
IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 37, NO. 8, AUGUST 2019 1851

MicroNF: An Efficient Framework for Enabling
Modularized Service Chains in NFV

Zili Meng, Jun Bi , Senior Member, IEEE, Haiping Wang, Chen Sun , and Hongxin Hu , Member, IEEE

Abstract— The modularization of service function chains
(SFCs) in network function virtualization (NFV) could introduce
significant performance overhead and resource efficiency degra-
dation due to introducing frequent packet transfer and consum-
ing much more hardware resources. In response, we exploit the
reusability, lightweightness, and individual scalability features of
elements in modularized SFCs (MSFCs) and propose MicroNF,
an efficient framework for MSFC in NFV. MicroNF addresses the
performance overhead and resource efficiency problems in three
ways. First, MicroNF graph constructor reuses the processing
results of elements from different NFs and reconstructs the
MSFC after modularization to shorten the chain latency. Second,
optimized placer pays attention to the problem of which elements
to consolidate and provides a performance-aware placement
algorithm to place MSFCs compactly and optimize the global
packet transfer cost. Third, MicroNF individual scaler inno-
vatively introduces a push-aside scaling up strategy to avoid
degrading performance and taking up new CPU cores. To support
MSFC reusing and consolidation, MicroNF also designs a high-
performance infrastructure to efficiently forwarding packets with
consistency ensured and to automatically scheduling elements
with fairness ensured when the elements are consolidated on the
CPU core. Our evaluation results show that MicroNF achieves
significant performance improvement and efficient resource uti-
lization on several metrics.

Index Terms— NFV, service function chain, modularization.

I. INTRODUCTION

NETWORK Function Virtualization (NFV) [2] was
recently introduced by replacing traditional hardware-

based dedicated middleboxes with virtualized Network Func-

Manuscript received January 28, 2019; revised June 27, 2019; accepted
June 28, 2019. Date of publication July 5, 2019; date of current version
August 6, 2019. This work was supported in part by the National Key R&D
Program of China under Grant 2017YFB0801701 and in part by the National
Science Foundation of China under Grant 61625203, Grant 61832013,
and Grant 61872426. This paper was presented the IEEE International
Conference on Communications, Kansas City, MO, USA, May 22, 2018.
(Corresponding author: Chen Sun.)

Z. Meng and H. Wang are with the Institute for Network Sciences
and Cyberspace, Tsinghua University, Beijing 100084, China, and also with
the Beijing National Research Center for Information Science and Technology,
Beijing 100084, China (e-mail: zilim@ieee.org; whp18@mails.tsinghua.
edu.cn).

J. Bi, deceased, was with the Institute for Network Sciences and
Cyberspace, Tsinghua University, Beijing 100084, China, and also with the
Beijing National Research Center for Information Science and Technology,
Beijing 100084, China.

C. Sun is with the Department of Computer Science and Technol-
ogy, Tsinghua University, Beijing 100084, China, and also with the
Beijing National Research Center for Information Science and Technology,
Beijing 100084, China (e-mail: c-sun14@mails.tsinghua.edu.cn).

H. Hu is with the School of Computing, Clemson University, Clemson,
SC 29634 USA (e-mail: hongxih@clemson.edu).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/JSAC.2019.2927069

tions (vNFs). Compared to the legacy network, NFV brings
benefits of easy development, high elasticity, and dynamic
management. Meanwhile, in scenarios such as datacen-
ters or mobile networks, network operators often require
traffic to pass through multiple vNFs in a particular sequence
(e.g. Firewall⇒NAT⇒Load Balancer), which is commonly
referred to as a Service Function Chain (SFC) [3].

To fasten the development of vNFs, many recent research
efforts [4]–[7] proposed to break monolithic Network Func-
tions (NFs) into processing elements, which could form a
Modularized Service Function Chain (MSFC).1 For example,
an Intrusion Detection System (IDS) can be broken into a
Packet Parser element and a Signature Detector element [8].
In this way, new vNFs could be built based on a library of ele-
ments, which could significantly reduce human development
hours and also bring benefits on runtime management [6].

However, introducing modularization to NFV brings two
major drawbacks. First, in NFV networks, each vNF is usually
deployed in the form of Virtual Machine (VM) with sepa-
rated CPU cores and isolated memory resource [9]. When
traversing a MSFC, packtes have to be queued and trans-
ferred between VMs, which could introduce communication
latency [10]. As MSFCs require more times of packet trans-
mission between elements than their corresponding SFCs,
their performance would be further degraded. Second, due
to modularization, to deploy an MSFC, we need to consume
much more (possible 2× or more) hardware resources to
accommodate all processing elements compared to a SFC,
which compromises resource efficiency.

Some research efforts have been devoted to addressing the
problems above. OpenBox [6] improved the performance of
MSFCs by merging and eliminating redundant modules and
shortening processing paths of packets. However, OpenBox’s
tree-based reusing algorithm simply copied modules to dif-
ferent branches of the processing tree and multiplicatively
increased the number of modules.2 NFVnice [11] addressed
the resource efficiency problem by consolidating several NFs
onto a CPU core with containers. However, it was designed at
NF-level and ignorant of the new problems of modularization
such as frequent inter-VM packet transfer. Also, it did not con-
sider the placement problem of which elements to consolidate,

1Sometimes MSFC are referred to as modularized service graph [6] as
there may exist branches between elements. In this paper, we use MSFC
and modularized service graph interchangeably.

2For graph G1 and G2 with branches B1 and B2, the total branches in the
reused graph will be B1 B2 and the number of modules on the branches will
accordingly multiplicatively increase.

0733-8716 © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0002-8695-1047
https://orcid.org/0000-0003-2480-2350
https://orcid.org/0000-0001-8710-247X

1852 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 37, NO. 8, AUGUST 2019

which is also significant to improve performance and resource
efficiency. Inappropriate consolidation may worsen perfor-
mance by transferring packets repeatedly.

At the same time, a closer look into the modulariza-
tion technique reveals some features of modularization that
could benefit both the performance and resource efficiency of
MSFCs. Modularization introduces processing elements that
are lightweight, individually scalable and reusable [12], [13].
Therefore, if two NFs have elements with the same functional-
ity (e.g. both Firewall and IDS have packet header classifier),
we could reuse the elements by combining their inside process-
ing logics and deliver the processing results for different
purposes with one elements. Meanwhile, even if elements
are different and unreuseable, we could consolidate them on
the same VM to reduce hardware resource consumption and
improve resource efficiency. By considering which elements to
consolidate, performance can be improved by reducing inter-
VM packet transfer inside MSFC. Further, in the situation
where an element is overloaded during runtime, we can only
scale out the overloaded lightweight element itself individually
instead of its corresponding monolithic NF, which could sig-
nificantly reduce the scaling cost [14]. The scaled out replica
can also be consolidated onto an already working VM without
consuming an extra CPU core to further save resource.

Therefore, based on the above observations, we propose
MicroNF, an efficient framework to improve the performance
and resource utilization efficiency for MSFC in NFV by
enabling element reusing and consolidation. To the best of
our knowledge, MicroNF is the first framework to enable the
optimized consolidation and reusing strategies at the same
time for MSFC in NFV. The key idea of MicroNF is to
reduce inter-element packet transfer at the orchestration level
and fully utilize the processing power of CPU. Specifically,
the design goal of MicroNF is to reuse elements from different
NFs if they are of the same functionality, or otherwise optimize
the element consolidation solutions. However, we encounter
three main challenges in our design:

• For MSFC reusing, reusing all elements with the same
functionality will violate the inter-element dependency.
Thus we are challenged to analyze the inter-element
dependencies and determine which elements are reusable.

• For MSFC placement, to optimize the performance
of MSFCs, we are challenged to carefully analyze the
cost of inter-VM packet transfer via a virtual switch
(vSwitch) [15]. Moreover, we are challenged to design
a performance-aware placement algorithm to consolidate
appropriate elements together.

• For MSFC elasticity control, careless placing the scaled
out replica may introduce additional packet transfer
between VMs and frequent state synchronization among
different replicas of the element, which may degrade the
performance significantly (possibly up to tens of ms [14]).
We are challenged to avoid performance degradation.

To address the above challenges, we design the MicroNF
framework for consistent element reusing, performance-aware
consolidation placement, and elasticity control. Specifically,
to enable and optimize element reusing, we propose two-
step dependency analysis mechanism and graph reconstruction

mechanism. To optimize the MSFC consolidation placement
solution, we carefully analyze and model the inter-VM transfer
cost and propose a 0-1 quadratic programming-based opti-
mal placement solution. To enable MSFC elasticity control,
MicroNF proposes an innovative push-aside element scaling
up strategy, where the MicroNF controller will push the
border elements aside to release resources for overloaded
elements. Finally, we design MicroNF infrastructure to support
consistent packet forwarding with element that schedules CPU
resources based on the processing speed of each element.
We present the workflow of MicroNF in detail in Section III.

In this paper, we make the following contributions:
• We introduce the problem of which elements to consoli-

date and model the performance cost of inter-VM packet
transfer. We design a Graph Constructor to enable ele-
ment reusing with consistency ensured and an Optimized
Placer in MicroNF controller to achieve optimal perfor-
mance of MSFCs using 0-1 quadratic programming.

• We design an Individual Scaler in MicroNF controller
for individual scaling of elements. We propose an inno-
vative push-aside scaling up strategy as well as a greedy
scaling out method to alleviate the hot spot with little
performance and resource overhead.

• We introduce the MicroNF infrastructure and imple-
ment MicroNF on our testbed (Section VII). Evaluation
results of MicroNF framework show that MicroNF could
improve both performance and resource efficiency.

A. Roadmap

The related research efforts and the contributions of
MicroNF over them are introduced in Section II. We present
the overview of MicroNF framework and relationships
between different components in Section III. We then respec-
tively introduce in Section IV, V, VI and VII. The imple-
mentation details and evaluation results are presented in
Section VIII. Finally, we discuss several future work in
Section IX and conclude the paper in Section X.

II. RELATED WORK

In this section, we summarize some related work and
compare them with MicroNF.

A. Modularization

Click [16] proposed the idea of modularization and applies
it to routers. Recently, Slick [5] and OpenBox [6] were
proposed to detailedly discuss modularized NFs and decouple
control plane and data plane of modularized NFs for easy
management. Besides, OpenBox focused on reusing elements
to shorten the processing path length. However, above works
mainly focus on orchestration-level module management and
are orthogonal to our optimizations on performance-aware
placement and dynamically scaling.

B. Consolidation

CoMb [7] designed a detailed mechanism to consolidate
middleboxes together to reduce provisioning cost. Further-
more, Flurries [9] and NFVnice [11] were proposed to share

MENG et al.: MicroNF: AN EFFICIENT FRAMEWORK FOR ENABLING MODULARIZED SERVICE CHAINS IN NFV 1853

CPU cores among different NFs with the technique of Docker
Container [17]. By modifying Linux scheduling methods,
they achieved almost no loss in NF sharing. However, they
operated on monolithic NF level and did not consider the
problem of which elements (NFs) to consolidate. Nonetheless,
their development details and infrastructure designs could
complement our work as the low-level implementation.

C. Placement

Researches on NF placement in NFV, such as [18]–[20],
mainly focus on the trade-off between traffic load, service
quality, forwarding latencies, and link capacities. However,
they are mainly designed for monolithic SFCs spreading over
multiple physical servers, which are different from the appli-
cation scenario of MicroNF. Slick [5] considered placement at
element-level. However, all of the work above addressed how
to place middleboxes (vNFs) onto different servers considering
complicated and limited physical links. In contrast, MicroNF
pays attention to the placement problem of how to consoli-
date elements onto different VMs to minimize the inter-VM
transmission. We also implement a modified version of Slick
in Section VIII-C, which is outperformed by MicroNF.

D. Virtualization Infrastructure

Many researches also focus on designing high-performance
infrastructure for NFV. ClickOS [21] implemented different
high-performance and lightweight virtual machines for net-
work functions. NetVM [10] and OpenNetVM [22] improved
the packet delivery between NFs when they are placed
together. E2 [23] proposed a scalable scheduling mecha-
nism to further support network dynamics. On the contrary,
MicroNF focuses on the placement and scaling strategies
rather than mechanisms for service chains. MicroNF are
orthogonal to the work above and could work with different
underlying virtualization infrastructures.

Finally, compared to the earlier version of this paper [1],
we have made substantive enhancements in this manuscript.
Beyond element consolidation, we make a key observation
that SFC latency can be further reduced by reusing elements
with the same functionality from different NF. We then design
the MicroNF Graph Constructor to reconstruct the element
graph before optimizing consolidation. An element reusing
mechanism and a dependency analysis method to optimize the
element reusing solutions are proposed in the MicroNF Graph
Constructor. The element reusing mechanism could comple-
ment the consolidation strategies proposed in [1] at different
levels. After that, we re-design the MicroNF infrastructure
to support both consistent inter-element forwarding between
different machines and efficient element scheduling on the
same machine. Finally, we have updated the evaluation to
demonstrate that the element reusing mechanism could achieve
promising performance improvement.

III. MicroNF DESIGN OVERVIEW

To address the above challenges, we design the MicroNF
framework to enable modularized service chains in NFV.
Components and workflows of the MicroNF framework are

Fig. 1. MicroNF framework overview.

shown in Fig 1. MSFC deployment workflow (dark orange
arrows in Fig. 1) illustrates how to deploy a new MSFC
in MicroNF at the initial stage. MSFC control workflow
(blue arrows in Fig. 1) depicts how to dynamically scale and
schedule elements against traffic fluctuations during runtime.
We respectively introduce two workflows in Fig. 1 as below:

For MSFC deployment workflow, network operators first
define the MSFC by describing interconnection relationships
between elements [6]. The MSFC will first be processed by
Graph Reconstructor, where inter-element dependency will be
identified and redundant elements will be reused. Optimized
Placer will then calculate the optimal placement solutions of
the reorganized MSFC to optimize the inter-element latency
considering the transmission over virtual switches. We respec-
tively introduce Graph Reconstructor and Optimized Placer in
Section IV and Section V.

For MSFC runtime control workflow, Statistics Collector
continuously collects element statistics (e.g. processing rate).
Individual Scaler then makes decisions on whether and how
to scale and migrate elements with minimal inter-element
latency. The Infrastructure finally executes the control actions
from Individual Scaler and also ensures packet processing
consistency. We respectively introduce Individual Scaler and
Infrastructure in Section VI and Section VII.

Note that MicroNF Controller is designed to optimize
the modularization of SFCs on different devices, specifically
the latency among different element instances over virtual
switches such as Open vSwitch [15]. For simplicity and better
illustrations, we discuss the transmissions between VMs in this
paper. MicroNF could also be applied over other virtualization
techniques supporting virtual switches (e.g. containers) since
the transmissions over virtual switch between containers are
similar to that between VMs [15].

IV. ELEMENT REUSING-AWARE

GRAPH RECONSTRUCTION

In this section, we first introduce the categories of elements
we consider in MicroNF in Section IV-A. We then respectively
introduce how to reuse elements and reconstruct the element
graph with both intra-element consistency (the reused element
can produce correct results) and inter-element consistency
(the reconstructed element graph are correct) ensured in
Section IV-B and IV-C.

1854 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 37, NO. 8, AUGUST 2019

Fig. 2. Element graph of service function chain NAT⇒FW⇒IDS.

TABLE I

SEVERAL TYPES OF MicroNF ELEMENTS

A. Element Unit Design

Instead of simply classifying processing units based on
their functions [6], we design different element units with the
purpose of ensuring intra-element consistency during reusing
and dependency analysis.

An element is a piece of high-coherent processing logic
broken from its original monolithic NF. For example, a Fire-
wall can be split into a Classifier element, an Alert element
and a Drop element. Operators can further decompose a SFC
into a element graph. Fig. 2 is an example of a MSFC that is
modularized from a datacenter service chain NAT⇒FW⇒IDS.
Monolithic vNFs are modularized into elements as presented
in Fig. 2.

To enable element reusing, we summarize common process-
ing units of NFs and design different elements in Table I.
We first classify elements into branchers and nonbranchers
according to whether their downstream have multiple ele-
ments or not.3

1) Brancher: Branchers represent elements classifying
packets and specifying the processing paths for them, such as
the Header Classifier in Firewall. Since most NFs have branch-
ing logics, brancher is a significant type of element to consider
during element reusing. Thus we further categorize branchers
into Header Classifiers and Payload Classifiers according to
their inspection levels.

Header Classifier is the brancher that classifies packets
solely based on packet headers. Since the structure of packet
headers usually falls into several fixed types [25], the internal
processing logic of packet headers can be abstracted as a
Match-Action-Table (MAT). As shown in Fig. 3, modifications
on packets and internal states can be abstracted as different
actions following respective matching rules. We use destina-
tion Element ID (dEID) to indicate the following processing
path of packet in the MAT in Fig. 3.

3Terminal elements such as Drop are just intuitive descriptions of actions.
They can be executed together with other elements.

Fig. 3. Two examples of header classifiers in Fig. 2.

Payload classifier is the brancher that further inspects the
payload of packets to make the decisions for those packets.
Since Payload Classifiers need to analyze the payload of
packets, parsing packet headers only cannot fully represent
their behaviors. Thus they cannot be abstracted as MATs and
are considered separately in MicroNF.

2) Nonbrancher: In contrast to branchers, nonbrancher rep-
resents the element that processes packets only and does
not have influence on the future processing path of packets.
According to how they process packets, we further catego-
rize them into monitors, modifiers, reorganizers and shapers.
We introduce them in detail respectively as below:

Monitor is the element that only reads packets and does
not perform any action on packets. Packets before and after
the process of monitors are strictly the same.

Modifier modifies certain packet header fields. In our
design, read and write (R/W) operations are separated to
enable further element reusing among different elements,
which will be introduced in Section IV-B.

Reorganizer changes the packet structure. For example,
the encapsulator extracted from Virtual Private Network (VPN)
constructs a new packet header out of the current packet.

Shaper modifies the flow-level features. They perform no
actions on packets directly. Instead, they employs buffer to
shape the statistical features such as traffic distribution [24].

MENG et al.: MicroNF: AN EFFICIENT FRAMEWORK FOR ENABLING MODULARIZED SERVICE CHAINS IN NFV 1855

Fig. 4. Reusing two header classifiers in Fig. 3

Compared to other analysis on NF dependency [26],
MicroNF provides a more thorough categorization (e.g. deal-
ing with brancher and nonbrancher respectively) specialized
for modularized elements. Moreover, or user-defined cus-
tomized elements, we can analyze their actions on packets and
flow features and classify them into one of the types above
according to their actions. For more complicated elements
(e.g. modifying packet payloads), we will not reuse them to
conservatively ensure packet processing consistency.

B. Element Reusing Mechanisms

When reusing elements, we aim at achieving intra-element
consistency, i.e. the reused elements must handle packets and
maintain states the same as the unreused individual elements.
Based on the above element units, we intend to ensure consis-
tent processing logic when reusing the same type of elements
originally belonging to different vNFs together similar to
OpenBox [6]. We respectively design reusing mechanisms for
different types of elements.

Header Classifier: The key of reusing Header Classifiers is
reusing their respective MATs. When designing the structure
of reused header classifiers, we have three goals:

➀ Matching rules should be visited in the same sequence
as individual classifiers to avoid inconsistency caused by
violating inter-element dependencies.

➁ Packet must visit the entries that it should match from
all elements only once.

➂ Packets should match all entries they should match as
soon as possible.

To achieve the goals above, MicroNF introduces Match
Bit (MBit) for each entry to indicate where it originates
from. When reusing two MAT Classifiers, MicroNF reuses the
actions of entries with the same matching rules. Reused entries
are labeled with MBit 11 and entries from element #1 are
with 10. In response to goal ➀, MBit with discontinuous 1s,
such as 101, will never appear during reusing because it
violates the sequence of #1⇒#2⇒#3. In response to goal ➁,
we elaborately design respective actions for entries after packet
processing. When the lowest bit of MBit of the entry is 1,
which indicates that the packet has gone through all elements
(goal ➀), the process of looking up MAT terminates. The final
action in this case will be break, as shown in Fig. 4. If the
lowest bit of MBit is 0, which indicates that there is at least
one element the packet has not gone through, the packet will
continue looking up the MAT The final action will be goto
the first entry reused from all elements that the packet has not
gone through yet. In Fig. 4, the final action of entries with
MBit==10 is goto 01. To achieve goal ➂, we reconstruct

Fig. 5. MBit forwarding mechanisms for 3 bits.

the MAT by MBit in decreasing order. Packets will match the
reused entries first, which will shorten the looking up time on
average. An example of the sequence of looking up forwarding
tables when reusing 3 elements is presented in Fig. 5.

Note that the total number of entries in the reconstructed
MAT is always decreased because we reuse the repeated
entries but do not create new entries.4 Sometimes packets
may be dropped between two classifiers (e.g. Drop in Fig. 2),
then it should not match the downstream classifiers. To ensure
robustness, we set the lower bits in the related MBit to 1.

Monitor and Modifier: MicroNF element unit separates
the R/W operations of monitors and modifiers from their
processing logics. To save the read-write time and queuing
time of packets among elements, MicroNF inputs packet once,
sequentially executes respective processing logics and transfers
the pointer of packet among them after reused. For modifiers,
MicroNF further reuses write actions of different modifiers and
writes back all modifications together when packet processing
finishes. If modifications are conflicting, result from the last
modifier will be kept.

Shaper and Reorganizer: Similar to modifiers, if there are
several shapers in the processing graph, only the last shaping
rule will take effect. When reusing shapers, we can directly
take the result from the last shaper. However, reorganizers
modify the packet structure. If network operators reuse two
reorganizers, other elements between those two reorganizers
will face significant problems since packets cannot be correctly
parsed. Thus MicroNF does not allow reorganizers to reuse.

Payload Classifier: For Payload Classifiers, special analysis
on the internal processing logic and state space should be
taken, which is out of our scope. We can easily adopt related
research on analysis of complicated firewall state spaces [27]
into MicroNF after modularized.

C. Dependency Analyzing

Elements in the same chain may have read-write depen-
dencies on each other. Because element reusing changes
the processing sequence inside the element graph, carelessly
reusing may lead to consistency problems. To ensure inter-
element consistency, we must be aware of dependencies
between elements when reusing element graphs. We propose a
result consistency principle: A group of elements are reusable,
if and only if the reused and reconstructed graph results in
the same processed packets and internal states as the original
one.

Before introducing the analysis mechanisms in detail,
we introduce the design of Element Interconnection Speci-
fication (EIS) to describe an element graph. For each element,
EIS has three required parameters including:

EID: is the ID of element to distinguish the elements.

4In contrast, naively reusing classifiers [6] by doing Cartesian product on
matching rules will lead to explosively increased number of rules.

1856 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 37, NO. 8, AUGUST 2019

TABLE II

CONSISTENCY CHECKING TABLE. Green Blocks Denote Reusable, Orange
Blocks Denote Further Checking, Gray Blocks Denote Not Reusable

Downstream: describes the interconnection relationship of
elements inside a graph. For terminal elements, such as
Drop or Output, Downstream is left to empty.

Reusability: indicates whether this element can be reused.
If operators want to isolate the element, they can set
Reusability to false to prevent it from potential reusing.
Default value of Reusability is true.

With EIS, we propose two mechanisms to analyze the inter-
element dependency. Type-by-type analysis is relatively con-
cise and suitable for most cases, while field-by-field analysis is
designed for those tough situations that type-by-type analysis
cannot deal with.

1) Type-by-Type Analysis: Type-by-type analysis checks the
types of elements and directly determines the reuseability.
Based on the result consistency principle, we summarize the
reusable and unreusable situations in Table II. End represents
the element to reuse at both ends, while Mid refers to the ele-
ment between those two end elements. Green blocks represent
the reusable situations. Orange blocks represent situations that
we cannot justify merely by element types. Those situations
need further field by field checking. Gray blocks represent
unreusable situations. For example, for an MSFC ms1 ⇒
ms2 ⇒ ms3, where ms1 and ms3 are the same type of
element, if all of ms1, ms2 and ms3 are monitors and do not
modify packets, ms1 and ms3 are certainly interchangeable
thus reusable. But if ms2 modifies the packet, we need to
further check whether the modified fields will be read by ms3,
otherwise the result consistency principle may be violated.

For cases with more than one mid elements, which is more
common in the real processing graphs, MicroNF checks each
one of them and takes the conservative result, i.e. two elements
are reusable if and only if all mid elements are under reusable
situations.

According to [26], 75% of currently implemented NFs are
read-only, such as Firewall, Load Balancer, etc, which will
result in classifiers or monitors after modularized. Thus the
most frequently hit block is the top-left green (reusable) block
in Table II. NFs with definitely unreusable elements such as
VPN are less than 7%. MicroNF is suitable for most cases in
the real world.

2) Field-by-Field Analysis: For situations that cannot be
justified by Table II, we propose field-by-field analysis to
further check read-write dependencies and avoid inconsistency.
We first define read field and write field of element, which
are the fields on packets that element will read or modify.
For example, the read field and write field of an IP Address
Classifier are srcIP∪dstIP and ∅ because it classifies packets
by srcIP and dstIP but does not modify packets.

Fig. 6. Reused element graph of Fig. 2.

We should ensure that fields read by end elements should
not be modified by mid elements and vice versa. We denote
the read field and write field of element i as Ri and Wi. Thus
the checking result, denoted as M , is:

M =

[(⋃
i∈Mid

Ri

)
∩ WEnd

]
∩
[(⋃

i∈Mid

Wi

)
∩ REnd

]
(1)

where Mid refers to the element between those two end
elements, REnd and WEnd are the read field and write
field of the end element. If both constraints are satisfied,
M will be empty and field-by-field analysis returns
reusable. Otherwise, the read fields and write fields of
elements have overlaps and the elements cannot be reused to
ensure result consistency.

3) Reusing Multiple Elements: When reusing multiple ele-
ments, we can simplify the dependency analysis by the prop-
erty of inter-element dependencies. We denote the reuseability
of the same type of element ms1 and ms2 in graph G as
�ms1, ms2�G. ms1 � ms2 means ms1 is in the upstream
of ms2. For ms1, ms2 and ms3, if ms1 � ms2 � ms3,
we have:

�ms1, ms3�G = �ms1, ms2�G && �ms2, ms3�G (2)

Eq. 2 holds because the read field Rms1 = Rms2 = Rms3

and write field Wms1 = Wms2 = Wms3. If elements between
ms1 and ms2 do not interfere the reusing of ms1 and ms2,
they will not interfere the reusing of ms1 and ms3 either.
Thus we can reuse ms1, ms2 and ms3 together. With Eq. 2,
MicroNF can easily reuse three or more elements to improve
performance. Also, we do not need to go through every pair of
elements in the processing graph but just check the reuseability
of all ‘adjacent’ elements.

After finally reconstructing the element graph, the reused
element graph is shown in Fig. 6(b). Compared to the tra-
ditional tree-based orchestration in Fig. 6(a), MicroNF has
two main advantages. First, by reusing elements on different
branches, MicroNF reduces the number of element signifi-
cantly and improves resource efficiency. Second, for stateful
elements, MicroNF avoids complicated state synchronizations

MENG et al.: MicroNF: AN EFFICIENT FRAMEWORK FOR ENABLING MODULARIZED SERVICE CHAINS IN NFV 1857

Fig. 7. Inter-VM packet transfer deep dive.

among several replicas on different branches, which are expen-
sive and error-prone [14].

V. PERFORMANCE-AWARE MSFC PLACEMENT

In this section, we present the MicroNF elements placement
algorithm inside Optimized Scaler of MicroNF Controller for
the initial deployment of an MSFC. We have the following
goal in mind in our design: We prefer to consolidate adjacent
elements in an MSFC on the same VM and place the MSFC
compactly to reduce inter-VM packet transfer cost.

In the following, we first analyze the one-hop inter-VM
packet transfer cost due to vSwitch-based forwarding. We then
find the relationship between CPU utilization and processing
speed for an element. These two analyses serve as the fun-
damentals of placement algorithm of MSFC, which usually
contains multiple hops and multiple elements.

A. Packet Transfer Cost Analysis

In NFV implementation, elements are usually implemented
as VMs separately with dedicated CPU cores [9]. To sim-
plify the resource constraint analysis, we assume that each
VM is implemented on one CPU core, which could easily be
extended to situations where a VM is allocated with multiple
CPU cores (Section IX). When packets are consolidated on
the same VM with Docker Container [17], intra-VM packet
transferring is simple. With shared memory technique provided
by Docker, we can directly deliver the pointer on memory of
packet from one element to another with negligible latency
(about 3 μs under our implementation). However, when pack-
ets are transferred between VMs, they must go through four
steps, as shown in Fig. 7. First, packets are copied from
memory to the virtual NIC (vNIC) on the source VM (Step ➀).
Next vNIC transfers packets to vSwitch (Step ➁). And then
packets are delivered reversely from vSwitch to the vNIC of
destination VM (Step ➂) and finally from vNIC to memory
(Step ➃). The total transfer delay (about 1 ms in our evalua-
tion) degrades the performance of MSFC significantly.

We use Delayed Bytes (DB) to represent the packet transfer
cost. Theoretically, DB is constrained by the minimum of
element throughput, memory copy rate (Step ➀ and ➃), and
packet transmission rate (Step ➁ and ➂). However, memory
copy rate and packet transmission rate (∼10 GB/s according
to [28]) are much greater than the SFC throughput (99% are
<1 GB/s in datacenters [29]). Thus DB is directly constrained
by the throughput between elements. We denote the through-
put as Θ and the additional four-step transfer delay as td.
Thus

DB = Θ · td (3)

Fig. 8. Two Examples of Processing Graph G = (V , E).

In the placement analysis, we will use the total sum of DB
as our optimization target of performance overhead.

B. Resource Analysis

Before globally optimizing the total sum of DB, we need to
analyze and find the constraints on CPU resource utilization.
For a certain element, as the throughput increases, it will
consume more CPU resources to process. Thus for each type
of element i, we can measure a respective one-to-one mapping
function between CPU utilization r and processing speed v:

ri = φi(vi) and vi = φ−1
i (ri) (4)

The mapping function φ(·) could be profiled for each
type of element in advance to enable the optimization below.
MicroNF provides an automatic tool to efficiently measure
the mapping function, the details of which will be introduced
in Section VIII-E.

Docker-based consolidation technique is lightweight and
takes few resources [9]. Thus, we can directly add up respec-
tive CPU utilizations of elements to estimate the total CPU
utilization. Also note that Eq. 4 is an upper bound estimation
for CPU utilization given throughput. When several elements
are consolidated together, the alternate scheduling mechanism
by reusing the idle time caused by interrupts [28] can enable
a higher total throughput.

C. MSFC Placement Algorithm

We first abstract the packet processing in MSFCs as a
directed acyclic processing graph, denoted as G = (V , E).
Each node k ∈ V represents an element and each edge in
E represents a hop between elements in an MSFC. k ∈ I
represents the VMs, i.e. CPU cores. Service chains, denoted
as C, are defined by tenants. Fig. 8 shows two examples
of processing graph. There are two chains and six elements
in Fig. 8(a). Chain 1 is E1⇒E2⇒E5⇒E6 and Chain 2 is
E3⇒E4⇒E5⇒E6. To consolidate compactly, we assume that
the processing speed of each elements on the same chain
matches the throughput of the entire chain at initial placement.
We denote the throughput of chain j as Θj . Conservatively,
network administrators can estimate Θj with its required
bandwidth according to Service Level Agreement [18].

αj
i ∈ {0, 1} indicates whether element i is on chain j.

πj
i represents the upstream element of element i on chain j,

which can be realized with a doubly linked list. To ensure
robustness, when i is the first element on chain j, we set
πj

i = i. When αj
i = 0, we set πj

i = 0.

1858 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 37, NO. 8, AUGUST 2019

Fig. 9. Knapsack algorithm for one element shared by multiple chains.

MicroNF applies a 0-1 Integer Programming (0-1 IP) algo-
rithm to minimize the inter-VM overhead. xi,k is a binary
indicator of whether placing element i onto VM k. For
chain j, we analyze the performance overhead between each
element i and its upstream element πj

i on it. From Eq. 3,
the hop from πj

i to i will incur an inter-VM cost of DBj if
and only if they are not placed on the same VM, i.e.

xi,kxπj
i ,k = 0, ∀k ∈ I

Thus we can use
(
1 −∑k∈I xi,kxπj

i ,k

)
∈ {0, 1} to indicate

whether element πj
i and i are consolidated together. Then we

add up DB of all inter-VM hops in chain j and further add
up DB of different chains as our objective function. MicroNF
aims at minimizing the total inter-VM cost to improve perfor-
mance:

min
∑
j∈C

∑
i∈V

αj
i DBj

(
1 −

∑
k∈I

xi,kxπj
i ,k

)
(5)

Meanwhile, the following constraints should be satisfied:
(1) xi,k ∈ {0, 1}, ∀i ∈ V , k ∈ I
//An element is either consolidated on VM k or not.
(2)
∑

k∈I xi,k = 1, ∀i ∈ V
//An element can only be placed onto one VM.
(3)
∑

i∈V
[
xi,k · φi

(∑
j∈C αj

iΘj

)]
� 1, ∀k ∈ I

//Each CPU core cannot be overloaded at initial placement.
Moreover, if the estimated throughput of element i0 is too

high to be placed on one CPU core, i.e.

∃i0 ∈ V , s.t.
∑
j∈C

αj
i0

Θj > φ−1
i0

(1) (6)

Constraint (2) and (3) may conflict. This is due to the
incorrect orchestration between flows and elements. Actually
it rarely happens in the real world and never happens in
our evaluation. In this situation, scaling out is needed. For
overloaded element i0, if there is only one chain j0 containing
it, MicroNF scales out Θj0

φ−1
i0

(1)
� replicas and performs load-

balancing among them. If there are several chains containing i0
(e.g. E5 in Fig. 8(a)), MicroNF scales it out to multiple
replicas. Since splitting traffic inside a service chain might
introduce additional management cost [14], to minimize the
management cost, MicroNF reallocates those service chains
onto newly created replicas with a knapsack algorithm as
presented in Fig. 9. Then MicroNF splits the overlapped chains
to different replicas and reconstructs processing graph G′ to
ensure that Eq. 6 does not hold for ∀i ∈ G′.

From the analysis above, we find that Eq. 5 is a
0-1 Quadratic Programming problem and can be solved within

Fig. 10. Individually scalability.

limited time and space [30]. By solving the above formula-
tions, we can get the performance-aware optimized placement
solution. We evaluate this algorithm in Section VIII-C.

VI. OPTIMIZED INDIVIDUAL SCALING

For monolithic NFs, all components must be scaled out
at the same time when overloaded, which will take up
more resources than needed. Also, continuously synchroniz-
ing numerous internal states will introduce significant over-
head [14]. After modularization, when traffic increases, only
the overloaded elements need to scale out. For example, when
the detector element of IDS is overloaded, instead of scaling
out the whole IDS (Fig. 10(a)), we can only scale out the
detector element itself (Fig. 10(b)).

However, deciding where to place the scaled out replica is
also important. Careless placement will degrade performance
and resource efficiency. In this section, MicroNF Individual
Scaler provides two innovative scaling strategy including
performance-aware push-aside scaling up, and resource-aware
greedy scaling out, to efficiently alleviate the overload sit-
uation. Push-aside scaling up can avoid the performance
degradation caused by additional inter-VM packet transfer.
Greedy scaling out can achieve resource efficiency by placing
replicas on existing VMs.

A. Push-Aside Scaling Up

When scaling out, the traditional NF-level scaling method
taken by [14], [31] simply starts a new VM with taking a
new CPU core and scales out the overloaded element to the
new VM. For example, when the Stateful Payload Analyzer
in VM2 is overloaded (Fig. 11(a)), traditional method starts
VM3 and copies the element to it (Fig. 11(c)). However, this
will introduce additional latency overhead due to inter-VM
packet transfer. For example, in Fig. 11(c), a part of packets
will suffer 3 inter-VM hops to go through the total MSFC
(VM1⇒VM2⇒VM3⇒VM2). Also, frequent state synchro-
nization between replicas will also degrade the performance.

However, when an element in an MSFC is overloaded,
the VMs that its upstream or downstream elements placed
on may be underloaded. Enabled by the lightweight feature
of element, we can re-balance the placement of elements on
the two VMs. Thus, the key idea of push-aside scaling up is
that the overloaded element can push its downstream/upstream
element aside to its downstream/upstream VM and scale itself

MENG et al.: MicroNF: AN EFFICIENT FRAMEWORK FOR ENABLING MODULARIZED SERVICE CHAINS IN NFV 1859

Fig. 11. Comparison of push-aside scaling up and traditional scaling out.

up to alleviate the overload. As for Fig. 11(a), we can migrate
Logger to VM1 and release its CPU resource (Fig. 11(b)).
By allocating the newly released resource to Stateful Payload
Analyzer and scaling it up, the overload can be alleviated.

Push-aside scaling up has two advantages. First, compared
to the traditional method, it does not create new inter-VM
hops, thus there is no additional packet transfer cost. Second,
it does not create a new replica but allocates more resources
to overloaded element. Thus push-aside scaling up does not
suffer the state share and synchronization problems [14].

The algorithm includes the following four steps.
Step 1: Check the practicability. If the estimated throughput

Θexp
i0

for element i0 is so large that the overload on i0 cannot
be alleviated with one CPU core, i.e. Θexp

i0
> φ−1

i0
(1), push-

aside scaling up will not work. This happens only when
an extremely large burst comes. In this situation, algorithm
terminates and MicroNF goes to greedy scaling out.

Step 2: Find border elements. For element i0 in chain
j0, MicroNF first finds out its upstream and downstream
border elements up_borderj0

i0
and down_borderj0

i0
. Upstream

border element refers to the element that up_borderj
i and i

are placed in the same VM but up_borderj
i and πj

up_borderj
i

are placed separately. With doubly linked list, MicroNF goes
through elements hop by hop to find out border elements and
composes them into a set Bi0 . If i0 is contained by several
chains, MicroNF checks each chain and composes the results
into Bi0 .

Step 3: Check whether it can be migrated. After finding
out the border elements, MicroNF checks whether they can
be migrated to the adjacent VM. Suppose both b0 ∈ Bi0 and
i0 are on chain j0. We denote the adjacent VM of b0 as kadj

b0
.

If

φb0(Θj0) +
∑
i∈V

xi,kadj
b0

· φi

⎛
⎝∑

j∈C
αj

iΘj

⎞
⎠ < 1 (7)

which means there is available resource for b0 on kadj
b0

, we can
migrate b0 to kadj

b0
and release its resource. Similarly, we can

check all b ∈ Bi0 and its respective kadj
b . If none can be

migrated, MicroNF goes to the greedy scaling out strategy.
This happens only when all of the adjacent VMs of i0 do
not have enough resource, which in practice rarely happens.
If some of them can be migrated, MicroNF composes them
into B′

i0
⊂ Bi0 .

Step 4: Check whether overload can be alleviated. At last,
MicroNF checks if migrating all elements in B′

i0
will make

enough room for i0 to scale up to alleviate the overload.

Otherwise the migration will be useless. MicroNF calculates
the needed resource r∗i0 = φi0(Θ

exp
i0

)−φi0(Θ
cur
i0), where Θcur

i0
is the current processing speed of i0. The CPU utilization
of element b′ ∈ B′

i0 satisfies rb′ = φb′
(∑

j∈C αj
b′Θj

)
.

If
∑

b′∈B′
i0

rb′ < r∗i0 , which means migration cannot release

enough resource, the algorithm terminates and MicroNF goes
to greedy scaling out. Else, push-aside scaling up can be
applied. Also, aware that migrating elements from one VM to
another has performance cost and controller overhead [14],
MicroNF tries to minimizes the number of elements to
migrate. MicroNF finds a subset B′′

i0
⊂ B′

i0
with minimal

number of elements that satisfies
∑

b′′∈B′′
i0

rb′′ � r∗.
Moreover, to avoid potential frequently scaling up among

elements, network administrators can set a timeout between
each time of scaling up. In this way, we can alleviate the
overload with minimum elements to migrate.

B. Greedy Scaling Out

If the overloaded element can push none of border elements
aside to other VMs, Individual Scaler have to scale it out
to somewhere else. In this situation, performance degradation
caused by scaling out is unavoidable. Even so, we can still save
resource by placing the new replica to an already working VM.

MicroNF decides the VM to place the replica based on a
greedy algorithm. First, it calculates the remained resource of
each VM and sorts them in increasing order. Next, MicroNF
greedily compares it with the needed resource r∗i0 . When
the remained resource of any VM, i.e. CPU core, is larger
than r∗i0 , MicroNF places the replica there. If none of the VMs
have available CPU resource, MicroNF will call up new VMs
and specify new CPU cores, just as the traditional method
does.

VII. INFRASTRUCTURE

In this section, we introduce two designs of MicroNF
infrastructure to support our previous designs:

• When reusing elements from different NFs, we need
to reconstruct the element graph, as introduced in
Section IV. In this case, the forwarding sequences of
packets are now totally different from previous ser-
vice chains: different packets have different forwarding
paths. How to ensure the consistency is challenging
(Section VII-A).

• For runtime MSFC management, when consolidating
multiple elements on the same CPU core, we need to
ensure fairness when scheduling CPU resources among

1860 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 37, NO. 8, AUGUST 2019

elements. However, traditional approach [11] requires
manual configuration of element priorities, which is time-
consuming and lacks scalability. We are challenged to
design an automatic scheduler (Section VII-B).

A. Forwarding Mechanism Design

When forwarding packets among elements, traditional meth-
ods [6], [10] either configure the interconnection relationship
of ports and output packets to different ports, or forward
packets centrally at vSwitch. However, the first method is
unsuitable when reusing elements because it can just indicate
only next one hop to packets. Thus its tree-based algorithm
simply reuses the graph by copying elements onto different
branches, as shown in Fig. 6(a). In contrast, element reusing
needs multi-hop processing paths indicated by branchers.
As for the second method, as the total number of flows inside
a network for a period can be extremely large (possibly up
to 10k [32]), additionally looking up a table containing tens
of thousands of rules will introduce significant performance
overhead [33].

MicroNF ensures the consistency of processing sequence by
attaching dMID to packets to indicate the following process-
ing path, which is referred to as dMID-based forwarding
mechanism. The dMID-based forwarding mechanism has three
steps: First, when a packet has been processed by a brancher,
dMID Attacher module will attach the following processing
path to it by modifying dMID fields in metadata. Second,
when the packet comes to vSwitch, it will be forwarded to
one of elements according to the dMID attached on that
packet. Finally, dMID Updater module removes the out-of-
date dMID and the packet will be processed by the element.
After processing finishes, it will be outputted to the vSwitch
again.

We realize the dMID design by utilizing the metadata in
mbuf structure with Intel DPDK [34]. The 64-bit metadata is
divided into three following fields in MicroNF:

FID (14 bits): Flow ID (FID) identifies different flows
inside the element graph for SFC dynamic management.

dMID (36 bits): dMID is an array containing six 6-bit MIDs
to indicate the following several hops in its processing path.
According to our preliminary attempts to break monolithic
NFs, most of NFs can be broken into less than 8 elements.
Also, the number of NFs in most SFCs is usually less
than 5 [3], [35]. Thus up to 64 elements provided by 6-bit
MID is enough inside a graph. Meanwhile, the control range
of a brancher is less than the length of SFC. Hence, 6 hops for
one brancher can handle most of situations in the real world.

Tags (14 bits): Tags are used to transfer messages between
elements. For example, the Alert element may need the result
from its upstream brancher to alert messages.

B. Automatic Consolidation Scheduling

When consolidating several elements onto one CPU core,
MicroNF uses one Docker [17] for each element. At this
time, we need a scheduling algorithm to enable fair resource
allocation. However, as we discussed above, traditional rate-
proportional scheduling methods [36] and priority-aware

scheduling methods [11] are not scalable due to massive
manual configurations.

In response, we design a novel scheduling algorithm
to match processing speed of elements with its through-
put to automatically achieve both fairness and efficiency.
Here, we take CPU resource as the allocation variable since
CPU is more likely to become a bottleneck resource than
memory [11], especially when elements are densely con-
solidated in MSFC. Note that MicroNF provides the opti-
mized strategy, which could be applied over previous research
efforts on NF or element scheduling mechanisms in the user
space [11], [37].

MicroNF takes an incrementally adaptive adjustment
scheduling algorithm. The algorithm tries to match the
processing speed of each element with its packet arrival
rate. It incrementally adjusts the CPU utilization of the next
scheduling period based on the statistics of current scheduling
period. The detailed algorithm is introduced below.

In consolidation, CPU resources are scheduled among ele-
ments by periodically allocating time slices with CGroup [38].
Suppose scheduling period is T . For element i on a VM,
we can get its CPU utilization proportion ri by counting
the number of time slices. Note that ri is a proportion thus∑

i ri = 1. Also, we can get current buffer size Bi and last
time buffer size B′

i. From Eq. 4, we can know the processing
speed vi satisfies vi = φ−1

i (ri). We denote B∗
i , v∗i and r∗i as

the predicted buffer size, processing speed and CPU utilization
at the next scheduling period.

Our scheduling algorithm is based on the matching prin-
ciple: For all elements, their buffer variations should be
proportional to respective processing speeds, i.e.

B∗
i − Bi

v∗i T
= C, ∀i ∈ {1, · · · , n} (8)

By modeling in this way, we try to ensure fairness among
elements and effectively allocate resources. The key idea is to
match the processing speed with its respective packet arrival
rates. In this way, the element with a lower processing speed
and smaller flows can also attain an appropriate proportion
of CPU. However, when several elements are consolidated
together, downstream element may directly read the packet
that are already loaded into memory by its upstream element.
Thus we cannot get the actual packet arrival rate by simply
measuring at the last switch. Naively adding statistics measur-
ing module on the top of Docker will introduce unnecessary
overhead. Instead, we can infer the arrival rate vai from the
variation of buffer size, i.e.

vai =
Bi − B′

i

T
+ vi (9)

As traffic usually does not vary sharply [39], we can
assume that in a scheduling period (usually at millisecond
level), the packet arrival rate keeps invariant, i.e. vai = v∗ai.
By substituting B∗

i in Eq. 8 with Eq. 9, we can get the CPU
proportion for element i in the next scheduling period:

r∗i = φi(v∗i) = φi

(
Bi−B′

i

T + vi

C + 1

)
(10)

MENG et al.: MicroNF: AN EFFICIENT FRAMEWORK FOR ENABLING MODULARIZED SERVICE CHAINS IN NFV 1861

The sum of CPU utilization needs to be normalized,
thus C subjects to

∑
i

φi

(
Bi−B′

i

T + vi

C + 1

)
= 1 (11)

Although we cannot get an explicit expression of C,
we can first randomly specify an initial value for C and then
normalize r∗i . Comparing to the millisecond level scheduling
period, the solving time in this way is negligible.

Another important function of consolidation scheduler is to
tell the individual scaler when to scale out. A direct indicator
is the buffer size of an element. If buffer is overflowed,
packet loss incurs and the element is definitely overloaded.
At this time, scheduler can do nothing but execute the scaling
up or scaling out methods, as introduced in Section VI.

VIII. EVALUATION

In this section, we first introduce our implementation details
(Section VIII-A) and evaluate MicroNF by answering the
following questions:

• Are the element reusing mechanisms in MicroNF Graph
Reconstructor consistent, resource-efficient and high-
performance? Our evaluation shows that MicroNF ele-
ment reusing can improve resource efficiency by 29.1%
to 54.5% with consistency ensured and performance
maintained (Section VIII-B).

• Can MicroNF Optimized Placer provide high-
performance placement solutions? Evaluation shows
that the 0-1 programming could outperform strawman
solutions by 1.21 times to 2.46 times on different
topologies with negligible computation overhead
(Section VIII-C).

• Can MicroNF Individual Scaler improve the performance
and resource efficiency? Experiment results demonstrate
that with push-aside scaling up mechanism, the latency
of MSFC could be reduced by 1.8 times while the
resource efficiency could be improved by 1.5 times
(Section VIII-D).

• How can network operators deploy MicroNF in practice?
We introduce a convenient measurement method for
the parameters MicroNF needs and present a simplified
method to the optimization procedure (Section VIII-E).

A. Implementation Details

1) Experimental Environment: We build MicroNF with
Docker [17] to consolidate elements on VMs, and enable inter-
VM packet forwarding with Open vSwitch [15]. We deploy
the low-level dynamical element migration mechanism from
OpenNF5 [14]. We evaluate MicroNF based on a testbed
with one server equipped with two Intel� Xeon� E5-2690
v2 CPUs (3.00GHz, 8 physical cores), 256GB RAM, and
two 10Gbps NICs. The server runs Linux kernel 4.4.0-31.
We use DPDK [34] on another server that directly connect to
the server above to generate packets according to LBNL/ICSI
enterprise traces [32].

5http://opennf.cs.wisc.edu/code.

Fig. 12. Comparing MicroNF reusing mechanism against other baselines.

2) Tested Elements: We implement all the elements pre-
sented in the MSFC in Fig. 2 and 6. To make a fair comparison,
the elements evaluated in our experiments are largely inherited
from those in OpenBox6 [6]. The Header Classifier composes
a ruleset of 4560 firewall rules. The Payload Classifier is
constructed from Snort IDS. The Modifier is built from a
Layer 3 Network Address Translator to modify the output ports
and destination IP addresses.

B. Element Reusing

1) Consistency Validation: We validate the consistency
guarantee of MicroNF by comparing it with the no consistency
guarantee reusing in OpenBox [6]. We evaluate the processing
graph in Fig. 2. For Firewall rules, we randomly select 15% of
flows based on the srcIP-dstIP pair from our evaluation traces
to be dropped while allowing the rest to pass. We repeat the
experiment for 1000 times to eliminate the randomness.

According to the analysis above, the classifiers from NAT
and Firewall are unreusebale because the write field of modi-
fiers from NAT (srcIP ∪dstIP) will be read by the classifier
from Firewall. However, naively reusing the processing graph,
just as the traditional method does, will lead to inconsistency.
Experiment results show that without consistency guarantee
in TranSys, the precision of Firewall will be decreased by
14.79%. Also, additional 2.31% of packets are recalled due to
the incorrect classification. In contrast, MicroNF guarantees
the consistency with the precision and recall the same as two
unreused elements, i.e. the reused element with MicroNF is
faithful towards the original one.

2) Resource Efficiency Improvement: To evaluate the
resource efficiency of MicroNF, we compare the resource
taken by the processing graph reused by MicroNF with
the result of the traditional method in OpenBox, as shown
in Fig. 6(a) and 6(b). We allocate one CPU core for each
element and gradually increase the throughput. We use one
CPU core to manage the elements. We scale the element out
with another CPU core if overloaded (which means CPU usage
exceeds 80%). The number of CPU cores taken by the two
methods at different throughputs is shown in Fig. 12(a).

As shown in Fig. 6(a), there are 21 elements to implement7

when reusing with the traditional method. Thus it takes at
least 22 CPU cores (including a manager) to implement
the processing graph. In contrast, MicroNF only needs to

6https://github.com/OpenBoxProject
7Drop element is a terminal element that can be performed with other

elements. Thus it does not need to be implemented separately.

1862 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 37, NO. 8, AUGUST 2019

implement 9 elements. MicroNF achieves a resource efficiency
improvement from 29.1% to 54.5% at different throughputs up
to 420 MB/s.

3) Performance Benefit Maintenance: To evaluate the per-
formance, we compare the processing latency of the element
graph reused by MicroNF (Fig. 6(b)) with the unreused MSFC
(Fig. 2) and the element graph reused by OpenBox (Fig. 6(a)).
We simulate with the traffic from LBNL/ICSI enterprise
traces [32] and calculate the average latency. The results are
shown in Fig. 12(b).

Compared to the unreused MSFC, MicroNF keeps the
performance benefit on total processing latency brought by
element reusing. Meanwhile, the latency in MicroNF steadily
outperforms OpenBox a little by 2.8%. The additional benefit
is gained from the elaborately designed element reusing mech-
anisms. When reusing MAT classifiers, MicroNF decreases the
average number of entries to look up while OpenBox multi-
plicatively increases the entries. As our future work, instead of
merely reusing branchers, we can reuse more types of element
and achieve a higher performance improvement. We will also
carefully analyze the latency benefit of different elements and
further reduce the processing latency.

C. Performance-Aware MSFC Placement

As for evaluating the performance of placement algorithm,
we evaluate the total DB in the processing graph. We use
an Optimization Toolbox [40] to solve the 0-1 Quadratic
Programming. We implement Topology 1 in Fig. 8(a) and
Topology 2 in Fig. 8(b). In the two topologies, all elements
are implemented as the Header Classifier as we introduced in
Section VIII-A.2 to eliminate the influence from element types
and demonstrate the performance MicroNF placement algo-
rithm solely. We randomly select flows from the LBNL/ICSI
enterprise trace [32] to different chains and repeat the exper-
iment for 1000 times to eliminate the randomness. We try to
place Topology 1 on 2 VMs and Topology 2 on 4 VMs.

Since that there is no ready-made solution on which
elements to consolidate, we compare MicroNF with three
baselines, including a greedy mechanism, a random mecha-
nism, and a modified Slick mechanism (denoted as Slick*).
The greedy mechanism first calculates the capacity for each
vNF and then greedily places elements onto VMs chain by
chain. This is to minimize the intra-chain transmissions and
improve overall performance. The random mechanism naively
and randomly selects available VMs to place elements. For
Slick*, since Slick is designed to optimize the consolidation
of NFs spreading many servers, we implement the key idea to
optimally break MSFCs into several sub-chains chain-by-chain
and consolidate them onto the same VM.

An important feature of MicroNF placement is
performance-aware, which is evaluated as the sum of DB. The
total DB in processing graph of successful placements with
different strategies is shown in Fig. 13(a). For Topology 1,
MicroNF reduces the total DB by at least 1.51× even
compared to Slick* strategy and more against other baselines.
For Topology 2, even the lengths of chains increase and more
inter-VM packet transfers are unavoidable, MicroNF still

Fig. 13. Experiment results of MicroNF Optimized Placer on two topologies.

TABLE III

PLACEMENT FAILURE RATE (OF 1000 TESTS)

outperforms the random strategy by 1.78× and greedy
strategy by 1.12×. The main reason for the performance
improvements of MicroNF against other heuristics is that
MicroNF globally optimize the inter-VM latency.

Another feature of MicroNF is resource efficient by com-
pact placement, which can be interpreted as: Given limited
CPU cores, i.e. VMs, for different traffic, MicroNF has a
higher probability to place all of them on successfully. As
shown in Table III, when placing Topology 1, MicroNF
improves the failure rate by at least 1.38times against Slick*.
Note that the placement of Topology 1 (6 elements

2 VMs = 3) is
tighter than Topology 2 (9 elements

4 VMs = 2.25), thus placing
Topology 1 has a higher failure rate than Topology 2. Even
so, MicroNF improves the failure rate from 7.8% (random)
and 6.5% (greedy) to 5.8% for Topology 2.

We finally measure the computation overhead for MicroNF
Optimized Placer. Among 1000 experiments, MicroNF Opti-
mized Placer is able to generate the optimized solutions
within 0.01 second for Topology 1 and 10 seconds for
Topology 2 on our testbed, as shown in Fig. 13(b). The
computation time of Topology 2 is longer than that of
Topology 1 since it has more nodes and edges. Note that this
algorithm runs offline only once for initial placement before
deploying elements onto devices. Thus a computation time
of 10s is negligible compared to the minute-level time for
program compilation and element deployment. Meanwhile,
for large-scale and complicated topologies, network operators
could efficiently solve the quadratic programming by adopting
state-of-the-art commercial solvers (e.g. IBM CPLEX [41],
Gurobi [42]) to further reduce the computation overhead.

D. Push-Aside Scaling Up

To evaluate the performance of push-aside scaling up,
we use the MSFC in Fig. 11. At first, the throughput of MSFC
is 100 kpps, with each packet 512 B. At the 10k-th packet,
we increase the traffic to 150 kpps, which causes the Stateful
Payload Analyzer overloaded. The traditional method taken by
OpenNF [14] naively scales out by copying Stateful Payload
Analyzer to a newly started VM, as shown in Fig. 11(c).

MENG et al.: MicroNF: AN EFFICIENT FRAMEWORK FOR ENABLING MODULARIZED SERVICE CHAINS IN NFV 1863

Fig. 14. Real-time latency per packet.

Fig. 15. Throughput-CPU utilization mapping on a single core.

In contrast, MicroNF migrates Logger to VM1 and allocate
the released resource to Stateful Payload Analyzer.

For performance, the comparison of two methods on real-
time latency of each packet is shown in Fig. 14. The latency at
10k-th packet increases sharply due to the element migration.
The convergence time of traditional method (28k−10k

150kpps =
0.12s) is faster than that of MicroNF (44k−10k

150kpps = 0.23s)
since it consumes more resources and has a higher processing
speed. Nonetheless, both convergence time are acceptable
in real-world network scenarios since elements would not
be frequently scaled [43]. However, MicroNF has a lower
converged latency of 6 ms compared to 11 ms of the traditional
method. The improvement is achieved by reducing the addi-
tional packet transfer and state synchronization latency. For
resource efficiency, with traditional method, the scaled MSFC
is allocated with more resources (3 VMs in total). In contrast,
2 VMs are enough with MicroNF in this situation (Fig. 11(b))
by push-aside scaling up. MicroNF achieves a higher resource
efficiency by 1.5×.

E. Throughput-CPU Utilization Mapping

To measure the throughput-CPU utilization mapping,
we constrain the available CPU utilization for the element
by fixing the cpu-period and changing the cpu-quota
parameter in Docker. We use a packet sender to test the max-
imum throughput under the current limited CPU proportion.
We provide an efficient and automatic tool to dynamically
adjust the resource allocations and measure its throughput
capacity. With this method, administrators can get the mapping
function φ(v).

We measure two types of element with different complexity.
Packet Sender represents elements with simple processing
logic. IP Address-based Header Classifier contains 100 rules
and represents relatively complicated elements. The mapping
functions are shown in Fig. 15. Surprisingly, a strong linearity

correlation can be observed. We present the linear regressions
of the two mapping functions:

• Sender: r = −0.022 + 0.0013× v, R2 = 0.9997
• Classifier: r = 0.00048 + 0.0042 × v, R2 = 0.9999997
r ∈ [0, 1] is the CPU utilization and v is the processing

speed in MB/s. R2 is a measure of goodness of fit with a
value of 1 denoting a perfect fit. Thus in practice, we can
further simplify the solving procedure by substituting φ(v)
and φ−1(r) with their linear approximations.

IX. DISCUSSIONS

In this section, we discuss how to extend MicroNF and
highlight several open issues as future directions.

Multi-core placement analysis: For simplicity, MicroNF
assumes that each VM is allocated with one CPU core when
optimizing placement to satisfy the general applications. In the
large-scale deployment in practice, tenants might allocate
multiple CPU cores to a VM. In this case, MicroNF can
be easily extended by considering the resource constraint of
multiple CPU cores instead of a single core.

Intra-core analysis: MicroNF analyzes the inter-core cost
caused by vSwitch-based packet transfer. As our future work,
by designing cache replacement policies, we may reduce
the miss rate of Layer 1 and 2 Cache and further reduce
repeatedly packet loading from memory to cache. Moreover,
more designs are needed to ensure isolation between consol-
idated elements. However, those analyses are infrastructure-
dependent and differs on various types of CPU, which is
beyond our scope. MicroNF can be easily extended to analyze
intra-core situations on a certain type of CPU.

Framework Generality: The design of MicroNF controller
(Graph Reconstructor, Optimized Placer and Individual Scaler)
builds on the high latency of virtual switch between elements
and is agnostic to underlying infrastructure, as we discussed in
Section III. For other types of devices (e.g. CPU, GPU, Smart-
NIC, or even programmable switches) since they usually need
carefully-crafted resource utilization models [44], MicroNF
could not be directly adopted. However, the key ideas (e.g.
push-aside migration) could also be applied. We leave the
heterogeneous resource optimizations of elements between
different types of devices for future work.

X. CONCLUSION AND FUTURE WORK

This paper presents MicroNF, a high performance and
efficient resource management framework, for providing com-
pact and optimized element consolidation in MSFC. MicroNF
addresses the problem of which elements to consolidate in
the first place and provides a performance-aware placement
algorithm based on 0-1 Quadratic Programming. MicroNF
also innovatively proposes a push-aside scaling up strategy
to avoid performance degradation in scaling. MicroNF further
designs an automatic CPU scheduler aware of the difference
of processing speed between elements. Our preliminary evalu-
ation results show that MicroNF could reduce packet transfer
cost by up to 2.46× and improve performance at scaling
by 45.5% with more efficient resource utilization. As our
future work, we will exploit other features of modularization,

1864 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 37, NO. 8, AUGUST 2019

such as customization. Building microservice-based NFV gives
us the potential to easily customize new microservices, which
could accelerate the development cycle.

ACKNOWLEDGMENT

The authors thank for suggestions from anonymous JSAC
reviewers. Zili Meng specially thanks for the support from
Prof. Mingwei Xu in Tsinghua University. The preliminary
version of this paper titled “CoCo: Compact and Optimized
Consolidation of Modularized Service Function Chains in
NFV” was published in IEEE ICC 2018 [1].

REFERENCES

[1] Z. Meng, J. Bi, C. Sun, H. Wang, and H. Hu, “CoCo: Compact and
optimized consolidation of modularized service function chains in NFV,”
in Proc. 53rd IEEE Int. Conf. Commun. (ICC), May 2018, pp. 1–7.

[2] R. Mijumbi et al., “Network function virtualization: State-of-the-art
and research challenges,” IEEE Commun. Surveys Tuts., vol. 18, no. 1,
pp. 236–262, 1st Quart., 2016.

[3] J. Halpern and C. Pignataro, Service Function Chaining (SFC) Archi-
tecture, document RFC 7665, IETF, 2015.

[4] J. W. Anderson, R. Braud, R. Kapoor, G. Porter, and A. Vahdat, “xOMB:
Extensible open middleboxes with commodity servers,” in Proc.
8th ACM/IEEE Symp. Archit. Netw. Commun. Syst. (ANCS), Oct. 2012,
pp. 49–60.

[5] B. Anwer, T. Benson, N. Feamster, and D. Levin, “Programming slick
network functions,” in Proc. 1st ACM SIGCOMM Symp. Softw. Defined
Netw. Res. (SOSR), 2015, Art. no. 14.

[6] A. Bremler-Barr, Y. Harchol, and D. Hay, “OpenBox: A software-defined
framework for developing, deploying, and managing network functions,”
in Proc. Conf. ACM Special Interest Group Data Commun. (SIGCOMM),
2016, pp. 511–524.

[7] V. Sekar, N. Egi, S. Ratnasamy, M. K. Reiter, and G. Shi, “Design
and implementation of a consolidated middlebox architecture,” in Proc.
9th USENIX Conf. Netw. Syst. Design Implement. (NSDI). Berkeley, CA,
USA: USENIX Association, 2012, p. 24.

[8] N. Zhang, H. Li, H. Hu, and Y. Park, “Towards effective virtualization of
intrusion detection systems,” in Proc. ACM Int. Workshop Secur. Softw.
Defined Netw., Netw. Function Virtualization, 2017, pp. 47–50.

[9] W. Zhang, J. Hwang, S. Rajagopalan, K. K. Ramakrishnan, and T. Wood,
“Flurries: Countless fine-grained NFs for flexible per-flow customiza-
tion,” in Proc. 12th Int. Conf. Emerg. Netw. Exp. Technol. (CoNEXT),
2016, pp. 3–17.

[10] J. Hwang, K. K. Ramakrishnan, and T. Wood, “NetVM: High per-
formance and flexible networking using virtualization on commodity
platforms,” in Proc. 11th USENIX Conf. Netw. Syst. Design Implement.
(NSDI). Berkeley, CA, USA: USENIX Association, 2014, pp. 445–458.

[11] S. G. Kulkarni et al., “NFVnice: Dynamic backpressure and scheduling
for NFV service chains,” in Proc. Conf. ACM Special Interest Group
Data Commun. (SIGCOMM), 2017, pp. 71–84.

[12] H. Khazaei, C. Barna, N. Beigi-Mohammadi, and M. Litoiu, “Efficiency
analysis of provisioning microservices,” in Proc. IEEE Int. Conf. Cloud
Comput. Technol. Sci. (CloudCom), Dec. 2016, pp. 261–268.

[13] S. Newman, Building Microservices. Sebastopol, CA, USA: O’Reilly
Media, 2015.

[14] A. Gember-Jacobson et. al., “OpenNF: Enabling innovation in network
function control,” ACM SIGCOMM Comput. Commun. Rev., vol. 44,
no. 4, pp. 163–174, 2014.

[15] B. Pfaff et al., “The design and implementation of open vswitch,”
in Proc. 12th USENIX Conf. Netw. Syst. Design Implement. (NSDI).
Berkeley, CA, USA: USENIX Association, 2015, pp. 117–130.

[16] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F. Kaashoek,
“The click modular router,” ACM Trans. Comput. Syst., vol. 18, no. 3,
pp. 263–297, Aug. 2000.

[17] D. Merkel, “Docker: Lightweight linux containers for consistent devel-
opment and deployment,” Linux J., vol. 2014, no. 239, p. 2, 2014.

[18] M. C. Luizelli, L. R. Bays, L. S. Buriol, M. P. Barcellos, and
L. P. Gaspary, “Piecing together the NFV provisioning puzzle: Effi-
cient placement and chaining of virtual network functions,” in
Proc. IFIP/IEEE Int. Symp. Integr. Netw. Manage. (IM), May 2015,
pp. 98–106.

[19] S. Mehraghdam, M. Keller, and H. Karl, “Specifying and placing chains
of virtual network functions,” in Proc. IEEE 3rd Int. Conf. Cloud Netw.
(CloudNet), Oct. 2014, pp. 7–13.

[20] M. Savi, M. Tornatore, and G. Verticale, “Impact of processing
costs on service chain placement in network functions virtualization,”
in Proc. IEEE Conf. Netw. Function Virtualization Softw. Defined
Netw. (NFV-SDN), Nov. 2015, pp. 191–197.

[21] J. Martins et al., “ClickOS and the art of network function virtu-
alization,” in Proc. 11th USENIX Symp. Netw. Syst. Design Imple-
ment. (NSDI). Berkeley, CA, USA: USENIX Association, 2014,
pp. 459–473.

[22] W. Zhang et al., “OpenNetVM: A platform for high performance
network service chains,” in Proc. ACM SIGCOMM Workshop Hot Top-
ics Middleboxes Netw. Function Virtualization (HotMiddleBox), 2016,
pp. 26–31.

[23] S. Palkar et al., “E2: A framework for NFV applications,” in Proc.
25th ACM Symp. Oper. Syst. Princ. (SOSP), 2015,
pp. 121–136.

[24] S. Radhakrishnan, S. V. Raghavan, and A. K. Agrawala, “A flexi-
ble traffic shaper for high speed networks: Design and comparative
study with leaky bucket,” Comput. Netw. ISDN Syst., vol. 28, no. 4,
pp. 453–469, 1996.

[25] N. McKeown et al., “OpenFlow: Enabling innovation in campus net-
works,” ACM SIGCOMM Comput. Commun. Rev., vol. 38, no. 2,
pp. 69–74, 2008.

[26] C. Sun, J. Bi, Z. Zheng, H. Yu, and H. Hu, “NFP: Enabling network
function parallelism in NFV,” in Proc. Conf. ACM Special Interest Group
Data Commun. (SIGCOMM), 2017, pp. 43–56.

[27] J. Deng et al., “On the safety and efficiency of virtual firewall elasticity
control,” in Proc. Netw. Distrib. Syst. Secur. Symp. (NDSS), 2017,
pp. 1–15.

[28] A. S. Tanenbaum, Modern Operating Systems. London, U.K.: Pearson,
2009.

[29] A. Roy, H. Zeng, J. Bagga, G. Porter, and A. C. Snoeren, “Inside the
social network’s (datacenter) network,” ACM Comput. Commun. Rev.,
vol. 45, no. 4, pp. 123–137, 2015.

[30] A. Caprara, “Constrained 0–1 quadratic programming: Basic approaches
and extensions,” Eur. J. Oper. Res., vol. 187, no. 3, pp. 1494–1503,
2008.

[31] Y. Wang, G. Xie, Z. Li, P. He, and K. Salamatian, “Transparent flow
migration for NFV,” in Proc. IEEE 24th Int. Conf. Netw. Protocols
(ICNP), Nov. 2016, pp. 1–10.

[32] (2005). LBNL/ICSI Enterprise Tracing Project. [Online]. Available:
http://www.icir.org/enterprise-tracing

[33] R. Miao, H. Zeng, C. Kim, J. Lee, and M. Yu, “SilkRoad: Making
stateful layer-4 load balancing fast and cheap using switching ASICs,”
in Proc. Conf. ACM Special Interest Group Data Commun. (SIGCOMM),
2017, pp. 15–28.

[34] I. DPDK. (2010). Data Plane Development Kit. [Online]. Available:
http://dpdk.org

[35] D. A. Joseph, A. Tavakoli, and I. Stoica, “A policy-aware switching layer
for data centers,” ACM SIGCOMM Comput. Commun. Rev., vol. 38,
no. 4, pp. 51–62, 2008.

[36] D. Stiliadis and A. Varma, “Rate-proportional servers: A design method-
ology for fair queueing algorithms,” IEEE/ACM Trans. Netw., vol. 6,
no. 2, pp. 164–174, Apr. 1998.

[37] Y. Li, L. T. X. Phan, and B. T. Loo, “Network functions virtualization
with soft real-time guarantees,” in Proc. 35th Annu. IEEE Int. Conf.
Comput. Commun. (INFOCOM), Apr. 2016, pp. 1–9.

[38] (2007). Linux Container. [Online]. Available: https://linuxcontainers.org/
[39] T. Benson, A. Anand, A. Akella, and M. Zhang, “MicroTE: Fine grained

traffic engineering for data centers,” in Proc. 7th Conf. Emerg. Netw.
Exp. Technol. (CoNEXT), 2011, Art. no. 8.

[40] (2015). MATLAB Optimization Toolbox. [Online]. Available:
https://www.mathworks.com/products/optimization.html

[41] (2018). CPLEX Optimizer. [Online]. Available: https://www.ibm.
com/analytics/data-science/prescriptive-analytics/cplex%-optimizer

[42] Gurobi Optimizer—The State-of-the-Art Mathematical Program-
ming Solver. Accessed: Jan. 28, 2019. [Online]. Available:
http://www.gurobi.com/

[43] C. Sun, J. Bi, Z. Meng, T. Yang, X. Zhang, and H. Hu, “Enabling NFV
elasticity control with optimized flow migration,” IEEE J. Sel. Areas
Commun., vol. 36, no. 10, pp. 2288–2303, Oct. 2018.

[44] B. Li et al., “ClickNP: Highly flexible and high-performance network
processing with reconfigurable hardware,” in Proc. Conf. ACM SIG-
COMM Conf., 2016, pp. 1–14.

MENG et al.: MicroNF: AN EFFICIENT FRAMEWORK FOR ENABLING MODULARIZED SERVICE CHAINS IN NFV 1865

Zili Meng is currently pursuing the bachelor’s
degree with the Department of Electronic Engineer-
ing, Tsinghua University. He has authored or coau-
thored papers in ACM SIGCOMM, IEEE JSAC, and
so on. His research interests include learning-based
network systems and network function virtualiza-
tion. He was the Winner of the Student Research
Competition in ACM SIGCOMM 2018.

Jun Bi (S’98–A’99–M’00–SM’14) received the
B.S., C.S., and Ph.D. degrees from the Depart-
ment of Computer Science, Tsinghua University,
Beijing, China. He was a Changjiang Scholar Distin-
guished Professor with Tsinghua University, where
he was the Director of the Network Architecture
Research Division, Institute for Network Sciences
and Cyberspace. He successfully led tens of research
projects. He has published more than 200 research
papers and 20 Internet RFCs or drafts. He holds
30 innovation patents. His previous research interests

include Internet architecture, software-defined networking (SDN)/network
function virtualization (NFV), and network security. He received the National
Science and Technology Advancement Prizes, the IEEE ICCCN Outstanding
Leadership Award, and best paper awards. He was a Distinguished Member
of the China Computer Federation (CCF).

Haiping Wang received the B.S. degree from
the Department of Software Engineering, South-
east University, Nanjing, China, in 2018. She is
currently pursuing the master’s degree with the
Institute for Network Sciences and Cyberspace,
Tsinghua University. Her research interests include
software-defined networking and network function
virtualization.

Chen Sun received the B.S. degree from the Depart-
ment of Electronic Engineering, Tsinghua Univer-
sity, in 2014. He is currently pursuing the Ph.D.
degree with the Department of Computer Science
and Technology, Tsinghua University. He has pub-
lished papers in SIGCOMM, JSAC, ToN, IWQoS,
IEEE Communications Magazine, IEEE Network
Magazine, and so on. His research interests include
Internet architecture, software-defined networking,
and network function virtualization.

Hongxin Hu (S’10–M’12) received the Ph.D. degree
in computer science from Arizona State University,
Tempe, AZ, USA, in 2012. He is currently an
Associate Professor with the Division of Computer
Science, School of Computing, Clemson University.
He has published over 100 refereed technical papers,
many of which appeared in top conferences and
journals. His current research interests include secu-
rity in emerging networking technologies, security
in Internet of Things (IoT), security and privacy in
social networks, and security in cloud and mobile

computing. He received the NSF CAREER Award in 2019. He was a
recipient of the Best Paper Award from ACM SIGCSE 2018 and ACM
CODASPY 2014 and the Best Paper Award Honorable Mention from ACM
SACMAT 2016, IEEE ICNP 2015, and ACM SACMAT 2011.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

