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Abstract—In network function virtualization (NFV), network functions (NFs) are chained as a service function chain (SFC) to enhance
NF management with low cost and high flexibility. Recent NFV solutions indicate that the packet processing performance of SFCs can
be significantly improved by offloading NFs to programmable switches. However, such offloading requires a deep understanding of
heterogeneous NF properties (e.g., NF resource consumption and NF performance behaviors) to achieve the maximum SFC
performance. Unfortunately, none of existing solutions provide automatic analysis of these NF properties. Thus, network administrators
have to manually examine the source codes of NFs and profile various NF properties by hand, which is extremely time-consuming and
laborious. In this paper, we propose LightNF, a novel system that simplifies NF offloading in programmable networks. LightNF
automatically dissects comprehensive NF properties by means of code analysis and performance profiling while eliminating manual
efforts. It then leverages its analysis results of NF properties in its SFC placement so as to make the performance-optimal offloading
decisions. We have implemented LightNF on Tofino-based hardware programmable switches. We perform extensive experiments to
evaluate LightNF with a real-world testbed and large-scale simulation. Our experiments show that LightNF outperforms state-of-the-art
solutions with an orders-of-magnitude reduction in per-packet processing latency and 9.5× improvement in SFC throughput.

Index Terms—Network functions, service function chains, packet processing performance, programmable switches.
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1 INTRODUCTION

IN network function virtualization (NFV), network ad-
ministrators often deploy several sequential chains of

network functions (NFs), commonly referred as service func-
tion chains (SFCs), to provide network services. Compared
to traditional consolidated middleboxes, the SFC achieves
higher flexibility in NF management and reduces overall
costs. However, software-based SFCs suffer from poor per-
formance due to their limited processing capability [1]. For
example, Ananta Muxes incurs a latency from 200 µs to 1
ms [1], which violates the requirements of latency-sensitive
applications like web search. To improve SFC performance,
recent researches [2, 3, 4, 5, 6, 7, 8, 9] offload NFs onto pro-
grammable switches. As programmable switches guarantee
line-rate packet processing performance, such offloading
could bring significant SFC performance improvement. For
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example, according to our experiments in §2, offloading NFs
to programmable switches can improve the throughput by
up to 2× and reduce the per-packet processing latency by
around 88% compared to software-based NFs.

In particular, network administrators are supposed to
make the performance-optimal offloading decisions to max-
imize the benefits of NF offloading in SFC performance.
However, it remains non-trivial and burdensome for ad-
ministrators to achieve the performance-optimal offloading.
Specifically, administrators face four non-trivial questions
when offloading NFs based on their own experiences.

• Suitability. Given a set of NFs, administrators need to
determine whether the operations of these NFs can be
realized in a programmable switch or not. If an NF uses
some complicated operations (e.g., payload encryption)
that are forbidden by programmable switches, the NF is
unsuitable for offloading on programmable switches.

• Resource consumption. Given a set of NFs, administra-
tors need to understand how many memory and compu-
tational resources do these NFs need. Otherwise, their of-
floading decisions may exhaust limited switch resources,
leading to SFC deployment failures.

• Performance behaviors. Given a set of NFs, administra-
tors need to determine the performance benefits of of-
floading each NF to programmable switches. Only by un-
derstanding accurate performance behaviors of NFs can
administrators make the performance-optimal offloading
decisions on programmable networks.

• NF dependencies. Given an SFC, administrators need
to identify all the inherent execution dependencies be-
tween the NFs resided in the SFC. They also need to
preserve these dependencies when placing NFs across
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programmable switches and commodity servers. Other-
wise, their offloading will violate these dependencies,
leading to incorrect packet processing results.

To address the aforementioned questions, administra-
tors have to manually analyze the source codes of NFs
to obtain NF properties. However, such manual analysis
is extremely time-consuming and laborious. Even worse,
the analysis results of NF properties are heterogeneous.
The integration of these heterogeneous results in SFC place-
ment remains complicated and challenging for administra-
tors to make the performance-optimal offloading decisions.
Moreover, to the best of our knowledge, none of existing
solutions support automatic and comprehensive analysis
on various NF properties, not to mention integrating these
properties for SFC placement. In a nutshell, simplifying the
analysis and integration of heterogeneous NF properties is
still a challenging yet critical issue for practical NF offload-
ing on programmable switches.

In this paper, we propose LightNF, an NFV system
that achieves automatic and performance-optimal NF of-
floading on programmable switches. The goal of LightNF
is to automatically analyze NF properties and make the
performance-optimal NF offloading decisions based on its
analysis results of NF properties. To alleviate the burdens
of NF offloading for administrators, LightNF provides a
suite of high-level primitives for the description of NFs
and SFCs. With these primitives, administrators only need
to describe their demanded NFs and SFCs based on their
intent, and submit their requests to LightNF. Then LightNF
will automatically complete the remaining steps to achieve
the performance-optimal NF offloading. By that means,
administrators do not need to manually examine NF source
codes and consider low-level offloading details in SFC
deployment, which significantly reduces their burdens.

Specifically, LightNF employs an SFC analyzer to auto-
matically dissect NF properties from input LightNF prim-
itives. The SFC analyzer (1) analyzes the suitability of
each NF by determining whether all the NF operations
can be offloaded to the programmable switch via code
analysis, (2) obtains resource consumption of NFs in both
the programmable switch and the commodity server by
leveraging static compiling and dynamic runtime analysis,
(3) accurately and timely profiles performance behaviors of
NFs, and (4) infers execution dependencies among NFs via
code analysis. With the analysis results of NF properties,
LightNF builds an optimization framework that formulates
SFC placement with NF properties as constraints. The op-
timization framework determines how to place the SFC on
a hybrid network with several programmable switches and
servers while maximizing SFC performance.

We have implemented LightNF on Tofino-based hard-
ware programmable switches [10]. We conduct extensive
experiments on a real-world testbed to evaluate LightNF.
The experimental results indicate that LightNF offers two
orders of magnitude latency reduction and 9.5× throughput
improvement compared to state-of-the-art solutions.

Contributions. This paper makes five main contributions.

• We identify the user burdens of offloading NFs to pro-
grammable switches (§2), and propose LightNF, a novel
NFV system, to alleviate these burdens (§3).

• We design a suite of LightNF primitives for administra-
tors to describe NFs and SFCs based on their intent (§3.2).

• We design an SFC analyzer to dissect various NF proper-
ties, including NF suitability, resource consumption, per-
formance behaviors, and dependencies (§3.3). The anal-
ysis is completely done automatically, without requiring
any domain-specific knowledge and parameters.

• We design an optimization framework that leverages NF
properties to obtain the performance-optimal SFC place-
ment that maximizes SFC performance (§3.4).

• We have implemented LightNF on Tofino-based hard-
ware programmable switches [10]. We conduct extensive
testbed experiments to evaluate LightNF. The experi-
mental results show that LightNF offers two orders of
magnitude latency reduction and 9.5× throughput im-
provement compared to state-of-the-art solutions (§4).

A preliminary version of this paper appears as a confer-
ence paper published by IEEE/ACM IWQoS 2021 confer-
ence [11]. In the preliminary version, we present the high-
level idea of LightNF and conduct preliminary experiments
to evaluate LightNF. Compared to that paper, we have
made substantive enhancements in this manuscript. First,
we demonstrate the performance benefits of offloading NFs
to programmable switches via testbed experiments (§2.1).
Second, we comprehensively survey existing solutions for
SFC placement and discuss their limitations (§2.3). Third,
we present the detailed description of LightNF primitives
and illustrate the approaches of integrating new NFs into
LightNF (§3.2). Fourth, we present more technical details
of the SFC analyzer (§3.3). In particular, we justify our
observation of NF latency with detailed micro-benchmark
experiments (§3.3.3). Fifth, we show how LightNF performs
SFC deployment and runtime management on the substrate
network (§3.5). Finally, we present more experimental re-
sults to demonstrate the benefits of LightNF (§4).

2 BACKGROUND AND MOTIVATION

In this section, we first demonstrate the performance bene-
fits of offloading NFs to programmable switches. Then we
discuss the challenges of such offloading and elaborate the
limitations of existing solutions.

2.1 Offloading NFs to Programmable Switches
To date, there are four approaches of realizing NFs. (1)
The traditional approach leverages proprietary hardware,
i.e., standalone middleboxes, to realize each NF with a
dedicated appliance [12]. However, middleboxes have been
proved as rigid and inflexible, which is discarded by mod-
ern networks seeking for elastic network management. (2)
The NFV-based approach runs NFs on top of off-the-shelf
servers as virtualized NFs so as to enhance flexible NF man-
agement at runtime [13, 14]. However, due to the perfor-
mance overhead incurred by virtualization, this approach
sacrifices NF performance by several orders of magnitude,
making NFs fail to keep up with high-speed traffic [1, 15].
(3) Many solutions [15, 16, 17] offload NFs to SmartNICs,
which provide significant performance benefits to NFV. (4)
Motivated by the SmartNIC offloading and the emergence
of programmable switches, researchers propose to trans-
form NFs into resource-efficient and hardware-compatible
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Fig. 1: Packet processing performance of NFs running on
programmable switches vs. that of software-based NFs
running on commodity servers. With NF offloading, the

performance of NFs is significantly improved.

ones while fully offloading them to programmable switches
[7, 8, 18, 19, 20]. According to latest studies [19, 20, 21, 22,
23], programmable switches yield Tbps-level throughput
and sub-millisecond per-packet processing latency while
outperforming SmartNICs with more resources and lower
energy consumption. Given those benefits, offloading NFs
to switches has become one of the top choices in production
networks [18, 24, 25].

The existing approach of offloading NFs to switches
mainly comprises two steps [7, 8, 18]. First, administrators
build the NFs with network programming languages such
as P4 [26] based on their intent. Examples include (1)
traditional NFs such as NAT [18] and load balancers [2, 27],
(2) NFs for distributed systems, including in-network key-
value caches [3], distributed coordination [5], VXLAN gate-
ways [25], lock manager [28], (3) NFs for network mea-
surement, including sampling-based NFs [29] and sketch-
based NFs [30, 31, 32], and (4) NFs for security such as
DDoS attack defense [19, 20]. Second, administrators make
their offloading decisions that determine which NFs to be
offloaded to which devices with the objective of maximiz-
ing the overall performance of NFs. Since programmable
switches provide superior performance, the decisions often
prefer to offload as many NFs to switches as possible.
Note that each NF typically consumes a portion of switch
resources and can be entirely offloaded to a single switch.
Thus, it is common that multiple NFs are offloaded to the
same switch [7, 8, 18, 19, 20]. For example, in the defense of
distributed denial-of-service (DDoS) attacks, administrators
usually deploy the NFs defending against various types of
DDoS attacks on the single switch at the same time [19, 20].

We conduct experiments to validate the performance
benefits of NF offloading on programmable switches. We
select four widely-used NFs: firewall (FW), load balancer
(LB), network address translator (NAT), and traffic monitor
(TM). We implement these NFs and deploy them on a
Tofino-based hardware switch [10]. We compare these NFs
with their corresponding software implementations. The
software-based NFs are implemented based on E2 [33], a
mature NFV framework. We deploy each software-based
NF in a server with twelve 2.3GHz CPU cores. We config-
ure each NF with 100 rules. Also, we dedicate the entire
capacity of server resources (e.g., CPU cores) to the NF to
maximize its performance. We generate 64-byte packets to
stress-test each NF at 40 Gbps. Figure 1 presents the results.
For throughput (Figure 1(a)), all P4-based NFs achieve a
throughput of 36 Mpps, while the throughput of software-
based NFs is much lower. For per-packet processing latency
(Figure 1(b)), NF offloading reduces latency by around

TABLE 1: Commonly-used NFs and their suitability of
offloading on programmable switches.

Network Function Suitable? Unsuitable Reason

Caching 3[3] -
Congestion control 3[35] -
Congestion detection 3[36] -
Coordination 3[5] -
Firewall, ACL 3[7] -
Key-value store 3[3] -
L2/L3 switch, router 3[7] -
Load balancer 3[2] -
Mobile serving gateway 3[37] -
NAT, CGNAT, NAT64 3[7] -
QoS mapping 3[38] -
String search 3[39] -
Traffic monitor 3[7] -
Traffic shaper 7 Buffer packets
Deep packet inspection 7 Read or write payload
IDS / IPS 7 Read or write payload
Packet compression 7 Read or write payload
Trojan detector 7 Stateful computation
Top-K ranker 7 Stateful computation
Virtual private network 7 Read or write payload

88% for all NFs. Such performance benefits are necessary
for realtime applications. For example, distributed memory
cache [34] can only be tolerant of a few microseconds.

We further analyze twenty commonly-used NFs and
determine whether these NFs are suitable for offloading
on programmable switches. We present more details of
analyzing NF suitability in §3.3.1. Table 1 presents our anal-
ysis results. The results indicate that a substantial portion
(65%) of NFs are offloadable. Thus, it is totally worthy
for administrators to exploit the opportunities of offloading
NFs to enhance the packet processing performance of NFV.

2.2 Challenges of Offloading NFs

Given an input SFC, our goal is to find out the performance-
optimal placement that places each NF in the SFC on either
a programmable switch or a server with the objective of
maximizing SFC performance. However, it is non-trivial to
make the performance-optimal offloading decisions, which
requires deep understanding of NF properties. We summa-
rize two main challenges in what follows.
1 Dissecting NF properties. It is necessary for administra-

tors to carefully analyze NF properties to make reasonable
offloading decisions. However, analyzing properties is not
straightforward since these properties are complicated and
vary across user-specified NFs. We present the challenge of
identifying each type of NF properties in what follows.
• NF suitability. Existing programmable switches adopt a

pipeline-based paradigm for packet processing [40]. The
paradigm partitions packet processing into several stages.
For realizability, each stage can only perform a limited
number of simple actions on each arrival packet within
a small time budget [40]. Such a limitation prohibits
many complicated NF operations, including loop, pay-
load encryption, and buffering, from being deployed on
programmable switches. However, identifying whether
an NF includes unoffloadable operations, which make
the NF unsuitable for offloading, requires domain knowl-
edge. Existing solutions fail to address this challenge due
to the lack of accurate analysis towards the limitations of
programmable switches.
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• Resource limitation. Every NF occupies a portion of
memory to store its rules and processing status. Further,
it also consumes several types of computational resources
(e.g., action units) for packet processing. However, both
memory and computational resources in a device are
scarce. For example, a PISA-based switch only provides
the capacity of around 3 M rules [40], which is far less
than the amount required by a commodity load balancer
to maintain millions of connections [2]. Fulfilling the
resource limitations requires careful resource estimation
and scheduling, incurring the burdens of NF offloading.
Existing solutions [7, 35] not only lack a comprehensive
and accurate analysis of NF resource consumption, but
also overlook the limitation of computational resources
in programmable switches.

• Performance variance. The suitability and resource lim-
itations imply that only partial NFs in an SFC are of-
floadable in practice. On the other hand, to maximize
performance gain, administrators need to carefully of-
fload NFs with a deep understanding of the performance
behaviors of each NF in both programmable switches and
commodity servers. In detail, the performance analysis
requires both high accuracy and timeliness. However,
none of these requirements is easy to achieve due to two
reasons. First, NF performance varies as traffic patterns
or NF configurations change [41], making it difficult
to achieve high accuracy. Second, exhaustively testing
NF performance under every possible situation is time-
consuming and laborious.

• Dependency preserving. Offloading NFs may change the
execution order among NFs. Consider an example SFC
“FW⇒IDS⇒NAT”, in which FW and NAT are offload-
able but IDS is not. If we offload FW and NAT onto
the same programmable switch, the resulting SFC be-
comes “FW⇒NAT⇒IDS”. However, since NAT modifies
IP addresses matched by IDS, such offloading violates
the original dependency between IDS and NAT. Thus,
we need to assign NFs in a right order to preserve NF
dependencies. However, for a complex SFC, identifying
all dependencies is even a hard problem, not to mention
preserving these dependencies during SFC placement.

2 Integrating NF properties. Even when NF properties
are well dissected, it remains challenging to integrate these
heterogeneous properties to make offloading decisions. For
example, the offloading should deal with both deterministic
(and strict) resource limitations and stochastic performance
variances within a single decision framework. Further, it is
non-trivial to formulate NF dependencies as constraints, to
say nothing of integrating it with other properties.

2.3 Related Works
However, none of existing solutions are capable of resolving
the above problems. Specifically, we classify existing solu-
tions into two main categories. We illustrate each category
of existing solutions and discuss its limitations as follows.
NFV frameworks for offloading NFs. In recent years, many
solutions are proposed to offload various types of NFs,
such as load balancers [2], key-value caches [3], data ag-
gregation [4], coordination [5], and neural network training
[6], to programmable switches to improve NF performance.

However, these solutions focus on offloading a specific NF
rather than SFCs. On the other hand, P4SC [7] and Dejavu
[8] offload entire SFCs to programmable switches. They
overlook NF suitability on programmable switches, such
that their placement may be failed. SPEED [42] and Lyra
[24] support the network-wide deployment of data plane
programs on several programmable switches. However,
these solutions do not target high-performance NFV so
that they cannot perform comprehensive analysis on NF
properties. Moreover, Metron [35] only offloads stateless
NFs while deploying other NFs on servers. Gallium [9]
offers a compiler-oriented approach to partition an SFC
between a programmable switch and a server. P4NFV [43]
deploys NFs on either servers or programmable switches
while enabling switch management at runtime. P4-SFC [44]
adopts programmable switches as flow classifiers to di-
rect traffic among different software-based NFs. HyperVDP
[45] virtualizes programmable networks to enable multi-
tenancy. However, none of these solutions conduct a deep
analysis of NF properties, leading to failed or sub-optimal
SFC placement. For example, according to our experiments
in §4, Metron incurs deployment failure when deploying
several concurrent SFCs due to its lack of NF analysis.

In addition to the switch-based NF offloading, previous
systems [15, 16, 17] choose to offload NFs to SmartNICs. For
example, SoftNIC [16] offers a hardware-abstraction layer
to enable the programming of NFs atop the architecture
of SmartNICs; ClickNP [15] provides a modular approach
for administrators to assemble a number of operations into
SmartNIC-compatible NFs; UNO [17] presents a central-
controlled NF offloading architecture for making the best
use of SmartNICs and host packet processing capabilities.
Our work focuses on NF offloading on programmable
switches, which is complementary to the above solutions.

NFV frameworks for high-performance SFCs. Some exist-
ing NFV frameworks [33, 46, 47] present trade-offs between
SFC performance and available resources in SFC placement.
However, they only deploy SFCs on servers, while offload-
ing NFs to programmable switches remains non-trivial.
Cohen et al. [48] formulates the problem of SFC placement
with the objective of minimizing both the deployment and
connection cost of NFs. It proposes heuristics to solve the
problem with guarantees on SFC performance. However,
this work does not take the resource constraints of network
devices into account. It also lacks of analyzing NF prop-
erties, leading to sub-optimal SFC placement. Moreover,
the authors of [49] optimizes SFC placement on the hybrid
network scenario in which NFs can be realized using either
traditional middleboxes or virtualization techniques. The
work [50] designs a heuristic based on dynamic program-
ming to efficiently place SFCs. Xia et al. [51] models the SFC
placement in optical inter-datacenter networks as a binary
integer programming problem with the objective of min-
imizing the cost of optical-electronic-optical conversions.
The work [52] predicates future resource requirements of
NFs based on graph neural networks so as to achieve
elastic NF resource allocation. Nevertheless, none of the
aforementioned solutions take some essential NF properties
such as NF performance behaviors into account. Thus, their
SFC placement is still sub-optimal in packet processing
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Fig. 2: Overview of LightNF.

performance. In addition, some solutions leverage packet
delivery acceleration [53], NF modularization [54], and NF
parallelism [1] to accelerate SFCs while high-performance
network I/O engines such as DPDK [55] and PF RING [56]
boost up SFC performance via kernel bypassing. However,
these studies are still based on software, thus suffering from
limited CPU capability and highly variable latency.
Summary. None of existing NFV frameworks can provide
automatic analysis of comprehensive NF properties, not to
mention making the performance-optimal offloading deci-
sions. In response, we aim to design a system that provides
an in-depth analysis of comprehensive NF properties while
eliminating manual efforts to reduce user burdens. With the
analysis results of properties, the system will automatically
formulate these results as constraints to address challenges
and achieve the performance-optimal SFC placement.

3 LIGHTNF DESIGN

In this section, we present an overview of LightNF architec-
ture (§3.1). Then we elaborate the components of LightNF,
including LightNF primitives (§3.2), the SFC analyzer (§3.3),
and the optimization framework (§3.4).

3.1 Overview of LightNF
In this paper, we propose a novel NFV framework, namely
LightNF, to handle the challenges of offloading NFs (§2.2).
LightNF provides both the automatic analysis of NF prop-
erties and the performance-optimal SFC placement. It com-
prises three main components, including LightNF primi-
tives, the SFC analyzer, and the optimization framework.

As shown in Figure 2, LightNF first offers a set of intent-
based primitives for administrators to describe NFs and
SFCs in a high-level manner (§3.2). Next, the SFC analyzer
dissects the properties of the NFs realized by LightNF
primitives (Section 3.3). According to the characteristics of
NF properties, it classifies NF properties into four types,
including (1) NF suitability, (2) NF resource consumption,
(3) NF performance behaviors, and (4) NF dependencies.
For each type of NF properties, it proposes a specific anal-
ysis strategy, which is built on the techniques of static code
analysis and dynamic performance profiling. Such analysis
addresses the challenge of dissecting NF properties. Finally,
LightNF formulates an optimization framework to make
the best offloading decisions (Section 3.4). The framework
carefully integrates the analysis results of NF properties into
its optimization objective and constraints. By this means,
it makes the performance-optimal NF offloading decisions
with respect to NF properties while preserving all the
relevant constraints such as NF dependencies. Thus, it
addresses the challenge of property integration.

TABLE 2: LightNF primitives (“O” refers to “Offloadable”).
Name O? Description

Atomic NF operations

add header 3 Add a new packet header (e.g., VLAN tag)
to the packet. The new header can reside in
an arbitrary location on the packet.

alert 3 Raise an alert to the control plane. The alert
contains the flow ID (e.g., 5-tuple), which is
used to identify a potential malicious flow.

broadcast 3 Broadcast a packet (or the five-tuple of the
packet) to multiple output ports.

copy 3 Copy a packet. The packet and its replica
can be processed by different subsequent
operations (e.g., sending to different ports).

count 3 Count packets. It can be used to create per-
flow counters or hash tables.

decrypt 7 Decrypt a packet. It uses the AES algorithm
by default. Users can change the algorithm.

dequeue 7 Pop a packet from a first-in-first-out queue.
drop 3 Drop packets.
encrypt 7 Encrypt a packet. It uses the AES algorithm

by default. Users can change the algorithm.
enqueue 7 Send a packet to a first-in-first-out queue.
header classify 3 Classify packets based on the user rules that

match specific values of packet header fields.
modify field 3 Modify the value of a packet field.
modify payload 7 Modify the value of the packet payload.
output 3 Send a packet to a destination port.
payload classify 7 Classify packets based on the user rules that

match specific values of payloads.
rate limit 7 Limit traffic rate by buffering packets.
read state 7 Use the flow ID of a specific flow to lookup

the state (e.g., packet count) associated with
the flow.

recirculate 3 Recirculate a packet. The packet will be pro-
cessed by previous operations again.

remove header 3 Remove a specific header from the packet.
update state 7 Update the value of the state associated with

a flow, which is identified by a specific ID.

Primitive for building NFs (u, v are NF operations)

Link(u, c, v) - Execute v after u if c happens. c is hit when
the packet matches one rule of u; c is miss
if the packet does not match any rules of u; c
is all if the packet has been processed by u.

Primitive for building SFCs (u, v are NFs)

Connect(u, v) - Create an edge from u to v, such that u will
be invoked before v.

3.2 LightNF Primitives

In LightNF, we design three classes of intent-based prim-
itives to support administrators to describe NFs and SFCs
on demand. With LightNF primitives, administrators only
need to care about their intent of NF and SFC design
without considering unnecessary offloading details. Table 2
presents a non-exhaustive list of LightNF primitives.

Atomic NF operations. The first class of LightNF primitives
comprises basic and atomic NF operations. In particular,
we observe that even though NFs are diverse, they use
many atomic operations such as matching headers and
forwarding packets [54]. For example, both firewall and
layer-3 forwarding invoke header classify to match
incoming packets and process packets based on matching
results. Thus, LightNF offers a set of atomic NF operations
to allow administrators to compose NFs on their demands.

Primitive for building NFs. The second class contains a
primitive used to assemble atomic operations into NFs. The
primitive, Link(u, c, v), specifies that the operation v is
invoked if the execution result of the pre-visit operation u
equals c. Here, c can be hit (i.e., the packet hits one of u

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on February 14,2022 at 14:21:47 UTC from IEEE Xplore.  Restrictions apply. 



2168-7161 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2022.3149817, IEEE
Transactions on Cloud Computing

6

Fig. 3: Describing an SFC with LightNF primitives.

rules), or miss (i.e., the packet misses all u rules), or all
(i.e., arbitrary results are acceptable). LightNF also offers
tens of ready-to-use NFs that can be directly invoked to
ease development burdens.
Primitive for building SFCs. The other primitives are used
to assemble NFs into a complete SFC. We abstract an SFC
as a directed acyclic graph, where each node corresponds to
an NF. A directed edge implies that the packets sent by the
source NF are consumed as input by the destination NF. We
design a primitive to build the SFC. Specifically, we offer
Connect to build a directed edge connecting two NFs.
Example. Figure 3(a) plots an example of using LightNF
primitives to describe an SFC. The SFC has six NFs and six
edges, such that we use six Connect primitives to establish
the edges between NFs in the SFC. Moreover, Figure 3(b)
details the assembling of four operations of the NF Firewall.
For each packet, Firewall first invokes header classify.
If the execution result of header classify is miss,
implying that the packet may be malicious, Firewall raises
an alert and drop the packet. Otherwise, the packet is
considered as innocent so that Firewall output it.
Integration of new NFs. LightNF offers two approaches for
administrators to integrate new NFs. First, administrators
can directly invoke existing atomic NF operations offered
by LightNF to compose new NFs. Second, if their NFs
invoke new NF operations, LightNF offers an intuitive
interface to administrators to submit the source codes of
these new operations. These operations will be automati-
cally registered into LightNF. For example, administrators
may adopt sketch algorithms (e.g., Count-Min sketch) in
their NFs to perform accurate and resource-efficient traffic
measurement in the scenario of software-defined measure-
ment. In this context, since sketch algorithms have not been
incorporated into LightNF, administrators can submit the
codes of their desired algorithms via the interface offered
by LightNF. LightNF will register each algorithm as an in-
dividual NF operation in its primitives. Then administrators
can exploit the first approach to invoke sketch algorithms to
compose their NFs. In our current implementation, we pro-
vide both a P4-based interface that receives the offloadable
NF operations written in P4 and a DPDK-based interface
that takes the operations built by DPDK as input. The
two interfaces automate the workflow of NF integration in
LightNF, which reduces user burdens.
Benefits. LightNF primitives offer benefits to both admin-
istrators and system design. For administrators, these primi-
tives are intent-based and enable practical NF offloading.
With these primitives, administrators only need to care

about their intents: operations of individual NFs and their
expected assembling as an SFC. LightNF hides all details
on resource consumption, performance behaviors, and ex-
ecution dependencies by automatically dissecting them.
For system design, LightNF primitives abstract NF behav-
iors at the granularity of operations. This enables further
operation-level analysis of NF suitability and dependencies.
We illustrate this benefit in §3.3.

3.3 SFC Analyzer
The SFC analyzer of LightNF performs four types of analy-
sis to dissect NF properties mentioned in §2.2. We illustrate
each type of analysis as follows.

3.3.1 Suitability Analysis
For each NF, the SFC analyzer dissects whether this NF can
be offloaded to the programmable switch via code analy-
sis. It first identifies general restrictions of programmable
switches, and examines every NF whose operations are
specified in LightNF primitives. Then its suitability analysis
detects the NF operations that violate switch restrictions.
Specifically, if an NF contains any restricted operations, the
NF is identified as unsuitable for offloading. Otherwise, the
NF is suitable for offloading. Currently, LightNF identifies
the following types of restricted operations.
• Buffering. Packet buffers are invisible for users in pro-

grammable switches due to high manufacturing cost for
realizing customizable buffers. Thus, controlling packet
buffers is prohibited by most programmable switches.
For example, the NF operations, including rate limit,
enqueue, and dequeue, that conduct traffic shaping by
queuing packets and scheduling packet queues cannot be
offloaded to programmable switches.

• Manipulating packet payload. Some NFs process packets
by reading or writing packet payload: intrusion detection
system (IDS) reads payload based on regular expression
matching to filter malicious packets; packet compres-
sion compresses payload to reduce packet size; virtual
private network (VPN) encrypts and decrypts payload
to enhance the privacy of end-to-end communication.
However, programmable switches restrict the number of
parsed header bytes for each packet due to the limitation
of memory. Thus, the payload-oriented operations, such
as modify payload, payload classify, encrypt,
and decrypt, are not offloadable yet.

• Stateful computation. Many NFs involve stateful compu-
tation. For example, top-K ranker finds the k-most largest
flows based on historical processing states such as per-
flow packet counts; Trojan detector [57] performs state-
ful packet inspection. However, programmable switches
adopt a pipeline-based paradigm to achieve line-rate
packet processing [40]. The paradigm only supports one-
shot packet processing, which restricts stateful opera-
tions, i.e., read state and write state.

The results of suitability analysis identify all the of-
floadable NFs. With these results, LightNF will choose as
many offloadable NFs as possible and offload them to
programmable switches while meeting the resource and
performance requirements. The remaining NFs will be de-
ployed on commodity servers. Note that our suitability
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analysis can be applied to arbitrary NFs as long as these
NFs are implemented with our primitives (§3.2).

3.3.2 Resource Analysis

The second type of analysis infers the resource usage of each
NF. Specifically, each NF contains two properties specified
by administrators, i.e., the maximum number of rules, and a
set of NF operations. Thus, LightNF considers two types of
resources, including memory resources for storing NF rules
and computational resources for realizing NF operations.
Since an NF can be deployed on either a programmable
switch (if offloadable) or a commodity server, the SFC ana-
lyzer examines the resource requirements for running each
NF on a programmable switch and a server, respectively.
Note that there are two execution models of running NFs
on a server: (1) the run-to-complete (RTC) model [35] that
executes all NFs within a single core, and (2) the pipeline
model [33, 53] that assigns an NF to at least one CPU
core. Since the pipeline model offers more flexibility in NF
management than RTC [41], we design LightNF to analyze
in-server NFs under the pipeline model.
• In-switch resources. LightNF targets PISA [40], a gen-

eral programmable switch architecture. For memory re-
sources, it examines both SRAM and TCAM, which store
exact rules and rules with wildcards, respectively. SRAM
also maintains stateful information during packet pro-
cessing. For computational resources, it considers action
units used to perform actual NF operations, and packet
header vectors (PHVs) that store packet headers and meta-
data for exchanging processing status across action units.

• In-server resources. For memory resources, LightNF
monitors the usage of RAM, which stores rules and com-
putational states. For computational resources, it inspects
CPU resources consumed by NFs for packet processing.
As each NF is pinned with one or more CPU cores,
LightNF quantifies CPU resources in terms of the number
of CPU cores instead of CPU cycles.

LightNF employs different strategies to infer in-switch
and in-server resource usage, respectively. For in-switch
resources, it employs a static method by compiling LightNF
primitives via the compiler for programmable switches [58]
since the resource usage remains stable after compilation.
After compilation, the switch compiler will return a report
that presents the detailed switch resource consumption.
LightNF parses the report to acquire the consumption of
SRAM, TCAM, action units and PHVs. By that means, it
obtains the in-switch resource consumption of each NF.

For in-server resources, LightNF employs a dynamic
method as the usage varies at runtime. It first runs each
NF on a commodity server and injects a high-speed traffic
workload to the server. For the traffic workload, it sets the
speed of injecting traffic to 40 Gbps while setting the size
of each packet to 64 bytes. Such settings simulate the peak
workload each server receives at runtime. Next, LightNF
incrementally assigns CPU cores to the NF when testing the
NF with the workload. It records the number of CPU cores
when NF throughput reaches the maximum as the desired
number of CPU cores for the NF. Meanwhile, it invokes sys-
tem tools, e.g., pmap [59], to measure the maximum RAM
consumption of each NF during its execution. Thereby, it
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Fig. 5: p-values of NF latency produced by Shapiro-Wilk
test (N/A indicates that the NF is unoffloadable).

obtains the worst-case in-server resource consumption of
the NF, including occupied CPU cores and RAM.

Note that our strategies in LightNF analyze the worst-
case resource consumption of each NF. The reason is that
with the worst-case results, LightNF can formulate the per-
device resource constraints that prevent NFs from exhaust-
ing per-device resource capacity. We illustrate this in §3.4.

3.3.3 Performance Analysis

The third analysis profiles in-switch and in-server perfor-
mance behaviors of each NF. The measured results are pro-
visioned to the optimization framework for SFC placement.

Latency profiling. LightNF performs accurate and timely
profiling of the tail latency of each NF. Here, we choose
to quantify the tail NF latency as many applications are
latency-sensitive. These applications impose service-level
objectives defined by the bounds on tail latency (e.g., the
99-th percentile of latency should be below 10µs) in order
to achieve predictable performance [60].

However, characterizing latency is hard because the
latency of NFs exhibits significant variance as traffic pat-
terns and NF configurations change. Exploring all possible
combinations of traffic patterns and NF configurations is
infeasible. In response, LightNF measures NF latency with
the worst-case workloads. More precisely, it measures the
latency of each NF when processing 1500-byte packets be-
cause NFs take longer to process large packets longer than
small ones [1, 15] while the maximum size of a packet is typ-
ically 1500 bytes due to the Ethernet maximum transmission
unit (MTU). It injects these packets to each NF to reach the
maximum processing rate. For NF configurations, LightNF
only installs the configurations specified by administrators
to target NFs. Thus, LightNF achieves accurate analysis
since its profiling is specific to the worst-case settings.

In particular, we observe that the latency of an NF on a
single device (a programmable switch or a server) follows
intrinsic Gaussian distribution under fixed experimental
settings, as empirically demonstrated in [61]. To justify our
observation, we deploy seven NFs, including Firewall, LB,
NAT, Router, TM, IDS, and VPN on our testbed. The details
of NF settings and our testbed are illustrated in §4.1. We
measure the per-packet processing latency of each NF on
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Algorithm 1 Performance analysis of NF latency.
Input: threshold ε
Output: the mean latency µ, the latency variance σ
Variables: the i-th mean latency µi, the i-th latency variance σi,
the set S of measured latency statistics.
1: function MEASURE NF LATENCY(ε)
2: µi−1 ← 0; σi−1 ← 0; S ← ∅ . Initialization
3: while True do
4: xi ← Test(); Add xi to S;
5: µi ←Mean(S); σi ← Variance(S);
6: if |µi − µi−1| < ε and |σi − σi−1| < ε then
7: Return µi, σi;
8: else
9: µi−1 ← µi; σi−1 ← σi;

10: end if
11: end while
12: end function

both a programmable switch and a commodity server for
1000 times. In particular, we leverage in-switch timestamps
to measure the latency of NFs running on programmable
switches. More precisely, when a packet arrives a switch,
we set the switch to record its current system time (in
nanoseconds) in a 48-bit metadata field, i.e., the timestamp
tin. When the switch completes its packet processing, it
records the current time as tout and calculates the per-
packet processing latency as tout − tin. It piggybacks the
latency data on the per-packet header space so that we
can directly extract the data from each packet. We plot the
latency distributions of Firewall, LB, and NAT in Figure 4.
The results indicate that the latency of these NFs exactly
fits Gaussian distribution. Moreover, we use Shapiro-Wilk
test [62] to validate the normality of measured data. Take
Firewall as an example. Only 0.2% and 0.1% points de-
viate from the mean by more than three times standard
deviation on the programmable switch and the commodity
server, respectively. Also, as shown in Figure 5, the p-values
produced by Shapiro-Wilk test are higher than 0.05 in all
cases. Thus, the null hypothesis that the NF latency follows
Gaussian distribution is accepted. Note that Guassian dis-
tribution can take negative values of latency. However, this
case happens with a near-zero probability so that LightNF
chooses to elide this situation.

According to the above observation, we design LightNF
to estimate the mean and variance of Gaussian distribution
of NF latency as analysis results. By the law of large
numbers, LightNF repeats measurements until the mean
and variance of processing latency converge. As shown
in Algorithm 1, for each NF, LightNF repeatedly stress-
tests it and measures the latency under fixed settings. It
records the latency for the i-th run as xi (line 4). After each
experiment, it calculates existing mean µi and variance σi
(line 5). It examines two absolute differences |µi − µi−1|
and |σi − σi−1|. When both differences are less than a small
threshold ε > 0, the profiling terminates and returns both
µi and σi (lines 6-7). Otherwise, LightNF updates µi−1 and
σi−1 and continues profiling (line 9).

With the mean µ and variance σ as the analysis results of
NF latency, LightNF can select NFs to be offloaded with the
objective of minimizing the per-packet processing latency
of the entire SFC. We discuss how LightNF leverages this
type of NF properties in its placement in §3.4.

Throughput profiling. In addition to the measurement of
NF latency, LightNF also profiles NF throughput. It allo-

Algorithm 2 Calculate maximum stage number.

Input: set of NF dependencies RE(n)
Output: stage number L(n)
Variable: linked list c(u), height h
1: function CALC STAGE(RE(n))
2: for (u, v) ∈ RE(n) do . Create dependency trees
3: Add v to c(u)
4: end for
5: L(n)← 0
6: for (u, v) ∈ RE(n) do . Obtain max height among all trees
7: h←Max Height(u, c(u))
8: L(n)←Max(L(n), h)
9: end for

10: Return L(n)
11: end function

cates the required amount of resources (e.g., CPU cores),
which is obtained during resource analysis (§3.3.2), to the
target NF. Then it injects the workload comprising 1024-
byte packets to the NF at 40 Gbps, and obtains the average
throughput (in pps) after 1000 runs. In particular, we use the
average throughput as the analysis result. This is because
NF throughput is much more stable than latency statistics
under fixed experimental settings.

3.3.4 Dependency Analysis
The SFC analyzer inspects NF dependencies via code anal-
ysis. Previous studies have identified three types of op-
erations that can alter NF dependencies [1, 40]: (1) read-
based operations, (2) write-based operations, and (3) delete-
based operations. The three types of operations form three
types of dependencies: (1) Read-after-Write dependency. NF
u writes/deletes a packet field that a subsequent NF v
reads; (2) Write-after-Write dependency. Two NFs u and v
write/delete the same packet field; (3) Write-after-Read de-
pendency. NF u reads a packet field that a subsequent NF v
writes/deletes. Note that we do not consider the successor
dependency in [40] because it exhibits the same pattern as
the Read-after-Write dependency.
Inspecting NF dependencies. Specifically, the SFC analyzer
enumerates every pair of NFs. For the pair (u, v), it ex-
amines every pair of operations used by the two NFs. If
two operations exhibit one of the above dependencies, it
regards u and v are interdependent. After enumerating all
pairs of NFs, it records identified NF dependencies in a
dependency matrix D: D(u, v) = 1 if v depends on u;
D(u, v) = 0 otherwise. D will be used by the placement
in §3.4 to preserve NF dependencies within a single device.
Measuring switch stage consumption. When placing inter-
dependent NFs on a programmable switch, these NFs must
be separated in different switch stages due to the switch
restriction [58]. Thus, it is essential to guarantee that the
number of stages occupied by interdependent NFs should
not exceed the total number of switch stages. However,
given a set of NF dependencies RE(n), how to determine
the number of stages required to preserve NF dependencies
is complex and uncertain.

To this end, the SFC analyzer offers Algorithm 2 to
calculate the number L(n) of switch stages occupied by in-
terdependent NFs running on a programmable switch n. It
takes a set of NF dependenciesRE(n) as input. Here,RE(n)
is a subset of dependency matrixD (see Equation 14), which
records the dependencies of NFs running on n. First of all,
for an arbitrary NFs u recorded in RE(n), the SFC analyzer
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Fig. 6: Calculating maximum stage number L(n).

creates a dependency tree and represents the tree in a linked
list c(u) (lines 1-3). Specifically, a dependency tree is a tree-
like data structure, where the NF u is the root node of the
tree, and all the subsequent NFs that depend on u are the
child nodes of u. In particular, the nodes (i.e., NFs) located
in different levels of a dependency tree must be placed in
different switch stages with respect to switch restrictions.
Next, for each dependency tree c(u), the SFC analyzer
obtains its maximum height using depth-first search (line
7). After all, since each tree level needs an individual switch
stage, the maximum tree height among all dependency trees
(denoted by L(n)) corresponds to the number of switch
stages occupied by the NF dependencies in RE(n).

We illustrate the above algorithm via an example shown
in Figure 6(a). The input RE(n) records four NF dependen-
cies. For each NF, the SFC analyzer creates a corresponding
dependency tree. It enumerates each tree to acquire its
height. Figure 6(b) plots the two tallest dependency trees,
Tree1 and Tree2, in this example. The height of Tree1 is
3, which is larger than that of Tree2. Thus, the maximum
number of stages used to maintain NF dependencies is 3.

3.4 Optimization Framework

LightNF offers an optimization framework that performs
the performance-optimal SFC placement based on the anal-
ysis results of NF properties offered by the SFC analyzer.

Problem statement of SFC placement. Given an SFC, we
aim to place the SFC on the substrate network by offloading
some NFs to programmable switches while deploying other
NFs to servers. Our goal is to maximize SFC performance.
The input of this problem of SFC placement includes a
network comprising a set NP of programmable switches
and a set NS of servers, a matrix B of link bandwidth, a
matrix M of link latency, an SFC, and a dependency matrix
D. Here, B and M are obtained by periodically measuring
the latency and bandwidth of the shortest path (i.e., the
path with the minimal number of hops) between each pair
of devices. The output is a set of binary decision variables,
{xun}, indicating the mapping between NFs and network
devices: xun = 1 if the NF u is deployed on the device n;
xun = 0 otherwise. We summarize our notations in Table 3.

Solution. We design the optimization framework to formu-
late and solve the above problem.
1 Novelty. Unlike previous works, LightNF leverages its analy-

sis results to make the performance-optimal offloading decisions.
Specifically, its analysis results guide SFC placement in
three aspects. First, the suitability analysis classifies NFs
into two sets, i.e., RO for offloadable NFs and RU for

TABLE 3: Notation of symbols used in this paper.
Symbol Description

NP Set of programmable switches.
NS Set of commodity servers.
B(n,m) Maximum bandwidth between two devices n,m.
M(n,m) Link latency between two devices n,m.
P (n) Resource capacity of a programmable switch n.
S(n) Resource capacity of a commodity server n.
RO Set of offloadable NFs.
RU Set of unoffloadable NFs.
R(u) Resource requirement of an NF u.
µ(u) Mean of latency of NF u.
σ(u) Standard deviation of latency of NF u.
φ(u) Throughput of NF u.
TP Sum of processing latency of the NFs running on switches.
TS Sum of processing latency of the NFs running on servers.
TL Sum of link latency between devices.
ΦP Minimal throughput of NF u on the switch.
ΦS Minimal throughput of NF u on the server.
ΦB Minimal bandwidth of links between used devices.
D(u, v) Variable indicating whether two NFs are interdependent.
RE(n) Set of intra-device NF dependencies within a switch.
L(n) Number of stages used by intra-device NF dependencies.
xun Variable indicating if an NF is deployed on a device.

remaining NFs. The performance analysis characterizes NF
performance behaviors, including mean µP and standard
deviation σP of latency, and throughput φP in the pro-
grammable switch, as well as mean µS and standard de-
viation σS of latency, and throughput φS in the server.
Intuitively, the above two types of analysis suggest offload-
ing NFs with the maximum performance gain. Second, the
resource analysis quantifies the NF demands for device
resources. It restricts NF offloading based on the capac-
ity of device resources. Finally, the impact of dependency
analysis can be classified into intra-device dependencies
and inter-device dependencies. Intra-device dependencies
impose constraints on the arrangement of NFs in a single
device, while inter-device dependencies determine how the
traffic is directed among devices.
2 Overview. The optimization framework executes a three-

step procedure. First, it sets the objective to maximize SFC
performance. Second, it formulates the analysis results of
LightNF as three types of constraints to restrict NF offload-
ing. Finally, it inputs the objective and constraints to Gurobi
[63], an integer programming solver, for problem solving.
3 Objective. The optimization objective can be either (1)

minimizing latency, or (2) maximizing throughput. For min-
imizing latency, we consider (1) the sum of total latency in
all programmable switches TP , (2) that in all commodity
servers TS , and (3) the sum of link latency between devices
TL. Thus:

min (TP + TS + TL) (1)

TP =
∑

n∈NP

∑
u∈RO∪RU

(xun · (µP (u) + β × σP (u))) (2)

TS =
∑

n∈NS

∑
u∈RO∪RU

(xun · (µS(u) + β × σS(u))) (3)

TL =
∑

n,m∈NS∪NP

∑
u,v∈RO∪RU

(xun · xvm ·M(n,m)) (4)

Here, u and v are two adjacent NFs in the SFC, and u is ex-
ecuted before v. Our framework takes the latency variance
into account by incorporating both the mean µ and variance
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σ in the calculation of TP and TS . Specifically, we calculate
the processing latency of an NF as µ + β × σ, where β is
a tunable parameter assigned by administrators. Recall that
the latency of an NF follows Gaussian distribution as §3.3.3.
According to the properties of Gaussian distributions, we
can set β to 0 or 3: when β = 0, the latency is the average
latency µ, while β = 3 implies the tail NF latency.

Moreover, for maximizing throughput, we abstract the
SFC as an end-to-end system, which throughput is deter-
mined by the NF or the link with the minimal throughput.
Thus, we consider (1) the minimal throughput of the NFs
deployed on programmable switches ΦP , (2) that of the NFs
deployed on servers ΦS , and (3) the minimal bandwidth
among mapped links ΦB . We have:

max (min (ΦP ,ΦS ,ΦB)) (5)

ΦP = min
n∈NP ,u∈RO

(xun · φP (u)) (6)

ΦS = min
n∈NS ,u∈RO∪RU

(xun · φS(u)) (7)

ΦB = min
n,m∈NS∪NP ,u,v∈RO∪RU

(xun · xvm ·B(n,m)) (8)

ΦP · ΦS · ΦB > 0 (9)

4 Suitability constraints. The suitability analysis derives
two constraints. First, an arbitrary NF u can only be as-
signed to one target device n ∈ NP ∪NS , i.e.∑

n∈NP∪NS

xun = 1, ∀u ∈ RO ∪RU (10)

Second, if an NF v is unoffloadable (i.e., v ∈ RU ), it
cannot be deployed on any programmable switch n ∈ NP .
Therefore:

xvn = 0, ∀v ∈ RU ,∀n ∈ NP (11)

5 Per-device resource constraints. NFs in a device should
not consume more resources than the resource capacity of
the device. Here, we separately consider the resources of
programmable switches and that of commodity servers. For
a programmable switch n ∈ NP , we have:∑

u∈RO

(xun ·R(u)) ≤ P (n), ∀n ∈ NP (12)

where R(u) represents the requirements of TCAM, SRAM,
action units, and PHVs. Next, for a server n ∈ NS , we have:∑

u∈RO∪RU

(xun ·R(u)) ≤ S(n), ∀n ∈ NS (13)

where R(u) represents the requirements of RAM and cores.
6 Intra-device dependencies. The number of stages is lim-

ited in a programmable switch. Thus, the number of stages
L(n) occupied by interdependent NFs running on a pro-
grammable switch n should be less than the maximum
number of switch stages PST (n):

RE(n) = {(u, v)|xun · xvn = 1, D(u, v) = 1} ,
∀u, v ∈ RO,∀n ∈ NP (14)

L(n) = Calc Stage(RE(n)),∀n ∈ NP (15)

L(n) ≤ PST (n), ∀n ∈ NP (16)

Here, L(n) is determined by the set RE(n) of NF depen-
dencies among the NFs running on a switch n. We input
RE(n) to Algorithm 2 to calculate L(n).

3.5 SFC Deployment and Runtime Management
LightNF adopts existing approaches to perform the remain-
ing steps of SFC deployment and runtime management.
NF deployment. After solving the problem of SFC place-
ment, LightNF obtains the set of binary decision variables,
{xun}, from its optimization framework. Recall that if xun =
1, LightNF needs to deploy the NF u on the device n. Thus,
given an SFC to be deployed, LightNF enumerates every
NF defined in the SFC. For the NF u, if xun = 1, LightNF
deploys u on the target device n. If n is a programmable
switch, LightNF inputs the LightNF primitives that imple-
ment u to the switch compiler. It obtains corresponding
switch configurations from the switch compiler and installs
these configurations on the target device n. Otherwise, n
is a server so that LightNF directly runs u on n. Then it
allocates the required amount of in-server resources, which
is profiled by the SFC analyzer (§3.3.2), to u.

Moreover, LightNF needs to configure the switch parser
to support NF processing. Specifically, since switches forbid
the processing of packet payloads (see Section 3.3.1), the
NFs offloading to switches only process a limited number
of packet headers varying from the layer-2 headers such as
Ethernet to the layer-4 headers such as TCP. Thus, LightNF
configures each switch with a default parser that is capable
of handling all types of layer 2-4 headers. More precisely,
the parser is a finite state machine, in which each state
represents the logic of parsing a specific packet header
(e.g., IPv4) while each transition between two states denotes
the dependency between two headers (e.g., the transition
“Ethernet→IPv4” is activated iff the value of EtherType
equals 0x0800). It is pre-defined with all the states process-
ing layer 2-4 headers and corresponding state transitions.
By this means, LightNF does not need to change the switch
parser as the NF types change.
Traffic routing. After NF deployment, the interdependent
NFs defined in the SFC may be placed on different net-
work devices. Thus, LightNF needs to correctly route traffic
between interdependent NFs at runtime. Otherwise, inter-
device NF dependencies will be violated. To this end, we
design LightNF to generate the routing rules that correctly
forward traffic with respect to NF dependencies. Specifi-
cally, if two NFs, u and v, are deployed on different devices
but have a dependency (indicated by the LightNF primitive,
Connect(u, v)), LightNF will first locate the target devices,
n and m, that run u and v, respectively. Next, it finds out
the network paths connecting n and m from the network
topology. Then for each device located in these paths, it
generates a routing rule that correctly routes traffic from n
to m, and populates this rule to the device. As a result, the
traffic will be correctly routed from u to v at runtime, which
guarantees inter-device NF dependencies.
Incremental SFC deployment. LightNF applies two strate-
gies to support incremental SFC deployment at runtime. (1)
When administrators need to deploy a new SFC at runtime,
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LightNF re-runs its optimization framework to place the
SFC on residual network resources. To avoid disturbing
existing placement, it prioritizes the devices that have not
run any NFs yet to deploy the new SFC. (2) Administrators
often need to deploy several SFCs at the same time to
improve resource usage [7]. To this end, LightNF adopts
P4SC [7] to merge SFCs iteratively by eliminating redun-
dant operations among SFCs. Specifically, given a set A of
n input SFCs, LightNF executes n − 1 iterations. In each
iteration, it picks up two SFCs from the input set. Then it
inputs the two SFCs to P4SC. P4SC merges the two SFCs
by merging redundant NF operations among the two SFCs
while observing NF dependencies. Next, LightNF obtains a
merged SFC from P4SC and adds the SFC to A. Thus, after
n− 1 iterations, there is only one SFC left in A, which is the
resulting merged SFC. Finally, LightNF places the merged
SFC on the network using its first strategy.

4 EVALUATION

In this section, we conduct extensive experiments to evalu-
ate LightNF. We repeat each experiment for 100 times and
take the average. Our experimental results indicate that:
• LightNF achieves higher scalability than Metron [35] by

fulfilling all SFC placement requests (Exp#1).
• For real SFCs, LightNF reduces SFC latency by one order

of magnitude compared to E2 [33] (Exp#2).
• For complex SFCs, LightNF reduces SFC latency by two

orders of magnitude, and achieves 9.5× higher through-
put than E2 and Metron (Exp#3).

• In testbed, LightNF reduces SFC latency by around 93%
and achieves 176% throughput increase than E2 (Exp#4).

• Even for the complex SFC with 100 NFs, LightNF can
solve the SFC placement problem within 60 ms (Exp#5).

4.1 Setup

Prototype. We implement the LightNF primitives that build
NFs in both P4 [26] (if offloadable) and DPDK 17.11 [55].
We realize other primitives that build SFCs in C++. We also
implement a primitive compiler, an SFC analyzer, and an
optimization framework in Python. The compiler parses
input primitives and delivers parsed results to the SFC
analyzer, which performs subsequent analysis on parsed
results. Next, the optimization framework uses Gurobi [63]
to execute SFC placement. Then LightNF identifies which
NFs are offloaded and connects the P4 source codes of
these NFs to generate the switch configuration. Currently,
LightNF installs the switch configuration on PISA-based
switches [40]. For other NFs, it assembles the DPDK codes
of these NFs to the server configuration. Also, we use
LightNF primitives to build seven NFs, including Firewall
(FW), load balancer (LB), network address translator (NAT),
Router, traffic monitor (TM), IDS, and VPN. Table 4 shows
the details of these NFs. We configure these NFs as sug-
gested by [1], and use these NFs to compose the real SFCs
[1, 7, 33] in Table 5.
Testbed. We build a testbed with a 32×100 Gbps Barefoot
Tofino switch [10] and four servers. Each server has twelve
2.3 GHz CPU cores, and directly connects to the switch via
a 40 Gbps link. We run LightNF on an individual server that

TABLE 4: NFs used by our experiments. “Suitability”
indicates whether an NF is suitable for offloading while “#
of primitives” indicates the number of LightNF primitives

used to implement the NF.
Name Match Operations Suitability # of primitives

FW 5-tuple Drop malicious packets 3 3
LB 5-tuple Hash 5-tuple; forward packets 3 5
NAT 5-tuple Modify IP addresses 3 4
Router srcIP Forward packets 3 3
TM 5-tuple Hash 5-tuple; report 3 4
IDS Payload Drop packets 7 5
VPN 5-tuple AES-based encryption 7 6

TABLE 5: SFCs used by our experiments.
Name LightNF primitives for building SFCs

SFC1 [7] Connect(FW, LB)
SFC2 [7] Connect(IDS, FW); Connect(FW, NAT); Connect(NAT, Router)
SFC3 [1] Connect(VPN, TM); Connect(TM, FW); Connect(FW, LB)
SFC4 [1] Connect(IDS, TM); Connect(TM, LB);
SFC5 [33] Connect(NAT, FW); Connect(FW, IDS); Connect(FW, VPN);

Connect(IDS, VPN)

controls the testbed. To evaluate LightNF, we generate a 40-
Gbps traffic workload based on a CAIDA trace [64]. We also
implement a simulator in C++ to evaluate LightNF at scale.
Comparison solutions. We compare LightNF with two rep-
resentative state-of-the-art solutions, including a software-
based method, E2 [33], and a hardware-assisted method,
Metron [35]. E2 deploys SFCs on multi-core servers with
the objective of minimizing inter-server transfers. It assigns
each NF to a specific CPU core and uses an additional core
for traffic dispatching and steering among NFs. We base E2
on DPDK. Moreover, Metron selects a programmable switch
and a server from the network to deploy an SFC. Specifi-
cally, its selection comprises two steps. First, for unoffload-
able NFs, it randomly selects two servers and determines
if none of them has enough resources to deploy unoffload-
able NFs. If so, it abandons the two servers and repeats
the process until a server is found. Otherwise, it chooses
the server with more resources. For the chosen server, it
executes all the unoffloadable NFs within a single core
to avoid inter-core packet transferring. Second, it deploys
offloadable NFs on the programmable switch that is closest
to the selected server. Next, we implement a heuristic that
randomly selects programmable switches for NF offloading.
Thus, we can demonstrate the benefits of considering NF
properties when making offloading decisions in LightNF
by comparing it with the heuristic.

4.2 Experimental Results

(Exp#1) Scalability of LightNF. We evaluate the scalabil-
ity of LightNF, in terms of the ability of simultaneously
deploying multiple SFCs. We measure the SFC acceptance
rate (AR), which is the ratio of the number of accepted
SFCs to that of total SFCs. Here, the accepted SFCs are the
SFCs that are successfully deployed. We simulate a 4-ary
FatTree data center network to deploy SFCs. We randomly
set half of the devices as programmable switches, while
using the remaining devices as servers [42]. The link latency
is uniformly distributed from 0.1µs to 0.5µs. We set the
resource capacity of devices based on real settings [40, 58]:
each switch has 46.25 MB SRAM, 10 MB TCAM, 512 B PHV,
6400 action units, and 32 stages, while each server has
12 CPU cores and 128 GB RAM. Moreover, the resource
usage of an NF is uniformly distributed. Specifically, an NF
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consumes 6∼12 MB TCAM and SRAM, 12∼24 MB RAM,
1000∼1500 action units, 10∼50 B PHV and 1∼5 CPU cores.
We generate two types of synthetic SFCs: (1) normal SFCs,
each of which has ten NFs; (2) complex SFCs with massive
NFs. For normal SFCs, we vary the number of SFCs to
be deployed from 2 to 10. For complex SFCs, we deploy
an SFC at a time but vary the number of NFs resided in
an SFC from 10 to 50. In each SFC, we set half of NFs
to offloadable NFs. In Figure 7, we see that both E2 and
LightNF accept all SFCs in all cases. In contrast, Metron
supports at most six normal SFCs to be simultaneously
deployed, and fails to deploy complex SFCs with more than
20 NFs. This is because Metron does not take per-device
resource constraints into consideration. For example, for the
complex SFC with twenty NFs, Metron tries to find a switch
that is capable of maintaining ten offloadable NFs, which is
infeasible given limited switch resources.

(Exp#2) Performance benefits for real SFCs. We evalu-
ate the performance benefits incurred by LightNF for real
SFCs. We simulate four large-scale topologies, Google B4
[65], 4-ary FatTree, Internet2 [66], and Stanford campus
network [67], to deploy SFCs. We consider the five SFCs
in Table 5 and use the same settings as Exp#1. We incre-
mentally deploy these SFCs and direct the traffic workload
to go through every SFC. As shown in Figure 8, LightNF
achieves the optimal placement that minimizes SFC latency.
Compared to E2, LightNF reduces the latency by orders
of magnitude. The improvement comes from the line-rate
capability of programmable switches in which a large por-
tion of NFs is offloaded. Moreover, other solutions achieve
higher performance than E2 via NF offloading. However,
due to their random selection mechanism, they suffer from
a latency overhead of up to 23µs compared to LightNF,
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Fig. 9: (Exp#3) Performance benefits for complex SFCs.

which inevitably affects latency-sensitive applications.

(Exp#3) Performance benefits for complex SFCs. We evalu-
ate the performance benefits incurred by LightNF for com-
plex SFCs. We generate five SFCs by varying the number of
NFs from four to twenty while randomly setting the num-
ber of edges between NFs. We inject the traffic workload to
each SFC and steer it to travel all the NFs in the SFC. We
compare LightNF with E2, an enhanced version of Metron
that can use multiple servers for SFC deployment, and the
random heuristic. We deploy SFCs on the 4-ary FatTree and
Internet2 [66], respectively. We apply the same settings as
Exp#1. Figure 9 shows that compared to other solutions,
LightNF reduces SFC latency by two orders of magnitude,
and increases throughput by up to 9.5×. Note that Metron
dramatically decreases SFC performance when the number
of NFs increases. This is because Metron overlooks per-
device resource constraints, leading to inefficient placement
for complex SFCs. Moreover, the random heuristic ran-
domly selects switches for NF offloading, inevitably leading
to sub-optimal decisions compared to LightNF.

(Exp#4) Testbed performance. We deploy real SFCs on
our testbed via LightNF and measure SFC performance.
Figure 10 shows that LightNF achieves at most 176%
throughput increase than E2. The throughput gain is small
for large packets because both approaches have reach link
capacity. In particular, as shown in Figure 10(b), LightNF
reduces the latency in E2 by around 93%. This is because all
the NFs in SFC1 are offloadable. Thus, LightNF deploys
the entire SFC on the programmable switch, leading to
remarkably low latency. Note that Metron achieves similar
results compared to LightNF. This is because the number
of devices in our testbed is limited, such that the placement
offered by Metron is the same as that of LightNF. Due to
the same reason, the heuristic makes the same decisions as
LightNF, which is elided here.

(Exp#5) Execution time of LightNF. We measure the ex-
ecution time of LightNF. We first measure the time of
dissecting NF properties at scale. We generate artificial NFs
by randomly combining the operations used by real NFs.
Each NF stores 104 rules and requires 0.32 MB RAM. We
manually generate the LightNF primitives that construct
SFCs based on artificial NFs. The SFCs contain various
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Fig. 10: (Exp#4) Testbed performance.

number of NFs ranging from 20 to 100. Figure 11(a) shows
that the SFC analyzer takes around 23.5 ms to analyze 100
NFs. It is acceptable due to two reasons. First, the SFC
analyzer performs its tasks in offline mode. Second, the
properties of an NF are reusable. Thus, the SFC analyzer
can omit the analysis of an NF if this NF has been dissected,
which decreases analysis time. We also evaluate the time of
SFC analyzer for the real SFCs used in our experiments. Our
results indicate that the analysis completes within 20 ms in
all cases, which is acceptable.

Next, we evaluate the time of optimization framework
for real SFCs and complex SFCs, respectively. We apply the
same settings as Exp#1. We compare our framework with
E2 and Metron. As shown in Figure 11(b)-(c), our frame-
work takes less than 60 ms, which is a bit slower than E2.
However, recall that a real SFC generally uses less than 20
NFs. Thus, for real SFCs, the time of our framework is a few
milliseconds. Since our framework is invoked offline, its
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Fig. 11: (Exp#5) Execution time of LightNF.

execution time is acceptable compared to the minute-level
device configuration time. Note that Metron spends less
than 1 ms across all cases because its simple heuristic only
selects a switch and a server to deploy an SFC. Although
its time remains stable and small, its scalability is limited as
indicated by Exp#1.

5 DISCUSSION

Integration of sketch algorithms. To date, many solutions
have leveraged various hardware-compatible sketch algo-
rithms to realize their desired NFs of on-demand traffic
measurement such as heavy hitter detection entirely in the
data plane. However, the current list of LightNF primitives
(see Table 2) does not contain such algorithms. In response,
we plan to integrate existing sketch algorithms into LightNF
in the near future. More precisely, we plan to implement
each sketch algorithm as an individual NF operation and
register it as a specific primitive supported by LightNF
by means of the approaches mentioned in Section 3.2. In
this way, administrators can directly invoke the LightNF
primitives corresponding to their desired types of sketch
algorithms to compose their NFs.

Analysis of stateful NFs. Recall from Section 3.3.1 that ex-
isting NFs may adopt stateful computation that requires to
store the historical packet processing information. However,
modern programmable switches only provide limited sup-
port of such stateful processing due to their limited capacity
of resources [68, 69, 70]. In this context, our current design
of LightNF choose to entirely deploy the NFs that involve
stateful operations to commodity servers. It guarantees that
all the NFs can be successfully deployed but leaves room for
further performance optimization. In the future, we plan to
enhance LightNF with the suitability of analyzing stateful
NFs to address this limitation.

Overhead analysis. We analyze three-fold overheads of the
deployment made by LightNF. (1) Per-packet byte overhead.
Some solutions [71, 72, 73] piggyback essential packet pro-
cessing results such as packet-in timestamps on the per-
packet header space so as to deliver information among
distributed NFs. This incurs the per-packet byte over-
head, which reduces the available size of payload in each
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packet and decreases end-to-end performance [29]. How-
ever, LightNF does not add information to packet headers.
It preserves inter-device NF dependencies by correctly rout-
ing packets among devices, avoiding the per-packet byte
overhead. (2) Switch resource consumption. LightNF aims to
make the performance-optimal decisions in NF offloading.
Its deployment does not add additional logic to switches.
Thus, it does not incur switch resource consumption. (3)
Network-wide overhead. LightNF populates additional rout-
ing rules to network devices so as to correctly deliver
packets between the devices running NFs. Nevertheless, its
strategy of static routing only adds 2-3 rules to each device,
making network-wide overheads small and acceptable.

Failure recovery. Recall from Section 3.5 that our current
design of LightNF routes traffic among different devices
with pre-defined routing rules to preserve inter-device NF
dependencies. However, such static routing fails to mitigate
the impact of network failures. In response, we plan to
enhance LightNF with fault-tolerant traffic routing. More
precisely, we plan to integrate existing solutions of in-
network failure detection and dynamic traffic rerouting
[73, 74] into LightNF.

6 CONCLUSION

With the flexibility of programmable switches, recent re-
searches enable network administrators to offload NFs from
commodity servers to programmable switches. However,
to achieve the performance-optimal SFC placement, admin-
istrators still have to manually analyze the source codes
of NFs to understand various NF properties, which im-
poses significant user burdens. To address this problem,
we propose LightNF, a novel NFV system that performs
the comprehensive analysis of NF properties, and leverages
the analysis results to achieve performance-optimal SFC
placement. We have implemented LightNF on Tofino-based
hardware programmable switches. Extensive experiments
show that LightNF outperforms existing solutions with
orders-of-magnitude latency reduction, up to 9.5× through-
put increase, and higher scalability in SFC placement.
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