours by 7-11%. In the
context of video streaming, BBR’s performance deteriorates
significantly, exhibiting greater variability and instability, and
lags behind our solution by as much as 20%.

Remark 4 (Learning-Based): Orca delivers good perfor-
mance in real-world wireless environments, but its perfor-
mance in other cases is relatively unremarkable. For instance,
its average QoE for video streaming applications in wired
scenarios is low due to its higher stall ratio. Similarly, in
cellular environments, the QoE for file downloading is also
suboptimal due to a significantly higher retransmission ratio.

Remark 5 (CCA with Adaptability): While MOCC man-
ages to achieve a low RCT in file downloading, it results in
an extremely high retransmission ratio (Fig.8a, 8e), thereby
harming its overall QoE. This could be attributed to its de-
sign as a fully learning-based method, which may fail to ad-
equately generalize [2] to unseen network environments, re-
sulting in overly aggressive sending behaviors. While the
QoE offered by DeepCC or C2TCP is generally suboptimal,
DeepCC exhibits slightly better performance under file down-
loading applications than under video streaming applications,
whereas C2TCP performs better under video streaming appli-
cations than file downloading applications. For CCA selection
methods like Antelope and Antelope Copa, their performance
can be suboptimal and unstable due to the constraints of dis-
crete options and the potential for incorrect choices. This can
manifest as a high retransmission ratio (Fig.8a) or stall ratio
(Fig.8b) under wireless scenarios. In conclusion, while offer-
ing adaptive interfaces, they lack the necessary mechanisms to
adjust parameters in accordance with application preferences
and network conditions, resulting in suboptimal performance.

5.2 Under the Hood

We now show the details of how Mortise functions. As shown
in Fig.%a, the link capacity increases substantially around the
20-second mark, accompanied by a significant increase in
fluctuations. Fig.9b and Fig.9c illustrate the temporal evolu-
tion of our chosen parameter §, the application preference
hint A, and the current delay-throughput tradeoff around this
20-second mark. As [ in this case is relatively small, we omit
it in the figures. We also derive the optimal & with offline ex-
haustive search (i.e., the Oracle in Fig.9d, 9¢). As we observe,
prior to the 20-second mark, Mortise has already converged
near the optimal operating point, and & only makes periodic
minor adjustments around its optimal value. When the link
capacity changes, with the underlying CCA increasing the
sending rate, the operating point shifts, as well as the currently
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(e) File downloading under emulated cellular scenario

(f) Video streaming under emulated cellular scenario

Figure 8: Performance distribution of 2 applications (file downloading and video streaming) under 3 network scenarios (wired, wireless, and
cellular). For a better QoE, file downloading strives for a lower RCT and a lower retransmission ratio, whereas video streaming aims for a

higher bitrate and a lower stall ratio.
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Figure 9: Details of the how Mortise functions under network
conditions change

achieved tradeoff. The extracted delay-throughput preference
hint A rises (yellow line in Fig.9c), as the application tends to
prioritize delay when the bandwidth gets high. However, the
current & value remains high, leaving the achieved tradeoff to
deviate from the optimal. Guided by the hint, we need two
additional rounds of parameter adjustments to converge, all
within 1 second. This process is significantly shorter than the
timescale of network changes, ensuring consistent tracking
of optimal operating points without oscillation.

We also display the distribution of QoE between the 10s-
20s and 20s-30s intervals in Fig.9d and Fig.%e, respectively,
compared with two more baselines, BBR and Copa. Our devi-
ation from the Oracle is minimal, with the slight discrepancy
at the tail arising from the convergence process after network
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Figure 10: CPU overhead  factor ¢ and Change-Point Detection

conditions change. In contrast, algorithms like BBR or Copa,
which use fixed and heuristically set parameters, either act
too aggressively or too conservatively under both network
conditions, delivering suboptimal QoE performance.

5.3 Overhead

To investigate Mortise’s system overhead, we compare it with
various state-of-the-art CCAs. We send traffic from a server
to a client over an emulated channel (with 48Mbps bottleneck
link and 20ms RTT) for 180 seconds and measure the aver-
age CPU utilization of these algorithms on the sender side.
To have a fair comparison and reduce the impact of initial-
ization phases required by some of these CCAs, we exclude
the first few seconds for all CCAs. As shown in Fig.10, Mor-
tise achieves very low overhead of less than 4% in total with
only 0.25% additional overhead introduced on Copa, which
is similar to two well-optimized in-kernel CCAs (i.e., Cubic
and BBR). Its overhead is much lower than that of learning-
based schemes, Antelope, Orca, and MOCC. The process of
extracting preference hints simply involves calculating par-
tial derivatives. To avoid redundant computations, we keep a



record of all models computed during the session. Given the
low frequency of extraction (at a scale of several seconds),
the overhead of this process is almost negligible.

5.4 Parameter Sensitivity

We then evaluate the sensitivity of parameters in Mortise. We
tune the adjustment step length proportional factor ¢ of the
tradeoff controller from O to 1 with the file downloading app.
As depicted in Fig.11, Mortise can still maintain high perfor-
mance across a wide parameter range, striking an effective
balance between responsiveness and stability. Given the po-
tential inaccuracies in operating point measurements, large
proportional factors ¢ could lead to recurrent oscillations.
Conversely, smaller proportional factors could also impede
convergence speed. Both will hinder the rapid convergence to
the optimal operating point, thereby diminishing performance.

We also evaluate the impact of the change-point detection
mechanism on performance. As observed, acceptable perfor-
mance can still be achieved even in the absence of this mech-
anism, outperforming other CCAs. However, relying solely
on the balancing feedback control’s inherent adjustments may
not be timely enough in certain scenarios, leading to potential
performance losses. In essence, change point detection can
facilitate a quicker adjustment.

We also evaluate the impact of buffer size on the perfor-
mance of the file downloading application under the emulated
cellular scenario. We vary the buffer size from 0.5 xBDP to
16 x BDP and present the performance in Fig.12. We observe
that smaller buffers lead to more frequent packet loss and
retransmissions, resulting in a performance decline across all
methods, with aggressive algorithms like BBR experiencing
a more pronounced drop. However, Mortise, due to its ability
to dynamically adjust its operating point based on current
network conditions to align with application preferences, can
consistently maintain optimal and more stable performance.

5.5 Fairness & Friendliness

Fairness. We first evaluate how Mortise behaves in the pres-
ence of other Mortise flows. We run Mahimahi [42] emula-
tions that let four flows using the same CCA compete for a
bottleneck link with 48Mbps bandwidth, 20ms propagation
delay, and 1 xBDP buffer. The flows start one by one with 25s
intervals. We use file downloading traffic in this subsection to
evaluate fairness when all flows have enough data to send. We
repeat the tests 5 times. Fig.13 shows the average throughput
of flows for each CCA through time. As observed, Mortise
shares bandwidth fairly between competing flows. It exhibits
slightly higher fluctuations after convergence than Copa, as
we will further explore for the optimal parameter.

We then evaluate the fairness of Mortise variants tailored
for different applications. We select two variants: Mortise File
and Mortise Streaming, using QoE models for file download-
ing and video streaming, respectively. We sequentially start
four flows, either the variants or Cubic, on the same link, and
depict the average throughput of different flows in Fig.14. As

observed, Mortise File is slightly more aggressive than the
other two. Mortise Streaming achieves comparable through-
put when competing with Cubic, while smartly being more
aggressive when competing with Mortise File. The intuition
is that conflicting application performance preferences might
be impossible to fully satisfy in certain cases, e.g., it is hard
for Mortise Streaming to achieve low latency when compet-
ing with a buffer-filling CCA. In such case, Mortise would
seek a reasonable point that provides the best possible service
quality. When achieving low latency is a lost cause, we use a
more aggressive strategy to prevent the flow from starvation.
Friendliness. We evaluate the friendliness of Mortise with
TCP CCA. We first let a flow of different CCAs com-
pete with a Cubic flow over a 48Mbps bandwidth and
1 xBDP buffer link simultaneously. We vary the RTT from
20ms to 300ms and report the friendliness ratio defined by
g;ll'v":g rr;{:g:giﬁ%?‘; in Fig.15. The results indicate that Mor-
tise File is slightly more aggressive in obtaining bandwidth
and Mortise Streaming achieves good TCP friendliness with
Cubic. In Fig.16, we illustrate the throughput of the tested
CCAs when they are competing with different numbers of
Cubic flows. The RTT is fixed to 20ms. Two variants of Mor-
tise all decrease their share when the number of competing
Cubic flows increases, while MOCC does not yield bandwidth
to more competing flows. In general, Mortise achieves good
TCP friendliness.

6 Discussion

Network-Assisted CCAs. Algorithms like ABC [20], with
rich feedback from in-network devices, could potentially
achieve better operating points (higher throughput and lower
latency) than the CCAs used in our paper. However, they still
have to face the tradeoffs between QoS metrics and lack the
capability to adjust parameters to match real-time application
preferences. This suggests that our framework can still be
applied on top of these CCAs to enhance application perfor-
mance in such scenarios.

Cooperation with learning-based CCAs. Even though
learning-based CCAs are comparatively complex, they still
possess certain hyperparameters that can modulate the control
process, such as the confidence amplifier m(t) and dynamic
change boundary ® in Vivace [16]. Our framework can still
be applied to them, merely requiring more intricate mapping
for these hyperparameters. This would also enable the adjust-
ment of their operating points, facilitating better adaptation
to application preferences. We leave the combination of this
framework with these CCAs for future work.

Short-lived flows. For short-lived flows and other application-
limited cases, the CCA is not the dominant factor in their
performance. Implementing a better scheduling scheme at
the host or in the network would significantly improve their
performance, which is orthogonal to Mortise’s design.
Ethical Consideration. We have obtained user consent for
our A/B testing on the CDN involving real users. We also
restrict how often each user is selected for the suboptimal
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Figure 13: Throughput dynamics of different flows competing on one
link for various CCAs
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of different Mortise variants (as noted above
subfigures). M.F is short for Mortise File and
M.S is short for Mortise Streaming

baselines to ensure that A/B testing does not significantly
degrade the overall user experience.

7 Related Works

CCA-selection Methods. These approaches [58, 60, 64] typi-
cally choose several latency-sensitive and TCP-competitive
CCAs to form a candidate pool and use learning-based tech-
niques to select the best possible CCA periodically. How-
ever, these limited choices cannot accommodate arbitrary
and network-dependent application preferences. Furthermore,
since different CCAs have unique internal states, additional
time is required to slow-start, probe from scratch, and con-
verge [58,64]. This incurs significant overhead when switch-
ing CCAs during runtime and can potentially cause up to 14%
extra packet loss after the switch [60]. Precisely mapping the
internal states across different CCAs is hard as their structures
and physical meanings could be largely different [60].
Multi-Objective Learning-based Congestion Control.
Building upon Aurora [25], MOCC [32] can migrate its QoS
objective through transfer learning, facilitating adaptation for
new applications. However, the migration process takes sev-
eral hundred seconds [32], making it unable to flexibly align
its tradeoff with application preferences and network condi-
tions during a session. Additionally, such fully learning-based
CCAs face issues of insufficient generalization, incorrect or
slow convergence, and significant overhead [2].

eBPF (Extended Berkeley Packet Filter). eBPF is a highly
flexible and efficient virtual machine-like construct in the
Linux kernel, which allows for running sandboxed programs
in the kernel without changing source code or loading mod-

100 150 200 250 300 2 3 4 5 6 7 8 9 10
RTT (ms)

Figure 15: Friendliness Ratio of CCAs

across different RTTs

Number of Flows

Figure 16: Flow’s throughput across
different numbers of competing flows

ules. It has been employed in several innovative ways: opti-
mize TCP parameters in datacenters [9], enhance TCP exten-
sibility [52], etc. The mature eBPF technology in the kernel
has enabled us to deploy Mortise without modifying the ker-
nel. With the rapid development of user-space eBPF technol-
ogy [23,63], we are confident that in the near future, we will
be able to implement our framework in user-space network
stacks without requiring intrusive modifications.

8 Conclusion

In this paper, we propose Mortise to continuously and quanti-
tatively adjust rule-based CCA’s parameters to always align
with application preferences for optimal QoE. Mortise in-
troduces an extractor to acquire the application’s preferred
tradeoff in real-time and a tradeoff controller to adjust the
corresponding parameters for that tradeoff. We further deploy
the framework and find it well-performed in emulation and
production. We believe it is vital to let CCAs gain fine-grained
adaptability to the ever-evolving network applications.
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Figure 18: CDFs of segment duration from passive data analysis

A Production Network Characteristic

We analyze thousands of throughput traces sampled from
production environments, segmenting the traces (after filtering
out outliers) using the PELT method [26]. We display the
duration of each segment and the ratio of change in average
throughput between adjacent segments in Fig.17. It’s apparent
that the primary segment durations fall within a range of a
few seconds to tens of seconds: over 90% of the segments last
longer than 3 seconds, while more than 95% last less than 17
seconds. The changes between segments are also substantial:
the ratio of change in average throughput exceeds 50% for
over 80% of consecutive segments, and it’s within 245% for
95% of successive segments. This data highlights that network
conditions in production environments undergo frequent and
significant changes. We have also conducted the same passive
data analysis on publicly available datasets (Salsify [19] and
Puffer [57]), and have obtained similar results, as shown in
Fig.18.

B Workload Characteristics

We measure the traffic patterns of real services in our pro-
duction environments, which illuminate the nature of request-
response messaging traffic, e.g., file downloading, web brows-
ing, etc. We present the characteristics of these real-world
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Figure 19: Distributions of request and response characteristics

services, i.e., the frequency of requests sent and the size of the
responses transferred between the client and the servers on
the CDN in Fig.19. Fig.19a shows the CDF of the time inter-
val between two consecutive requests sent by the client. The
inter-sending time between requests reflects the density and
diversity of requests initiated by the application. As we can
see, 40% of the request inter-sending intervals are less than
200ms, and 36% of them are concurrent (Oms). 80% of all
request intervals occur within one second, and any intervals
longer than this can generally be attributed to user behaviors,
such as different clicks [60]. Fig.19b shows the CDF of the
response size. As we can see, around 30% of the responses are
less than 100 KB and about 50% of the responses are larger
than 1 MB. Given the frequency of requests and the size of
responses, applications continue to exhibit a high demand for
bandwidth, characterized by an on-off pattern.

C Case Study 1: Video conference on WebRTC

We carry out our first case study on a real-world video con-
ferencing application from ACM MMSys’21 Grand Chal-
lenge [39] based on WebRTC. Specifically, we present the
implementation of Mortise on GCC [13] and the experimental
setup (§C.1). We also analyze the non-linear QoE model to
evaluate the performance of the video conferencing (§C.2)
and the evaluation results (§C.3).

C.1 Implementation & Setup

We deploy our framework on AlphaRTC [43], a fork of
Google’s WebRTC used by ACM MMSys. We implement
the communication mechanism (i.e., the aggressiveness inter-
preter) on AlphaRTC with shared memory, while the remain-
ing components of the framework are directly reused from
the implementation in the TCP kernel stack.

We choose GCC as the underlying scheme of Mortise (i.e.,
Mortise-GCC). We map the aggressiveness to the step length
(default is 1) in the additive increase state or the growth limit
(default is 1.08) in the multiplicative increase state (since
GCC will exclusively be in one of the two states when in-
creasing). We also modify the decrease rate factor (default is
0.85) correspondingly. For brevity, we omit the details of the
mapping between them.

We conduct our experiment with Mahimahi [42], using
wireless traces from Orca [2] and DeepCC [3]. To ensure
repeatability and comparability, we opt to transmit different
videos via the conferencing application instead of capturing
footage with a real camera. We set the base RTT as 40ms. We
select 10 videos with different resolutions, each playing for
120 seconds, and we repeat the tests 20 times.

C.2 Non-linear QoE model

We employ a non-linear QoE function to evaluate the per-
formance of the video conferencing application on WebRTC.
The total QoE score S, is derived from ACM MMSys [39]
and PACC [45], which consists of video quality score Syigeo,
frame delay score Sqelay and frame drop score Sgrop:



Application QoE Metric RELP with Throughput ~RELP with Latency RELP with Loss
RTC SSIM [8,19], VMAF [45], PSNR [8,56] logarithmic-like - non-linear
RTC Stall Rate [38], Deadline Miss Rate [37] - piecewise piecewise
RTC Frame Delay [45] inverse proportional piecewise piecewise
VoD Rebuffering Ratio [14,34] inverse proportional linear non-linear
Web RCT [60], PLT [42] inverse proportional linear piecewise

Table 1: The relationship with throughput, latency, and packet loss rate of QoE metrics in typical application scenarios

Svideo = vmaf (10)
d

Sdelay = max (100 — ;Vg ,0) (11)

Sarop = 100 x (1 — M) (12)

Stotal = M1 X Svideo + #2 X Sdelay +u3 X Sdrop (13)

where y; = 0.5, up = 0.3 and uz = 0.2. vmmaf denotes the
VMAPF score [30] of the received video, rating from 0 to 100.
M and d,,; denote the frame drop ratio and average frame
delay (ms) of the received video, respectively.

Given that this QoE model incorporates various QoE met-
rics, it necessitates local mapping onto throughput and latency
before extracting application preferences. Considering that
frame drops in WebRTC are primarily influenced by factors
like the encoder and the inability to adjust the bitrate in a
timely manner, we disregard this when evaluating the applica-
tion’s preference between throughput and latency. For frame
delay dy, we can have the following:

df:%+D+e (14)

where { is the frame size and 0 is the encoding delay, while
T and D are throughput and latency, respectively. Since the
transmission of frames is sequential, evaluating d,y, is nearly
equivalent to evaluating dy. For commercial hardware, the
encoding delay is mostly stable. Moreover, given that the
frame size is calculated based on throughput (i.e., bitrate)
and frame rate (i.e., fps, frames per second), % can also be

approximated as a constant. Thus, we can approximate the
¢

sum of 6 and 7 as a constant ¢ to have the following:

1
Sdelay A Max (0, 100 — 3(c+D)) (15)

The score of VMAF tends to increase with a rise in bitrate
(i.e., throughput). However, there isn’t a universally accepted
formula that delineates the relationship between the quality
score and bitrate, as factors like video resolution and view-
ing context can significantly influence the perceived quality.
Nevertheless, drawing from the VM AF-bitrate relationship
model available in [30], we can derive the following empirical
formula (the unit of T is Mbps):

Svideo = vmaf ~ 41.06+30.53 x In(T 40.1481)  (16)
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Figure 20: Detailed QoE Score of video conferencing

Hence, we can get the local mapping of QoE on throughput
and latency:

Stocal = 1(41.06430.53 x In(T +0.1481) )+

1w (100— ;(c—kD)) +u3 (100(1 — L)) a7

Then the application latency-throughput preference hint A
at operating point (7, Dy, Lo) can be extracted directly:

A — (aslocal) (aslocal> (18)
oD (To.Do) or (To,Do)
o _ Tp+0.1481

T 91.59 (To+0.1481) = — 5565 (19

Similarly, we can get the application loss-throughput pref-
erence hint B at the same operating point:

- 100u3 To+0.1481
©30.53u, 0.76325

Intuitively, as throughput progressively increases, the cor-
responding gains in video quality, achieved by throughput
enhancement at the cost of increased latency or loss, begin to
diminish. Therefore, the application’s preference gradually
transitions from high throughput to low latency and less loss.

C.3 Evaluation Results

We present the average scores for Mortise-GCC and GCC
on all 3 QoE metrics and the total QoE model in Fig.20.
Mortise-GCC demonstrates a significant enhancement across
all 3 key metrics: video quality score, frame delay score, and
frame drop score, with respective increases of 16.3%, 5.0%,
and 3.1%. These collective improvements result in a notable
10.4% increase in the overall QoE scores compared to GCC.
Mortise-GCC also exhibits more concentrated scores across
all its components, indicating a more stable performance.

(Ty+0.1481) = (20)



The performance enhancement highlights the vital role of
the application preference extractor and feedback control sys-
tem in Mortise’s design. When the bitrate is low, the extracted
application preference tends towards throughput, prompting
the feedback control system to make Mortise-GCC more ag-
gressive. Mortise-GCC then attempts to increase its bitrate
swiftly. A rapid rise in bitrate at lower bitrates can signifi-
cantly enhance video quality, thereby drastically improving
the VMAF score. While an aggressive bitrate growth may
lead to increased frame delay, the relatively small frame size
and minimal additional traffic make adjustments manageable.
In other words, the potential loss from increased frame delay
is less critical compared to the substantial potential improve-
ment in video quality. Therefore, more aggressive sending can
yield better application performance. As the bitrate escalates,
the extracted preference increasingly leans towards latency.
Consequently, the feedback control system gradually adjusts
Mortise-GCC'’s decisions to be more conservative, favoring
the maintenance of low frame delay. In this scenario, the video
quality improvement from boosting the bitrate becomes rela-
tively minor. Over-sending can significantly increase frame
delay and even cause frame loss, drastically reducing appli-
cation performance. In short, Mortise-GCC’s capability to
continuously adjust its aggressiveness in line with application
preferences allows it to achieve comprehensive performance
enhancement.

D Case Study 2: Web on QUIC

We conduct our second case study on a popular web applica-
tion from [60] based on QUIC. Specifically, we present the
implementation of Mortise and the experiment setup (§D.1).
We analyze the piecewise QoE model used by the web appli-
cation (§D.2) and the evaluation results (§D.3).

D.1 Implementation & Setup

We deploy the web application and Mortise on TQUIC, a
production-ready QUIC implementation. Similarly, we only
craft the aggressiveness interpreter with shared memory and
reuse other components. We continue to use Copa as the
underlying scheme of Mortise (i.e., Mortise-Copa) and em-
ploy the same mapping as in the TCP kernel stack. We com-
pare our approach with different CCAs, including BBR [12],
BBRv3 [11], Cubic [22] and Copa [7].

We conduct our experiment on Mahimahi [42] with traces
from Orca [2]. Following the setup outlined in [60], we create
400 unique network conditions by combining loss rates rang-
ing from 0-1%, RTTs varying between 10-300ms, and buffers
within the range of 0.5xBDP to 2xBDP, to test the applica-
tion performance under different CCAs. Each application is
subjected to workloads generated based on the distribution
provided in [60], each with a duration of 3 minutes. We repeat
the experiment 5 times.

D.2 Piecewise QoE model

RCT is a commonly utilized metric for evaluating the QoE of
web applications [60]. It measures the time interval between
the initiation of a request and the complete receipt of the
corresponding response. For a request and its corresponding
response, RCT can be calculated as:

R
RCT:T—&-D 2n

where R denotes the payload size of the response, while T
and D correspond to throughput and latency, respectively. To
achieve a minimal RCT, a larger response characterized by a
higher R favors higher throughput, while smaller responses
are more inclined towards lower latency.

Applications typically employ the average request comple-
tion time RCTy,, as their QoE model:

1 & (R
RCTag = -~ l; ( 7 +D> (22)
where n represents the number of concurrent requests and R;
denotes the payload size of the i response.

It implies that the specific QoE model would correlate with
the size distribution of concurrent requests at that moment.
Consequently, the throughput-latency preference also fluctu-
ates in accordance with the specific QoE model. Such vari-
ations in QoE models are primarily driven by user behavior
(e.g., content accessed or access patterns).

The application preference hint A at point (7p, Dg) can be
directly calculated as (since we don’t have loss metrics in our

QOE, B always equals 0):
1 Y' R;
n =i=1""

. ’ <8RCTavg ) / (aRCTavg >
oD (To,Do) or (To,Do)
(23)

Evidently, among n responses, the application’s preference
tends to lean more towards high throughput when the propor-
tion of large responses increases.

For QoE models subject to changes from non-network fac-
tors, collaboration from applications is crucial to leverage the
real-time preference effectively. Applications should commu-
nicate the evolving QoE models to the application preference
extractor during runtime.

D.3 Evaluation Results

We present the RCT distribution for all the CCAs in Fig.21.
Mortise-Copa consistently adjusts to the most suitable op-
erating point under various network conditions, demonstrat-
ing superior performance compared to all other algorithms.
Mortise-Copa exhibits an improvement of 11.5% over Copa
and a notable 25.3% over BBR. In these network scenarios,
BBRv3 and Cubic underperformed, with Mortise-Copa show-
ing substantial improvements of 75.2% and 71.0% over them,
respectively. The effectiveness of Mortise primarily stems
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Figure 21: RCT of all responses in the Web application. The
annotated value is average RCT.

from its real-time application preference extractor. In col-
laboration with the application, it continuously captures the
ever-changing QoE model to compute real-time application
preferences. The feedback control system then adjusts based
on these preferences. This capability allows Mortise-Copa
to balance RCT between large and small responses when
they occur simultaneously. In such circumstances, it adopts
a more conservative sending, ensuring that the bottleneck
queue shared by large and small responses does not grow
excessively long, thereby optimizing the RCT for small re-
sponses. In scenarios with only large responses, Mortise-Copa
would aggressively utilize bandwidth to minimize RCT.



