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Abstract
Congestion control algorithms (CCAs) critically shape the

tradeoff among throughput, latency, and loss, directly impact-

ing user Quality of Experience (QoE). However, most ex-

isting CCAs use static, heuristically chosen parameter set-

tings that fail to adapt to dynamic network states, resulting

in suboptimal QoE. Our key observation is that the optimal

CCA parameter configuration depends on real-time network

states. To bridge this gap, we propose Mortise, a real-time,

network-aware adaptation framework that dynamically tunes

rule-based CCA parameters to maximize QoE. To address the

challenges in modeling the complex parameter-QoE relation-

ship, Mortise introduces a QoS tradeoff proxy to decompose

parameter optimization into two steps: it first infers the appli-

cation’s preferred QoS tradeoff from real-time QoE gradients

and then derives the corresponding parameter settings via

control-theoretic analysis. Implemented atop TCP and evalu-

ated in both emulated and production environments, Mortise
outperforms state-of-the-art solutions, enhancing the QoE of

file downloading service by up to 73% and QoE of video

streaming service by up to 167% in real-world scenarios, with

minimal deployment overhead.

1 Introduction
The Quality of Experience (QoE) perceived by end users is

critical as it directly impacts user retention and the economic

outcomes of content providers. While traditional QoE opti-

mization primarily relies on application-layer mechanisms

such as adaptive bitrate algorithms [5, 34] and content deliv-

ery network selection [40, 49, 61], recent studies [32, 45, 60]

highlight the pivotal role of transport-layer congestion control

algorithms (CCAs) in shaping QoE. CCAs govern the trade-

offs among key network Quality of Service (QoS) metrics

— throughput, latency, and packet loss — which fundamen-

tally determine user-perceived performance, including video

stalling and interactive delay. Consequently, modern CCA

research has increasingly focused on QoE-driven design.

Whether rule-based [12, 22] or optimization-based [15, 16],

the performance of CCAs hinges on critical parameters. In

rule-based schemes, parameters such as target queue length

and window increase/decrease granularity determine how ag-

gressively the sender probes for bandwidth or backs off under

congestion. In optimization-based CCAs, the relative weights

assigned to throughput, delay, and loss in the objective func-

tion steer the algorithm’s operating point on the Pareto fron-

tier of achievable performance [50, 59]. Because the network

state fluctuates continuously, any CCA has to navigate in-
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Figure 1: An illustration of the optimal operating point shifting on

the Pareto frontier with network state.

trinsic trade-offs among the different QoS metrics. Existing

solutions heuristically preconfigure the algorithm parameters

offline, producing static QoS tradeoffs tailored to specific

applications. For instance, latency-sensitive interactive ap-

plications choose small queue targets or high delay-penalty

weights, whereas bulk transfers prioritize high throughput

through throughput-emphasis objectives.

Despite these efforts, existing heuristic and static config-

urations fail to maximize QoE in dynamic networks due to

two key limitations: (1) Heuristic parameter selection: Most

CCAs rely on empirically tuned parameters without rigor-

ously modeling the complex relationship between these pa-

rameters and QoE. This often results in suboptimal tradeoffs

in QoS metrics that misalign with actual QoE requirements.

(2) Static configuration: Using fixed parameters throughout

an entire session ignores the fact that the network states vary

largely over time, which can have an impact on the param-

eter settings. Without dynamic parameter adaptation, it can

prevent a consistently high QoE.

Our key observation is that the optimal configuration of
CCA parameter for maximizing QoE inherently depends on
real-time network states. This is because the application’s

preferred balance among QoS metrics shifts as the network

states evolve. For example, in interactive video streaming,

when bandwidth is abundant, further increasing throughput

yields diminishing QoE gains. Instead, prioritizing a shorter

network queue to reduce playback stall risk can yield a greater

improvement in user satisfaction. Thus, the optimal point on

the QoS Pareto frontier is not static but instead dynamically

moves with the network state. To consistently provide optimal
QoE, frequent and precise parameter adjustments are required
throughout a session.

However, frequent and optimal tuning of CCA parameters

faces two key challenges:

• Challenge in identifying optimal parameters: The rela-

tionship among CCA parameters, network states, and QoE

performance is highly complex and context-dependent.

For example, determining how to set Copa’s target queue

length to minimize video stalling time, or identifying

PCC’s optimal weights for throughput, latency, and loss



to reduce flow completion time, requires solving high-

dimensional, non-convex optimization problems. Exhaus-

tive search is computationally prohibitive, and existing ap-

proaches lack quantitative, interpretable models to predict

how parameter adjustments affect QoE.

• Challenge in real-time behavior adaptation: Rule-based

CCAs lack explicit mechanisms to translate desired QoS

tradeoffs into corresponding parameter settings. While

learning-based approaches facilitate QoS tradeoff adjust-

ments by modifying optimization objectives, they often

suffer from significant training and inference delays, limit-

ing their ability to update policies in response to real-time

parameter changes promptly.

To address these challenges, we propose Mortise, a CCA

parameter adaptation framework that continuously optimizes

CCA configurations to maximize QoE in time-varying net-

work conditions. Mortise builds on rule-based CCAs to sup-

port flexible and real-time adaptation, dynamically tuning pa-

rameters (e.g., target queue length, sending rate probe speed)

to maintain QoE-optimal operating points as network states

evolve. Rather than directly modeling the complex parameter-

QoE relationship, Mortise introduces a QoS tradeoff proxy

that decomposes the problem of identifying the optimal con-

figuration into two tractable sub-tasks. The underlying ra-

tionale is that operating at the optimal QoS tradeoff enables

the CCA to deliver the most favorable conditions for applica-

tion QoE consistently. At a high level, Mortise first infers the

application’s desired QoS tradeoff from real-time QoE gra-

dients, then adjusts CCA parameters to align with this target.

To compute the exact parameter values, Mortise employs a

control-theoretic analysis of system dynamics in rule-based

CCAs, deriving closed-form mappings between parameters

and their corresponding resulting QoS tradeoffs.

We implement Mortise on TCP and evaluate with both em-

ulation and the CDN production environment at one of the

world’s largest Internet companies. Our real-world A/B test-

ing across 128 cities worldwide over 3 months demonstrates

that we can enhance the average QoE of our file downloading

service by 11%-73% and the average QoE of video stream-

ing services by 20%-167%, compared to other baselines in

wireless scenarios, with negligible deployment overhead.

In summary, we make the following contributions:

• By demonstrating the mismatch between CCA and ap-

plication, we identify the necessity for CCAs to continu-

ously and quantitatively adjust their parameters to cater to

network-dependent application preferences. (§2)

• We develop a user-friendly, deployable framework that ex-

tracts application preferences in real-time and dynamically

adjusts the parameters of CCAs for them to optimize for

QoE performance consistently. (§3)

• We implement (§4) and evaluate our framework with both

trace-driven emulations and real-world production tests

(§5), demonstrating its capability to adapt to application

requirements at all times.
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Figure 2: Operating points of different CCAs under different

scenarios: (a) is stable, and (b) is more fluctuating.

2 Background & Motivation
Each congestion control algorithm (CCA) relies on a set of

parameters to shape its control strategy, whether rule-based or

optimization-based. For example, in BBR, specific parameters

dictate the magnitude of probing, while in PCC, the weight

factors in the objective function determine how different QoS

metrics are balanced. Adjusting these parameters can fun-

damentally alter a CCA’s behavior, enabling it to operate at

entirely different points in the performance tradeoff space. For

example, modifying the parameters of the delay-based CCA

Copa can yield either a delay-sensitive variant (Copa MIT [7])

or a throughput-focused variant (Copa MVFST [18]), as illus-

trated in Fig. 2. This highlights the critical role of parameter

configuration in determining CCA performance.

This work explores how to configure CCA parameters to

achieve high QoE in dynamic networks consistently. §2.1

presents key observations that motivate the need for dynamic

and network-aware parameter adjustment. §2.2 analyzes the

limitations of existing solutions that rely on static and heuris-

tic configuration. §2.3 introduces our core idea for enabling

real-time, optimal parameter adaptation to approach the opti-

mal operating point under dynamic network conditions.

2.1 Observation
Observation #1: CCAs face the tradeoff between through-
put, delay, and loss. In theory, optimal CCA performance is

achieved when the sending rate perfectly matches the avail-

able bandwidth while maintaining an empty network queue.

This ideal state-known as Kleinrock’s point [27]-maximizes

throughput while minimizing both delay and loss.

Achieving Kleinrock’s point consistently is practically im-

possible [24] due to unpredictable network fluctuations and

inevitable control loop delays. To adapt to bandwidth changes,

CCAs have to actively probe the network state by adjusting

their sending rates. These probes help infer key states such

as available bandwidth and propagation delay, which inform

subsequent congestion control decisions.

However, probing is inherently uncertain. Increasing the

sending rate might reveal unused bandwidth, or it could sim-

ply lead to increased queuing delay. This uncertainty leaves

CCAs’ decision-making process facing a dilemma between

conservative and aggressive control strategies. While a con-

servative sending can maintain low latency and minimal loss,



it tends to underutilize the available bandwidth and obtain

lower throughput. Conversely, an aggressive sending could

make fuller use of the available bandwidth but may suffer

from longer queuing delays and even cause packet loss.

As a result, each CCA operates at a different operating

point along the tradeoff spectrum, depending on its con-

trol strategy. We define this operating point as the resulting

transmission performance, including throughput T , delay D,

and loss L under the current network states, represented by

P(T,D,L). These operating points typically scatter across an

area bounded by a Pareto frontier [44, 48, 59], as illustrated

in Fig.2, indicating that no single CCA can outperform all

others across all performance metrics. Any improvement in

one dimension often comes at the expense of another.

Observation #2: The optimal operating point P∗ depend
on network state. The optimal operating point, denoted as

P∗(T,D,L), represents the best tradeoff among throughput,

delay, and loss that maximizes QoE. This point lies on the

Pareto frontier and is illustrated as the red star in Figure 1.

Our key observation is that P∗ is not fixed, but varies dynami-

cally with the network state, which we define as the statistical

characteristics (e.g., mean, variance, skewness) of network

features such as available bandwidth, latency, and packet loss.

We illustrate this with two examples.

The first example involves the level of network bandwidth.

• High bandwidth scenario: When the available bandwidth is

high (e.g., resulting in a high bitrate for video streaming),

further increasing throughput produces diminishing QoE

gains, i.e., video quality metrics such as SSIM [19, 54] or

VMAF [30] tend to saturate. In this case, a more conserva-

tive configuration that prioritizes lower latency and reduced

packet loss can improve user experience more effectively

than aggressively pushing for maximum throughput.

• Low bandwidth scenario: When bandwidth is limited, QoE

becomes highly sensitive to throughput changes. Even

modest increases in bitrate can lead to significant improve-

ments in user-perceived video quality. In such cases, a more

aggressive strategy that pushes the sending rate closer to

the estimated available bandwidth is more beneficial.

This behavior arises from the nonlinear relationship be-

tween QoE and QoS. As shown in Fig.3, video quality im-

proves sharply with bitrate at low rates but flattens out at

higher rates. Thus, when throughput is already high, shifting

focus to latency and loss control can enhance responsive-

ness with little impact on video quality. Conversely, under

constrained throughput, improvements in bitrate have an im-

portant effect on user experience and should be prioritized.

Another example concerns bandwidth volatility:

• Stable network conditions: When bandwidth exhibits low

variability, it is generally safe to increase the sending rate

close to the estimated mean bandwidth without risking

sudden queuing delays.

• Fluctuating network conditions: In highly variable net-

works, aggressive sending can lead to rapid queue build-up

and latency spikes due to unexpected bandwidth drops.

In this case, a conservative approach that leaves room for

potential drops is crucial to prevent QoE degradation.

These examples illustrate that the optimal tradeoff among

QoS metrics and thus the optimal operating point is inherently

network-dependent, shaped by the nonlinear relationship be-

tween QoS and QoE under varying network conditions.

Observation#3: Network states experience substantial
changes frequently within a session. Previous studies [17,

46] have shown that network states typically fluctuate on the

time scale of tens of seconds. Our measurements from pro-

duction environments and passive data analysis on datasets

from Salsify [19] and Puffer [57] also confirm this observa-

tion (detailed distributions are presented in the Appendix A).

We find that the duration of segments under the same network

conditions mainly falls within the range of 5-60s, and signif-

icant changes, such as bandwidth changes exceeding 50%,

often occur between segments. The frequent and substantial

shifts in network conditions necessitate real-time identifica-

tion and achievement of optimal operating points, which could

potentially be located anywhere on the Pareto frontier.

Conclusion: Static parameter settings are insufficient for
maximizing QoE in dynamic network environments. To consis-
tently achieve optimal performance, CCAs must adapt their
parameters in real time to track the optimal operating point
P∗, which varies dynamically with the evolving network state.

2.2 Limitation of Existing Solutions
CCA design. Modern CCA can be broadly categorized into

two types: rule-based and optimization-based. Rule-based

CCAs (e.g., BBR [12], Copa [7]) rely on explicit network

measurements to guide control actions, while optimization-

based approaches (e.g., PCC [16], Aurora [25]) formulate

congestion control as an objective maximization problem.

In both cases, the design typically involves some form of

network modeling to guide decision-making. Despite these

advances, most CCAs still rely on static parameter configu-

rations, which are ill-suited for dynamic and heterogeneous

application requirements.

CCA adaptation approach. Different applications have vary-

ing QoE requirements: some applications prioritize low la-

tency, while others prefer high throughput. To better accom-

modate such diverse needs, recent studies have introduced

CCA adaptation frameworks. For example, Antelope [64],

Floo [60], and Nimbus [21] can dynamically switch between

CCAs or operational modes based on predefined objectives,

enabling coarse-grained adaptation. Other approaches, such

as MOCC [32], apply multi-objective reinforcement learning

with transfer learning to gradually adjust optimization goals

across different applications, though the adaptation typically

takes several minutes. Additionally, methods like DeepCC [3]

and C2TCP [1] expose tunable parameters to applications, al-

lowing them to steer operating behavior more directly. While

these methods offer configurable knobs that enable adaptation
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among QoS metrics, they fall short in guiding how to set these

parameters to optimally maximize QoE. As a result, they still

suffer from sub-optimal QoE.

However, whether through fixed CCAs or adaptive frame-

works, existing solutions fall short in supporting continuous,

fine-grained parameter tuning for optimal QoE in evolving

network conditions. Their limitations are summarized below:

(1) Heuristic and static parameter configuration fail to
maximize QoE. These solutions set parameter configurations

by intuition or in a qualitative manner, and won’t change them

during a session. For instance, to serve video conferencing ap-

plications, they select delay-sensitive CCAs [7, 10] or assign

a higher weight to the latency term in the objective func-

tion [32, 45]. Meanwhile, for the web browser applications,

they switch to throughput-oriented CCAs [12] or assign a set

of parameters to make CCAs probe more aggressively [18].

They all lack an accurate quantitative understanding of

how parameters should be configured. The heuristic configu-

rations can result in imprecise parameter settings in rule-based

algorithms or imprecise weight factors in learning-based algo-

rithms. Moreover, these configurations lack explicit guidance

on how to make adjustments during a session, which leads

existing solutions to use a fixed set of parameter configura-

tions throughout a single session. As a result, whether a single

CCA or an adaptive method, the operating points they achieve

under diverse network conditions often deviate from the opti-

mal points expected to maximize application QoE, as the two

Copa variants displayed in Fig.4.

(2) They have limited flexibility and exhibit poor adaptabil-
ity to changes in parameter configurations. As mentioned

above, existing solutions largely depend on learning-based

methods for adaptation, with a QoS optimization objective

as their guiding principle. While transfer learning provides

an intuitive and straightforward way to adjust inherent QoS

objectives to achieve different operating points, it struggles

to support frequent adaptations with low overhead during a

session. On one hand, the transfer process can take several

minutes or even hours [25, 32, 60], hindering the ability to

swiftly adjust within a session to align with the rapid changes
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in network conditions. On the other hand, the resource over-

head for training and performing transfer learning is substan-

tial [2, 17], making it untenable in a production environment

due to its high cost. Furthermore, CCA selection schemes are

limited to a few discrete operating points, preventing them

from maximizing arbitrary optimization objectives [32].

2.3 Basic Idea
To support frequent, flexible, and low-overhead adaptation,

our framework builds on rule-based CCAs which incorpo-

rate explicit network models in decision-making, such as

BBR [12] and Copa [7]. Compared to learning-based meth-

ods [32, 64], rule-based CCAs offer significantly higher com-

putational efficiency, making them well-suited for real-time

operation [2, 17]. Moreover, we observe that with careful pa-

rameter tuning, rule-based CCAs can achieve Pareto-optimal

performance competitive with learning-based methods.

However, dynamically tuning these parameters to maintain

QoE-optimal behavior under evolving network conditions

consistently presents significant challenges:

• Modeling Complexity: The relationship between CCA pa-

rameters, network states, and QoE is highly complex, mak-

ing it difficult to derive an analytical formulation. The joint

parameter space is vast, making real-time optimization

computationally expensive.

• Metric Mismatch: CCAs optimize for QoS metrics

(e.g., throughput, latency, loss), whereas QoE depends on

application-level semantics (e.g., SSIM, flow completion

time).

• Feedback Latency: QoE metrics (e.g., video stall ratio) typ-

ically require extended observation periods and often only

become available upon session completion [14]. This in-

herent delay makes QoE metrics poorly suited as feedback

signals for real-time control systems, as they introduce

both latency and ambiguity in the control loop.

To address these challenges, we introduce the QoS tradeoff

as a proxy, rather than attempting to model QoE end-to-end.

This tradeoff characterizes the proportional relationship be-

tween throughput, latency, and packet loss. Formally defined

in §3.2, it quantifies how variations in throughput translate

into corresponding changes in delay and loss. For each appli-

cation, the preferred tradeoff expresses the maximum accept-

able degradation in latency and packet loss for a given increase

in throughput, ensuring QoE is preserved. By framing QoE

optimization as a problem of dynamically adjusting to the pre-

ferred QoS tradeoff, we can leverage the native control knobs



of rule-based CCAs (e.g., congestion window, target queue

length), avoiding the need to directly map high-level QoE

metrics (e.g., SSIM or stall ratio) to low-level parameters.

This tradeoff proxy is effective because operating at the

optimal QoS tradeoff enables the CCA to consistently func-

tion at the most favorable operating point for application QoE.

Intuitively, the tradeoff corresponds to the slope of the tangent

line at the current operating point on the Pareto frontier, as

illustrated in Fig.1. Given the convex nature of the Pareto

frontier, tradeoff changes are monotonic. Let point Pq de-

note the operating point that aligns with the application’s pre-

ferred QoS tradeoff. As illustrated in Fig.5, pursuing higher

throughput than Pq (i.e., moving to points left of Pq) results in

greater QoE penalties (from increased delay or packet loss)

while yielding diminishing QoE gains from the additional

throughput. As a result, these points provide lower overall

QoE than Pq. Conversely, for points to the right of Pq, increas-

ing throughput contributes more to QoE improvement than

the associated penalties. Thus, these points also deliver lower

QoE compared to Pq, as the application would benefit from

moving closer to Pq. Therefore, Pq is the optimal operating

point P∗ that optimally balances throughput, delay, and loss

to maximize application QoE.

Moreover, the tradeoff proxy simplifies a complex, high-

dimensional control problem into a manageable scalar metric.

For example, optimizing video QoE no longer requires model-

ing how Copa’s queue length influences SSIM. Instead, it re-

duces to tracking the real-time relationship between through-

put and delay. These tradeoffs can be computed from instan-

taneous QoS measurements (e.g., RTT gradients, through-

put variance), bypassing the need for delayed feedback from

application-level QoE metrics like stall ratio.

Thus, we use the QoS tradeoff as a bridge between applica-

tion QoE requirements and CCA parameter tuning, as shown

in Fig. 6. This approach decouples the optimization process

into two layers: First, it derives the application’s real-time

preferred QoS tradeoff, which serves as a directional signal

and target for control. Then, it adjusts the CCA parameters

to steer the system toward an operating point that achieves

this tradeoff, thereby maximizing QoE. This design preserves

the simplicity and deployability of rule-based CCAs while

enabling continuous, Pareto-optimal adaptation to dynamic

application-level QoE demands.

3 Design
We first provide an overview of the design (§3.1) and then

elaborate on our design components in §3.2 and §3.3.

3.1 Overview
For Mortise to achieve real-time optimal parameter adjust-

ment, there are mainly two challenges:

(1) How to extract the tradeoffs preferred by QoE under cur-
rent situations? The QoE model is dynamic and cannot simply

be fed to the CCA at the start of session. On the one hand,

QoE model may suggest very different preferences under dif-

Figure 6: High-level block diagram of Mortise

ferent network conditions. On the other hand, QoE model

would also be influenced by real-time non-network applica-

tion factors (e.g., video resolution [33, 62], content [14, 53]

or viewing context [62]). In response, we design an applica-
tion preference extractor in §3.2 that uses the ratio of partial

derivatives to dynamically extract the preferred QoS trade-off

hints of various kinds of applications.

(2) How to identify the CCA parameter configuration to
achieve the preferred tradeoff? It is hard to directly determine

the optimal CCA parameter, as it affects both the operating

point and the preferred QoS tradeoff in a cross-dependent

manner. Under the current operating point, when we tune the

CCA towards the preferred QoS tradeoff, we would move

to a new operating point, and the preferred QoS tradeoff at

that point could also be different. In response, we design a

tradeoff controller that iteratively tunes the CCA parameter

based on the current QoS tradeoff in §3.3 and converges to

the optimal CCA parameter in typically a few RTTs.

We present the overall workflow of Mortise in Fig.6. In

essence, Mortise’s application preference extractor obtains

real-time preferred tradeoffs from the application’s QoE

model, taking into account the current operating point. The

tradeoff controller then uses these tradeoff preferences as

hints to adjust parameters, also based on the current operating

point. Through iterative repetition of this process, Mortise is

ultimately able to converge to the optimal operating point that

delivers the best QoE.

3.2 Application Preference Extractor
We start by getting the QoE models of the application.

Getting Explicit QoE Models. An explicit QoE model would

greatly help us calculate the application preference. Many ap-

plications already have well-established explicit QoE models

developed through extensive research and production deploy-

ment experience, such as video streaming [19, 34]) and web

browsing [42, 60]. Some have implicit QoE models (e.g.,

Markov-chain [14] or learning-based [45]), which could also

be approximated by explicit ones (e.g., converting them to de-

cision trees [36]). In such cases, Mortise’s only requirements

for application integration are that they provide their QoE

models at connection initialization and inform again when



application factors change.

Extract the Preference Hints. With explicit QoE models,

we now extract the preferred tradeoff. Inspired by local lin-

earization, we observe that the ratio of partial derivatives (we

denote as the hint) could well reflect the preferred QoS trade-

off. Take the ratio of the partial derivative of latency to that of

throughput as an example; it represents the maximum latency

increase that an application can tolerate (and feel worthwhile)

to increase its throughput. Also, we observe that most QoE

models are differentiable or only with discontinuities of the

first kind [28, 29], making derivatives practical.

We now present the mathematical expression. we represent

the QoE model as a function F composed of n metrics Mi:

QoE = F(M1,M2, . . . ,Mn) (1)

Given that each metric Mi is directly associated with through-

put, delay, or loss, we can express the QoE as its correspond-

ing local QoS format, a function f on throughput T , delay D,

and loss L:
QoS = f (T,D,L) (2)

Assuming the current operating point is Pc(Tc,Dc,Lc), where

throughput, delay, and packet loss are Tc, Dc, and Lc respec-

tively, we can calculate the partial derivatives in each direction

by solving the gradient:

∇ f =
(

∂ f
∂T ,

∂ f
∂D ,

∂ f
∂L

)
(Tc,Dc,Lc)

Hence, we can calculate the two application preferred trade-

off hints λ (for delay-throughput tradeoff) and β (for loss-

throughput tradeoff) by the ratio of partial derivatives as:

λ =

∣∣∣∣( ∂ f
∂D

)
(Tc,Dc,Lc)

/(
∂ f
∂T

)
(Tc,Dc,Lc)

∣∣∣∣
β =

∣∣∣∣( ∂ f
∂L

)
(Tc,Dc,Lc)

/(
∂ f
∂T

)
(Tc,Dc,Lc)

∣∣∣∣
(3)

Extend to Statistical Metrics. In practice, applications may

employ statistical metrics, such as average-based [60] or

distribution-based (jitter, percentile, etc.) [37, 38]. The afore-

mentioned form remains applicable for metrics, such as

average-based metrics, which can be expressed as a linear

combination of some simple QoE metrics. However, for

distribution-based metrics, this form falls short of accurately

capturing such situations. Consequently, we extend T,D,L
to vectors T,D,L to symbolize the distribution of through-

put, delay, and loss, respectively. Similarly, we can derive the

extended application preference hint λext and βext :

λext =
∣∣∣Δ f (�Tc,�Dc +Δ�D,�Lc)/Δ f (�Tc +Δ�T,�Dc,�Lc)

∣∣∣
βext =

∣∣∣Δ f (�Tc,�Dc,�Lc +Δ�L)/Δ f (�Tc +Δ�T,�Dc,�Lc)
∣∣∣ (4)

If none of the metrics take into account the distribution of

throughput, latency, or loss, then λext and βext naturally reduce

to the λ and β in Eq.3. For details on how the extractor works

on the specific QoE models of real-world applications, we

min

max

Pc

Pn
 Current Operating Point
 Next Operating Point
 Optimal Operating Point
 Practical Tradeoff Curve
 Tradeoff τ at Operating Point

τc

τn

Th
ro

ug
hp

ut

Delay

P*

...

Figure 7: An illustration of how tradeoff controller works. P and τ
denote the operating point and the latency-throughput tradeoff

refer the readers to §4, Appendix C.2 and Appendix D.2.

From our online observations, the extracted hints can basi-

cally correspond to the actual application preferences and

user experiences, providing valuable guidance for adjust-

ing CCA strategies. We leave empirical analysis on passive

datasets [57] for more comprehensive validation in the future.

3.3 Tradeoff Controller
As mentioned in §3.1, we could not directly solve the opti-

mal parameters for unknown network conditions. To address

this challenge and inspired by coordinate descent [55], we

adopt a balancing feedback control mechanism with an itera-

tive two-step strategy. We first measure the current operating

point and the delay-throughput and loss-throughput tradeoffs

it achieves. We then obtain the preferred tradeoffs (the hints)

that the application aims to reach at this operating point from

the extractor. Based on the discrepancy between them and

the current tradeoffs, we identify the next tradeoffs to align

more closely with the desired preference. Subsequently, we

estimate the parameters to achieve the tradeoffs and set them

to the CCA, pushing the CCA to a new operating point. Fol-

lowing this, we re-estimate the new preferred tradeoffs at

the new point and continue this cycle of balancing feedback

control. This approach enables our estimation of application

preferences (i.e., hints) to progressively approach the actual

preferred tradeoff at the optimal point, allowing us to con-

tinually reduce the discrepancy and converge to the optimal

operating point that delivers maximum QoE.

Measure Tradeoff of Current Operating Point. Initially, we

need to measure the tradeoffs at the current operating point

Pc (represented by the yellow diamond in Fig.7), such as the

delay-throughput tradeoff τc indicated by the slope of the

yellow dashed tangent line in Fig.7, to compare them with the

application’s preferences hints. By measuring the throughput,

delay, and packet loss at the current and nearby operating

points, we can approximate the tradeoffs (the tangent lines)

at the current operating point using a secant method.

In production environments, measurement noise and net-

work fluctuations always hinder us from obtaining accurate

results in a short period of time. In other words, the longer we

measure, the more accurate the results we can obtain. Thus,

we adapt the time period for measuring the tradeoffs. When

we are still far from the optimal point, rough results are suffi-

cient to guide the direction, so we measure fewer rounds to

save time. As we approach the optimal point, we measure for

longer periods to obtain more accurate results for fine-tuning.



The Balancing Feedback Control. Once we have measured

the tradeoffs at the current operating point and extracted the

real-time application preference hints λ and β at this point,

we can proportionally adjust the CCA’s tradeoff based on

their discrepancy. We set the adjustment step length as a pro-

portional factor σ multiplied by the discrepancy. With the

tradeoff τc at the current operating point, the tradeoff τn of the

next operating point Pn (represented by the green dashed line

at the green triangle in Fig.7) can be calculated as follows:

τn = σλ+(1−σ)τc (5)

Following the Averaging Principle [6], we default σ to 0.5,

aiming to strike a balance between rapid reaction and stability.

Given the inaccuracies in measuring the tradeoff of the oper-

ating point, we limit the frequency of adjustments when the

discrepancy with the preferred tradeoff is sufficiently slight,

thereby avoiding oscillations. Still, the controller persistently

monitors the tradeoffs, preparing for adjustments in response

to changes in network conditions or application preferences.

The Parameters to Adjust. After determining the next trade-

off, we need to achieve it by adjusting the parameters. We

observe that modern rule-based CCAs [7,12] mainly influence

the CCA’s operating point and tradeoffs by influencing either

steady-state queue length (i.e., equilibrium point) or the tran-

sient probing speed (i.e., path to converge to the equilibrium

point). For different CCAs, the parameters influencing these

two factors are those that Mortise can adjust. Also, as illus-

trated by the blue dashed curve in Fig.2, the possible tradeoff

curve obtained by adjusting these parameters can approximate

the Pareto frontier. While we acknowledge the influence of

other parameters, these two types are more straightforward to

comprehend and control. Thus, this work primarily focuses

on them. While the accurate mapping between parameters

and QoS tradeoffs is initially unknown under new network

conditions, rough parameter adjustments that match the direc-

tion guided by the hints are sufficient. As the historical data

accumulated through iterative adjustments, the panorama of

the mapping would be clearer, allowing us to make accurate

decisions for desired QoS tradeoffs. For the detailed process

of how the feedback control advances to convergence, we

refer the readers to §5.2.

Change-Point Detection. The feedback control is adequately

equipped to achieve rapid convergence in common scenarios.

However, for certain transient scenarios, such as drastic band-

width degradation, worsening network conditions can delay

the control loop for tradeoff measurements and feedback ac-

quisition. Additionally, historical data can interfere with the

controller. Together, they prevent the CCA from converging to

the new optimal operating point on time. Hence, we introduce

an online change-point detection (CPD) mechanism [4] on

bandwidth. This mechanism prompts the controller to discard

historical records and initiate a broad exploration under new

network conditions, facilitating faster convergence. Although

the CPD may yield false positives due to outliers, it only trig-

gers a new exploration, with the primary adjustments still

governed by the balancing feedback control. In other words,

incorrect detection exerts minimal impact on performance.

4 Implementation & Experiment Setup
Underlying CCA and stack. We implement Mortise1 on

Copa, since it has a clear network model, a simple internal

mechanism, and an explicit parameter δ that directly influ-

ences both the steady-state queue length and the probing

speed. Our implementation builds on Linux kernel TCP with

eBPF (Extended Berkeley Packet Filter) [31, 35], eliminat-

ing the need for kernel modifications. Although we focus on

Copa for detailed analysis, Mortise is a general-purpose frame-

work whose design principles can naturally extend to other

CCAs. Additional prototypes on GCC for WebRTC [43] (Ap-

pendix C) and Copa for QUIC [51] (Appendix D) demonstrate

over 10% improvements in both cases, validating Mortise’s

generality. We leave further exploration for future work.

Low system overhead and ease of Deployment. Our user-

space controller exchanges data with the in-kernel CCA via

ebpf_map, which functions as shared memory. The CCA uses

this map to report the measured information of the current

operating point, while the controller uses it to send the param-

eters to the CCA. Given that our control and communication

occur at the RTT level rather than on a per-packet basis, the

data can be aggregated and communicated at low frequency.

This asynchronous communication method fully meets our

requirements and incurs minimal communication overhead.

The main part of the framework implemented for Linux ker-

nel TCP can be reused across stacks and applications (for

QUIC, WebRTC). Additionally, our alterations to the CCA

are minimal. In the case of the 1000-LoC (line of code) Copa,

the feature of applying parameters requires a mere 15 LoC,

and reporting network measurements only 20 LoC.

Applications and their QoE model settings. We evaluate the

CCAs under two types of applications: (1) a file downloading

application (including web browsing), where the client sends

a series of requests and the server provides responses accord-

ingly. (2) a streaming video-on-demand application, where

the client employs the VLC Adaptive Bitrate (ABR) algo-

rithm [41], a method combinedly based on current playback

buffer and throughput estimation, to download video chunks

from the server. We set up different QoE models for them

based on the characteristics of the applications and empirical

values in the production environment as follows:

(1) File Downloading. For file downloading applications, the

main concerns are how fast the file request is completed (re-

flected in the normalized RCT) and traffic costs for the CDN

to complete the request (reflected in the retransmission ratio).

Thus, the QoE model is set to be:

QoE = R
RCT (1−P(r)) (6)

1Open sourced at: https://github.com/BobAnkh/Mortise



where R is the request size, r is the retransmission ratio, RCT
is the request completion time, and P(r) is a penalty function

for retransmissions:

P(r) = ar+b, (a,b) =

⎧⎪⎪⎨
⎪⎪⎩
(0,0), 0 ≤ r < 0.05

(4,−0.2), 0.05 ≤ r < 0.1

(1,0.1), 0.1 ≤ r < 0.4

(0,0.5), 0.4 ≤ r ≤ 1

The intuition behind this piecewise function is that a few re-

transmissions will not impact QoE, while the penalty on QoE

becomes progressively more severe with increasing volume

of retransmissions. We further translate the QoE model to be

a function of QoS metrics (i.e., throughput T , delay D, packet

loss rate L) to get the QoS formula:

QoS = f (T,D,L) = R[1−(aL+b)]
R/T+D+DL/2

We can further extract the application preference hints λ and

β given current operating point Pc(Tc,Dc,Lc):

λ =
∣∣∣ ∂ f

∂D

/
∂ f
∂T

∣∣∣= T 2
c (Lc+2)

2R

β =
∣∣∣ ∂ f

∂L

/
∂ f
∂T

∣∣∣= Tc[2a(R+TcDc)−(b−1)TcDc]
2R(1−aLc−b)

(7)

QoS tradeoffs are not only influenced by current network

conditions but also by the size of the requested content.

(2) Video Streaming. The QoE of video streaming applications

is mainly decided by the video quality (reflected in the bitrate)

and the stall events (reflected in the stall time) [34, 47]:

QoE = ∑N
n=1 q(Bn)−ρ∑N

n=1 Tn (8)

for a video with N chunks. Bn represents the bitrate of chunkn
and q(Bn) maps that bitrate to the video quality perceived by

a user. Tn represents the stall time that results from download-

ing chunkn at bitrate Bn, and ρ is a weight factor to balance

between them (we empirically set ρ = 2.66).

q is set as a logarithmic function, q(Bn) = log(Bn/Bmin),
where Bmin is the minimal bitrate (400 kbps in our app). The

intuition is that bitrate increase would be marginal to the

perceived quality when it is already high. Stall occurs when

the download time exceeds the remaining playback buffer;

thus, it can be modeled as a piecewise function. Hence, we

can get the empirical QoS formula:

QoS = f (T,D,L) = log( T
Bmin

)−ρ ·max(0, C
T +D(1+L)−V )

C is the chunk size and V is the length of the current playback

buffer. We can also extract the preferred QoS tradeoff hints:

(λ, β) =

{(
ρT 2

0 (1+L0)
T0+ρC ,

ρT 2
0 D0

T0+ρC

)
if C/T0 +D0(1+L0)>V

(0, 0) otherwise
(9)

The QoS tradeoff is influenced by current network condi-

tions, ABR decisions, video slicing strategies, and user play-

back buffering policies.

Baselines. To evaluate the performance and effectiveness of

Mortise, we compare it with existing solutions as follows:

• Throughput-oriented CCA:

1. Cubic [22]: a classic loss-based heuristic CCA.

2. BBR [12]: a CCA controls the rate with an explicit

model that estimates available bandwidth and RTT.

• Delay-based CCA:

3. Vegas [10]: a classic delay-based heuristic CCA.

4. Copa MIT [7] and Copa MVFST [18]: two Copa vari-

ants adopting δ = 0.5 for low latency and δ = 0.04 for

high throughput, respectively.

• Learning-based CCA:

5. Orca [2]: a single-objective RL-based CCA combined

with the rule-based CCA (Cubic).

• CCA with Adaptability:

6. MOCC [32]: a multi-objective RL-based CCA with

transfer learning to migrate to new objectives.

7. Antelope [64]: a CCA selection method on Cubic, BBR,

Copa2, etc.

8. Antelope Copa: a CCA selection method on five differ-

ent Copa profiles (different δ values).

9. C2TCP [1]: a flexible cellular CCA with an interface to

set desired average target delay requirements.

10. DeepCC [3]: an RL-based cellular CCA with an inter-

face to set desired average target delay requirements.

• Our Solution:

11. Mortise Disc. we tweak our complete implementation

to select from only five discrete δ values for adjustment.

12. Mortise, our complete implementation which can assign

arbitrary δ to the underlying Copa, based on require-

ments.

To ensure a fair comparison, we retrain or fine-tune each

learning-based CCA for different applications.

Real-World A/B Testing. We have deployed Mortise for A/B

testing in our CDN production environment in one of the

largest companies to serve real applications (file downloading

and video streaming) across the Internet with real cross traffic

and packet schedulers. All modifications are on server-side,

requiring no client-side changes. We evaluate in both wired

and wireless scenarios. For each incoming connection, we

randomly assign one of the baselines to handle all traffic on

that connection. To encompass a wide range of real-world

situations, our A/B test covered 128 cities all over the world

and extended over more than 3 months.

Emulation. We also conduct offline experiments3 via

Mahimahi [42] for detailed analysis with wireless traces from

Orca [2], including 3 common scenarios (walking, driving,

and stationary). We set the minimum RTT to 20ms and the

buffer size to 150KB. We let each CCA operate under real ap-

plications to send traffic over these traces, repeating the tests

5 times. For file downloading, we replay real workloads cap-

tured from production. The characteristics of the workload,

i.e., request interval and response size, are left in Appendix B.

2We retrain it to include Copa as a candidate CCA for fair comparison
3Emulate on a Dell R740 server with 80 CPU cores, 384GB RAM.



5 Evaluation
We evaluate Mortise with emulation and real-world tests from

various aspects, including performance (§5.1 and deep-dive

understanding in §5.2), overhead (§5.3), parameter sensitivity

(§5.4), and fairness and friendliness (§5.5).

5.1 Performance
We present that Mortise consistently achieves superior QoE

performance over various network scenarios for different ap-

plications. Fig.8 shows the performance distribution of all

algorithms tested across two applications and three network

scenarios. For file downloading, we display the distribution

of request completion time (RCT), retransmission ratio, and

overall QoE; for video streaming, we illustrate the distribution

of bitrate, stall ratio, and overall QoE.

Main Takeaway: Existing solutions may perform well for

certain application or network scenarios, but perform poorly

in others. In contrast, Mortise consistently provides the most

suitable operating points for different applications across vari-

ous network scenarios, significantly outperforming other base-

lines. It delivers optimal performance across all cases, boost-

ing the QoE for file downloading by up to 160% and the QoE

for video streaming by up to 167%.

Remark 1 (Mortise): We are the only method that consis-

tently achieves superior performance in QoE and all its con-

stituent metrics, across all application types and network sce-

narios. The only exception pertains to the retransmission ratio

of file downloading in wired scenarios, as depicted in Fig.8c.

Our retransmission ratio of 0.14% is a mere 0.09% higher than

the best one, and such a small ratio is already imperceptible

in a production environment. For fluctuating real-world wire-

less and emulated cellular scenarios, Mortise demonstrates

substantial enhancements, elevating the average QoE for file

downloading by 11.3%-73.5% (Fig.8a) and 10.8%-160.8%

(Fig.8e), and for video streaming by 19.8%-167.2% (Fig.8b)

and 11.4%-32.4% (Fig.8f). In contrast, in the more stable

wired scenarios, the improvements are slightly smaller, with

increases in the average QoE for the two applications by 7.2%-

65.3% (Fig.8c) and 3.7%-11.6% (Fig.8d). Compared to base-

lines, we can especially optimize tail cases a lot by preventing

severe degradation of any particular application metric with

explicit preference as guidance. Furthermore, Mortise, with

its capability to continuously adjust parameters, demonstrates

a performance improvement of up to 16% over Mortise Disc,

the variant limited to a few discrete parameter values. This

underscores the necessity of continuous parameter tuning.

Remark 2 (Delay-Based): Typically, delay-sensitive CCAs

(Copa MIT, Vegas) have a higher RCT in file downloading

while causing less retransmission, due to their small queuing

tolerance. In video streaming, they also get lower bitrates and

higher stall ratios. Increasing the tolerated queue length (Copa

MVFST) can achieve greater throughput, but it comes at the

expense of a higher retransmission ratio.

Remark 3 (Throughput-Oriented): In real-world wireless

scenarios, Cubic can only achieve relatively low throughput

due to its sensitivity to packet loss, a common occurrence in

our wireless production environment. It exhibits acceptable

performance in wired and cellular scenarios where packet loss

is less. BBR provides good throughput support for file down-

loading with higher retransmission ratios. However, as it does

not optimize for QoE, all of its metrics fall short compared to

Mortise, with its overall QoE trailing ours by 7-11%. In the

context of video streaming, BBR’s performance deteriorates

significantly, exhibiting greater variability and instability, and

lags behind our solution by as much as 20%.

Remark 4 (Learning-Based): Orca delivers good perfor-

mance in real-world wireless environments, but its perfor-

mance in other cases is relatively unremarkable. For instance,

its average QoE for video streaming applications in wired

scenarios is low due to its higher stall ratio. Similarly, in

cellular environments, the QoE for file downloading is also

suboptimal due to a significantly higher retransmission ratio.

Remark 5 (CCA with Adaptability): While MOCC man-

ages to achieve a low RCT in file downloading, it results in

an extremely high retransmission ratio (Fig.8a, 8e), thereby

harming its overall QoE. This could be attributed to its de-

sign as a fully learning-based method, which may fail to ad-

equately generalize [2] to unseen network environments, re-

sulting in overly aggressive sending behaviors. While the

QoE offered by DeepCC or C2TCP is generally suboptimal,

DeepCC exhibits slightly better performance under file down-

loading applications than under video streaming applications,

whereas C2TCP performs better under video streaming appli-

cations than file downloading applications. For CCA selection

methods like Antelope and Antelope Copa, their performance

can be suboptimal and unstable due to the constraints of dis-

crete options and the potential for incorrect choices. This can

manifest as a high retransmission ratio (Fig.8a) or stall ratio

(Fig.8b) under wireless scenarios. In conclusion, while offer-

ing adaptive interfaces, they lack the necessary mechanisms to

adjust parameters in accordance with application preferences

and network conditions, resulting in suboptimal performance.

5.2 Under the Hood
We now show the details of how Mortise functions. As shown

in Fig.9a, the link capacity increases substantially around the

20-second mark, accompanied by a significant increase in

fluctuations. Fig.9b and Fig.9c illustrate the temporal evolu-

tion of our chosen parameter δ, the application preference

hint λ, and the current delay-throughput tradeoff around this

20-second mark. As β in this case is relatively small, we omit

it in the figures. We also derive the optimal δ with offline ex-

haustive search (i.e., the Oracle in Fig.9d, 9e). As we observe,

prior to the 20-second mark, Mortise has already converged

near the optimal operating point, and δ only makes periodic

minor adjustments around its optimal value. When the link

capacity changes, with the underlying CCA increasing the

sending rate, the operating point shifts, as well as the currently
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Figure 8: Performance distribution of 2 applications (file downloading and video streaming) under 3 network scenarios (wired, wireless, and

cellular). For a better QoE, file downloading strives for a lower RCT and a lower retransmission ratio, whereas video streaming aims for a

higher bitrate and a lower stall ratio.
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Figure 9: Details of the how Mortise functions under network

conditions change

achieved tradeoff. The extracted delay-throughput preference

hint λ rises (yellow line in Fig.9c), as the application tends to

prioritize delay when the bandwidth gets high. However, the

current δ value remains high, leaving the achieved tradeoff to

deviate from the optimal. Guided by the hint, we need two

additional rounds of parameter adjustments to converge, all

within 1 second. This process is significantly shorter than the

timescale of network changes, ensuring consistent tracking

of optimal operating points without oscillation.

We also display the distribution of QoE between the 10s-

20s and 20s-30s intervals in Fig.9d and Fig.9e, respectively,

compared with two more baselines, BBR and Copa. Our devi-

ation from the Oracle is minimal, with the slight discrepancy

at the tail arising from the convergence process after network
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conditions change. In contrast, algorithms like BBR or Copa,

which use fixed and heuristically set parameters, either act

too aggressively or too conservatively under both network

conditions, delivering suboptimal QoE performance.

5.3 Overhead
To investigate Mortise’s system overhead, we compare it with

various state-of-the-art CCAs. We send traffic from a server

to a client over an emulated channel (with 48Mbps bottleneck

link and 20ms RTT) for 180 seconds and measure the aver-

age CPU utilization of these algorithms on the sender side.

To have a fair comparison and reduce the impact of initial-

ization phases required by some of these CCAs, we exclude

the first few seconds for all CCAs. As shown in Fig.10, Mor-
tise achieves very low overhead of less than 4% in total with

only 0.25% additional overhead introduced on Copa, which

is similar to two well-optimized in-kernel CCAs (i.e., Cubic

and BBR). Its overhead is much lower than that of learning-

based schemes, Antelope, Orca, and MOCC. The process of

extracting preference hints simply involves calculating par-

tial derivatives. To avoid redundant computations, we keep a



record of all models computed during the session. Given the

low frequency of extraction (at a scale of several seconds),

the overhead of this process is almost negligible.

5.4 Parameter Sensitivity
We then evaluate the sensitivity of parameters in Mortise. We

tune the adjustment step length proportional factor σ of the

tradeoff controller from 0 to 1 with the file downloading app.

As depicted in Fig.11, Mortise can still maintain high perfor-

mance across a wide parameter range, striking an effective

balance between responsiveness and stability. Given the po-

tential inaccuracies in operating point measurements, large

proportional factors σ could lead to recurrent oscillations.

Conversely, smaller proportional factors could also impede

convergence speed. Both will hinder the rapid convergence to

the optimal operating point, thereby diminishing performance.

We also evaluate the impact of the change-point detection

mechanism on performance. As observed, acceptable perfor-

mance can still be achieved even in the absence of this mech-

anism, outperforming other CCAs. However, relying solely

on the balancing feedback control’s inherent adjustments may

not be timely enough in certain scenarios, leading to potential

performance losses. In essence, change point detection can

facilitate a quicker adjustment.

We also evaluate the impact of buffer size on the perfor-

mance of the file downloading application under the emulated

cellular scenario. We vary the buffer size from 0.5×BDP to

16×BDP and present the performance in Fig.12. We observe

that smaller buffers lead to more frequent packet loss and

retransmissions, resulting in a performance decline across all

methods, with aggressive algorithms like BBR experiencing

a more pronounced drop. However, Mortise, due to its ability

to dynamically adjust its operating point based on current

network conditions to align with application preferences, can

consistently maintain optimal and more stable performance.

5.5 Fairness & Friendliness
Fairness. We first evaluate how Mortise behaves in the pres-

ence of other Mortise flows. We run Mahimahi [42] emula-

tions that let four flows using the same CCA compete for a

bottleneck link with 48Mbps bandwidth, 20ms propagation

delay, and 1×BDP buffer. The flows start one by one with 25s

intervals. We use file downloading traffic in this subsection to

evaluate fairness when all flows have enough data to send. We

repeat the tests 5 times. Fig.13 shows the average throughput

of flows for each CCA through time. As observed, Mortise
shares bandwidth fairly between competing flows. It exhibits

slightly higher fluctuations after convergence than Copa, as

we will further explore for the optimal parameter.

We then evaluate the fairness of Mortise variants tailored

for different applications. We select two variants: Mortise File

and Mortise Streaming, using QoE models for file download-

ing and video streaming, respectively. We sequentially start

four flows, either the variants or Cubic, on the same link, and

depict the average throughput of different flows in Fig.14. As

observed, Mortise File is slightly more aggressive than the

other two. Mortise Streaming achieves comparable through-

put when competing with Cubic, while smartly being more

aggressive when competing with Mortise File. The intuition

is that conflicting application performance preferences might

be impossible to fully satisfy in certain cases, e.g., it is hard

for Mortise Streaming to achieve low latency when compet-

ing with a buffer-filling CCA. In such case, Mortise would

seek a reasonable point that provides the best possible service

quality. When achieving low latency is a lost cause, we use a

more aggressive strategy to prevent the flow from starvation.

Friendliness. We evaluate the friendliness of Mortise with

TCP CCA. We first let a flow of different CCAs com-

pete with a Cubic flow over a 48Mbps bandwidth and

1×BDP buffer link simultaneously. We vary the RTT from

20ms to 300ms and report the friendliness ratio defined by
delivery rate of CCA flow
delivery rate of Cubic flow in Fig.15. The results indicate that Mor-
tise File is slightly more aggressive in obtaining bandwidth

and Mortise Streaming achieves good TCP friendliness with

Cubic. In Fig.16, we illustrate the throughput of the tested

CCAs when they are competing with different numbers of

Cubic flows. The RTT is fixed to 20ms. Two variants of Mor-
tise all decrease their share when the number of competing

Cubic flows increases, while MOCC does not yield bandwidth

to more competing flows. In general, Mortise achieves good

TCP friendliness.

6 Discussion
Network-Assisted CCAs. Algorithms like ABC [20], with

rich feedback from in-network devices, could potentially

achieve better operating points (higher throughput and lower

latency) than the CCAs used in our paper. However, they still

have to face the tradeoffs between QoS metrics and lack the

capability to adjust parameters to match real-time application

preferences. This suggests that our framework can still be

applied on top of these CCAs to enhance application perfor-

mance in such scenarios.

Cooperation with learning-based CCAs. Even though

learning-based CCAs are comparatively complex, they still

possess certain hyperparameters that can modulate the control

process, such as the confidence amplifier m(τ) and dynamic

change boundary ω in Vivace [16]. Our framework can still

be applied to them, merely requiring more intricate mapping

for these hyperparameters. This would also enable the adjust-

ment of their operating points, facilitating better adaptation

to application preferences. We leave the combination of this

framework with these CCAs for future work.

Short-lived flows. For short-lived flows and other application-

limited cases, the CCA is not the dominant factor in their

performance. Implementing a better scheduling scheme at

the host or in the network would significantly improve their

performance, which is orthogonal to Mortise’s design.

Ethical Consideration. We have obtained user consent for

our A/B testing on the CDN involving real users. We also

restrict how often each user is selected for the suboptimal
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Figure 16: Flow’s throughput across

different numbers of competing flows

baselines to ensure that A/B testing does not significantly

degrade the overall user experience.

7 Related Works
CCA-selection Methods. These approaches [58, 60, 64] typi-

cally choose several latency-sensitive and TCP-competitive

CCAs to form a candidate pool and use learning-based tech-

niques to select the best possible CCA periodically. How-

ever, these limited choices cannot accommodate arbitrary

and network-dependent application preferences. Furthermore,

since different CCAs have unique internal states, additional

time is required to slow-start, probe from scratch, and con-

verge [58, 64]. This incurs significant overhead when switch-

ing CCAs during runtime and can potentially cause up to 14%

extra packet loss after the switch [60]. Precisely mapping the

internal states across different CCAs is hard as their structures

and physical meanings could be largely different [60].

Multi-Objective Learning-based Congestion Control.
Building upon Aurora [25], MOCC [32] can migrate its QoS

objective through transfer learning, facilitating adaptation for

new applications. However, the migration process takes sev-

eral hundred seconds [32], making it unable to flexibly align

its tradeoff with application preferences and network condi-

tions during a session. Additionally, such fully learning-based

CCAs face issues of insufficient generalization, incorrect or

slow convergence, and significant overhead [2].

eBPF (Extended Berkeley Packet Filter). eBPF is a highly

flexible and efficient virtual machine-like construct in the

Linux kernel, which allows for running sandboxed programs

in the kernel without changing source code or loading mod-

ules. It has been employed in several innovative ways: opti-

mize TCP parameters in datacenters [9], enhance TCP exten-

sibility [52], etc. The mature eBPF technology in the kernel

has enabled us to deploy Mortise without modifying the ker-

nel. With the rapid development of user-space eBPF technol-

ogy [23, 63], we are confident that in the near future, we will

be able to implement our framework in user-space network

stacks without requiring intrusive modifications.

8 Conclusion
In this paper, we propose Mortise to continuously and quanti-

tatively adjust rule-based CCA’s parameters to always align

with application preferences for optimal QoE. Mortise in-

troduces an extractor to acquire the application’s preferred

tradeoff in real-time and a tradeoff controller to adjust the

corresponding parameters for that tradeoff. We further deploy

the framework and find it well-performed in emulation and

production. We believe it is vital to let CCAs gain fine-grained

adaptability to the ever-evolving network applications.
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Figure 17: CDFs of segment duration and average throughput

change ratio between adjacent segments, sliced by PELT [26] on

production recorded traces
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Figure 18: CDFs of segment duration from passive data analysis

A Production Network Characteristic
We analyze thousands of throughput traces sampled from

production environments, segmenting the traces (after filtering

out outliers) using the PELT method [26]. We display the

duration of each segment and the ratio of change in average

throughput between adjacent segments in Fig.17. It’s apparent

that the primary segment durations fall within a range of a

few seconds to tens of seconds: over 90% of the segments last

longer than 3 seconds, while more than 95% last less than 17

seconds. The changes between segments are also substantial:

the ratio of change in average throughput exceeds 50% for

over 80% of consecutive segments, and it’s within 245% for

95% of successive segments. This data highlights that network

conditions in production environments undergo frequent and

significant changes. We have also conducted the same passive

data analysis on publicly available datasets (Salsify [19] and

Puffer [57]), and have obtained similar results, as shown in

Fig.18.

B Workload Characteristics
We measure the traffic patterns of real services in our pro-

duction environments, which illuminate the nature of request-

response messaging traffic, e.g., file downloading, web brows-

ing, etc. We present the characteristics of these real-world
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Figure 19: Distributions of request and response characteristics

services, i.e., the frequency of requests sent and the size of the

responses transferred between the client and the servers on

the CDN in Fig.19. Fig.19a shows the CDF of the time inter-

val between two consecutive requests sent by the client. The

inter-sending time between requests reflects the density and

diversity of requests initiated by the application. As we can

see, 40% of the request inter-sending intervals are less than

200ms, and 36% of them are concurrent (0ms). 80% of all

request intervals occur within one second, and any intervals

longer than this can generally be attributed to user behaviors,

such as different clicks [60]. Fig.19b shows the CDF of the

response size. As we can see, around 30% of the responses are

less than 100 KB and about 50% of the responses are larger

than 1 MB. Given the frequency of requests and the size of
responses, applications continue to exhibit a high demand for
bandwidth, characterized by an on-off pattern.

C Case Study 1: Video conference on WebRTC
We carry out our first case study on a real-world video con-

ferencing application from ACM MMSys’21 Grand Chal-

lenge [39] based on WebRTC. Specifically, we present the

implementation of Mortise on GCC [13] and the experimental

setup (§C.1). We also analyze the non-linear QoE model to

evaluate the performance of the video conferencing (§C.2)

and the evaluation results (§C.3).

C.1 Implementation & Setup
We deploy our framework on AlphaRTC [43], a fork of

Google’s WebRTC used by ACM MMSys. We implement

the communication mechanism (i.e., the aggressiveness inter-

preter) on AlphaRTC with shared memory, while the remain-

ing components of the framework are directly reused from

the implementation in the TCP kernel stack.

We choose GCC as the underlying scheme of Mortise (i.e.,

Mortise-GCC). We map the aggressiveness to the step length

(default is 1) in the additive increase state or the growth limit

(default is 1.08) in the multiplicative increase state (since

GCC will exclusively be in one of the two states when in-

creasing). We also modify the decrease rate factor (default is

0.85) correspondingly. For brevity, we omit the details of the

mapping between them.

We conduct our experiment with Mahimahi [42], using

wireless traces from Orca [2] and DeepCC [3]. To ensure

repeatability and comparability, we opt to transmit different

videos via the conferencing application instead of capturing

footage with a real camera. We set the base RTT as 40ms. We

select 10 videos with different resolutions, each playing for

120 seconds, and we repeat the tests 20 times.

C.2 Non-linear QoE model
We employ a non-linear QoE function to evaluate the per-

formance of the video conferencing application on WebRTC.

The total QoE score Stotal is derived from ACM MMSys [39]

and PACC [45], which consists of video quality score Svideo,

frame delay score Sdelay and frame drop score Sdrop:



Application QoE Metric RELP with Throughput RELP with Latency RELP with Loss

RTC SSIM [8, 19], VMAF [45], PSNR [8, 56] logarithmic-like - non-linear

RTC Stall Rate [38], Deadline Miss Rate [37] - piecewise piecewise

RTC Frame Delay [45] inverse proportional piecewise piecewise

VoD Rebuffering Ratio [14, 34] inverse proportional linear non-linear

Web RCT [60], PLT [42] inverse proportional linear piecewise

Table 1: The relationship with throughput, latency, and packet loss rate of QoE metrics in typical application scenarios

Svideo = vma f (10)

Sdelay = max(100− davg

3
,0) (11)

Sdrop = 100× (1−M) (12)

Stotal = μ1 ×Svideo +μ2 ×Sdelay +μ3 ×Sdrop (13)

where μ1 = 0.5, μ2 = 0.3 and μ3 = 0.2. vma f denotes the

VMAF score [30] of the received video, rating from 0 to 100.

M and davg denote the frame drop ratio and average frame

delay (ms) of the received video, respectively.

Given that this QoE model incorporates various QoE met-

rics, it necessitates local mapping onto throughput and latency

before extracting application preferences. Considering that

frame drops in WebRTC are primarily influenced by factors

like the encoder and the inability to adjust the bitrate in a

timely manner, we disregard this when evaluating the applica-

tion’s preference between throughput and latency. For frame

delay d f , we can have the following:

d f =
ζ
T
+D+θ (14)

where ζ is the frame size and θ is the encoding delay, while

T and D are throughput and latency, respectively. Since the

transmission of frames is sequential, evaluating davg is nearly

equivalent to evaluating d f . For commercial hardware, the

encoding delay is mostly stable. Moreover, given that the

frame size is calculated based on throughput (i.e., bitrate)

and frame rate (i.e., fps, frames per second),
ζ
T can also be

approximated as a constant. Thus, we can approximate the

sum of θ and
ζ
T as a constant c to have the following:

Sdelay ≈ max

(
0,100− 1

3
(c+D)

)
(15)

The score of VMAF tends to increase with a rise in bitrate

(i.e., throughput). However, there isn’t a universally accepted

formula that delineates the relationship between the quality

score and bitrate, as factors like video resolution and view-

ing context can significantly influence the perceived quality.

Nevertheless, drawing from the VMAF-bitrate relationship

model available in [30], we can derive the following empirical

formula (the unit of T is Mbps):

Svideo = vma f ≈ 41.06+30.53× ln(T +0.1481) (16)

Svideo Sdelay Sdrop Stotal
0
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+10.4%

Sc
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e
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Figure 20: Detailed QoE Score of video conferencing

Hence, we can get the local mapping of QoE on throughput

and latency:

Slocal = μ1(41.06+30.53× ln(T +0.1481))+

μ2

(
100− 1

3
(c+D)

)
+μ3 (100(1−L))

(17)

Then the application latency-throughput preference hint λ
at operating point (T0,D0,L0) can be extracted directly:

λ =

∣∣∣∣∣
(

∂Slocal

∂D

)
(T0,D0)

/(
∂Slocal

∂T

)
(T0,D0)

∣∣∣∣∣ (18)

=
μ2

91.59μ1
(T0 +0.1481) =

T0 +0.1481

152.65
(19)

Similarly, we can get the application loss-throughput pref-

erence hint β at the same operating point:

β =
100μ3

30.53μ1
(T0 +0.1481) =

T0 +0.1481

0.76325
(20)

Intuitively, as throughput progressively increases, the cor-

responding gains in video quality, achieved by throughput

enhancement at the cost of increased latency or loss, begin to

diminish. Therefore, the application’s preference gradually

transitions from high throughput to low latency and less loss.

C.3 Evaluation Results
We present the average scores for Mortise-GCC and GCC

on all 3 QoE metrics and the total QoE model in Fig.20.

Mortise-GCC demonstrates a significant enhancement across

all 3 key metrics: video quality score, frame delay score, and

frame drop score, with respective increases of 16.3%, 5.0%,

and 3.1%. These collective improvements result in a notable

10.4% increase in the overall QoE scores compared to GCC.

Mortise-GCC also exhibits more concentrated scores across

all its components, indicating a more stable performance.



The performance enhancement highlights the vital role of

the application preference extractor and feedback control sys-

tem in Mortise’s design. When the bitrate is low, the extracted

application preference tends towards throughput, prompting

the feedback control system to make Mortise-GCC more ag-

gressive. Mortise-GCC then attempts to increase its bitrate

swiftly. A rapid rise in bitrate at lower bitrates can signifi-

cantly enhance video quality, thereby drastically improving

the VMAF score. While an aggressive bitrate growth may

lead to increased frame delay, the relatively small frame size

and minimal additional traffic make adjustments manageable.

In other words, the potential loss from increased frame delay

is less critical compared to the substantial potential improve-

ment in video quality. Therefore, more aggressive sending can

yield better application performance. As the bitrate escalates,

the extracted preference increasingly leans towards latency.

Consequently, the feedback control system gradually adjusts

Mortise-GCC’s decisions to be more conservative, favoring

the maintenance of low frame delay. In this scenario, the video

quality improvement from boosting the bitrate becomes rela-

tively minor. Over-sending can significantly increase frame

delay and even cause frame loss, drastically reducing appli-

cation performance. In short, Mortise-GCC’s capability to

continuously adjust its aggressiveness in line with application

preferences allows it to achieve comprehensive performance

enhancement.

D Case Study 2: Web on QUIC

We conduct our second case study on a popular web applica-

tion from [60] based on QUIC. Specifically, we present the

implementation of Mortise and the experiment setup (§D.1).

We analyze the piecewise QoE model used by the web appli-

cation (§D.2) and the evaluation results (§D.3).

D.1 Implementation & Setup

We deploy the web application and Mortise on TQUIC, a

production-ready QUIC implementation. Similarly, we only

craft the aggressiveness interpreter with shared memory and

reuse other components. We continue to use Copa as the

underlying scheme of Mortise (i.e., Mortise-Copa) and em-

ploy the same mapping as in the TCP kernel stack. We com-

pare our approach with different CCAs, including BBR [12],

BBRv3 [11], Cubic [22] and Copa [7].

We conduct our experiment on Mahimahi [42] with traces

from Orca [2]. Following the setup outlined in [60], we create

400 unique network conditions by combining loss rates rang-

ing from 0-1%, RTTs varying between 10-300ms, and buffers

within the range of 0.5×BDP to 2×BDP, to test the applica-

tion performance under different CCAs. Each application is

subjected to workloads generated based on the distribution

provided in [60], each with a duration of 3 minutes. We repeat

the experiment 5 times.

D.2 Piecewise QoE model
RCT is a commonly utilized metric for evaluating the QoE of

web applications [60]. It measures the time interval between

the initiation of a request and the complete receipt of the

corresponding response. For a request and its corresponding

response, RCT can be calculated as:

RCT =
R
T
+D (21)

where R denotes the payload size of the response, while T
and D correspond to throughput and latency, respectively. To

achieve a minimal RCT , a larger response characterized by a

higher R favors higher throughput, while smaller responses

are more inclined towards lower latency.

Applications typically employ the average request comple-

tion time RCTavg as their QoE model:

RCTavg =
1

n

n

∑
i=1

(
Ri

T
+D

)
(22)

where n represents the number of concurrent requests and Ri
denotes the payload size of the ith response.

It implies that the specific QoE model would correlate with

the size distribution of concurrent requests at that moment.

Consequently, the throughput-latency preference also fluctu-

ates in accordance with the specific QoE model. Such vari-

ations in QoE models are primarily driven by user behavior

(e.g., content accessed or access patterns).

The application preference hint λ at point (T0,D0) can be

directly calculated as (since we don’t have loss metrics in our

QoE, β always equals 0):

λ =

∣∣∣∣∣
(

∂RCTavg

∂D

)
(T0,D0)

/(
∂RCTavg

∂T

)
(T0,D0)

∣∣∣∣∣= T 2
0

1
n ∑n

i=1 Ri
(23)

Evidently, among n responses, the application’s preference

tends to lean more towards high throughput when the propor-

tion of large responses increases.

For QoE models subject to changes from non-network fac-

tors, collaboration from applications is crucial to leverage the

real-time preference effectively. Applications should commu-

nicate the evolving QoE models to the application preference

extractor during runtime.

D.3 Evaluation Results
We present the RCT distribution for all the CCAs in Fig.21.

Mortise-Copa consistently adjusts to the most suitable op-

erating point under various network conditions, demonstrat-

ing superior performance compared to all other algorithms.

Mortise-Copa exhibits an improvement of 11.5% over Copa

and a notable 25.3% over BBR. In these network scenarios,

BBRv3 and Cubic underperformed, with Mortise-Copa show-

ing substantial improvements of 75.2% and 71.0% over them,

respectively. The effectiveness of Mortise primarily stems



Mortise Copa BBR BBRv3 Cubic
0.0
1.0
2.0
3.0
4.0
5.0
6.0

1.559

1.829

0.6060.512

R
C

T 
(s

)

 25%~75%
 10%~90%
 Median Line
 Mean

0.452

Figure 21: RCT of all responses in the Web application. The

annotated value is average RCT.

from its real-time application preference extractor. In col-

laboration with the application, it continuously captures the

ever-changing QoE model to compute real-time application

preferences. The feedback control system then adjusts based

on these preferences. This capability allows Mortise-Copa

to balance RCT between large and small responses when

they occur simultaneously. In such circumstances, it adopts

a more conservative sending, ensuring that the bottleneck

queue shared by large and small responses does not grow

excessively long, thereby optimizing the RCT for small re-

sponses. In scenarios with only large responses, Mortise-Copa

would aggressively utilize bandwidth to minimize RCT.


