
Poster: Content-aware Retransmission for Ultra-low-latency
Video Streaming

Wei Li
wlidq@connect.ust.hk

Hong Kong University of Science and Technology
Hong Kong

Zili Meng∗
zilim@ust.hk

Hong Kong University of Science and Technology
Hong Kong

CCS Concepts
• Networks→ Transport protocols; • Information systems→
Multimedia streaming.

Keywords
loss recovery, video streaming
ACM Reference Format:
Wei Li and Zili Meng. 2024. Poster: Content-aware Retransmission for Ultra-
low-latency Video Streaming. In ACM SIGCOMM 2024 Conference (ACM
SIGCOMM Posters and Demos ’24), August 4–8, 2024, Sydney, NSW, Australia.
ACM, New York, NY, USA, 3 pages. https://doi.org/10.1145/3672202.3673746

1 Introduction
Ultra-low-latency video streaming, such as videoconferencing, has
been rapidly developed and widely used by users in recent years.
Especially for emerging applications like cloud gaming and virtual
reality, they require both extremely low latency (tens of millisec-
onds even at the 99th percentile) and good video quality to achieve
great quality of experience [9].

Packet loss and loss recovery are consequently critical to achieve
such a goal. On the Internet, packet loss can unpredictably happen at
any time due to wireless interference [8] or network congestion [3].
The packet loss is also believed to result in the degradation of video
quality. To ensure good video quality, existing efforts will try their
best to reliably deliver packets and recover the lost packets, with
retransmissions [2, 6, 7] or forward error correction (FEC) [4, 9, 10].

However, none of the solutions are perfect. FEC-based methods
will probably over-protect the video stream with considerable band-
width costs (up to 10x of the actual loss rate [9]), and still have to
rely on retransmission when the recovery fails. Retransmission, on
the contrary, introduces the delay of at least one RTT. Making mat-
ters worse, the retransmitted packet will also have the head-of-line
blocking effect for subsequent packets since the video decoder has
to decode the whole frame together. In this case, the loss of one
packet will block the decoding of the whole video frame and even
subsequent frames. This has become more and more severe with
the increase of video resolution and frame size recently.
∗Zili Meng is the corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ACM SIGCOMM Posters and Demos ’24, August 4–8, 2024, Sydney, NSW, Australia
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0717-9/24/08
https://doi.org/10.1145/3672202.3673746

(a) Normal Frame. (b) One lost packet (index=0.75).

Figure 1: Some packets are not imporatant to the user experience –
the SSIM between two pictures are 0.97.

We identify that one missing question in the packet loss recovery
is whether these lost packets are really necessary to recover for the
application. That is to say, although the transport layer strives to
reliably deliver every packet, including both TCP-based or UDP-
based [8], some of the recovery efforts might be unnecessary for
the application. Especially for conventional video codecs such as
libx264, the video decoder supports the error concealment with
intra-frame neighbor contents1 – the decoder can recover the miss-
ing regions caused by packet loss using other auxiliary information.
In this case, the loss of some packets has minimal influence on the
video quality.

We present two decoded images from [11] in Fig. 1 to further
demonstrate the case. We manually create a packet loss when trans-
mitting Fig. 1a, pad the missing bits with zero, and decode it into
Fig. 1b. We enable the error concealment in libx264 at the decoder.
The visual differences between Fig. 1a and Fig. 1b are very slight.
It indicates that the lost packet is not significant to the user ex-
perience. Then we conduct an experiment to further explore the
significance of each packet in a frame. As shown in Fig. 2, 40% of
packet losses in our preliminary experiments are not necessary to
recover with the degradation on SSIM2 of less than 0.05, only 20%
can lead to video quality degradation of more than 0.1.

Our key insight is that we will only retransmit the lost packets
when they are really necessary to the quality degradation. In this
way, we can reduce unnecessary retransmissions and quickly de-
code the video frames to minimize the impact. However, as there
are numerous video codecs in use nowadays (e.g., VP8, VP9, AV1,
H264), how to scale our design to different codecs is also challeng-
ing. In response, we will not modify the video codecs – instead,
we will only modify the retransmission manager at the transport
layer. Moreover, determining which packets are critical to the video
quality is non-trivial since the significance is related to the video
contents. We therefore define a metric combining user experience
with load time to measure the significance of a frame to the video
1Recently, GRACE [5] proposed to codesign the video codecs with loss recovery,
which requires coordination between the encoder and decoder and brings considerable
decoding overhead (NVIDIA A40 GPU).
2Structural similarity (SSIM [12]) is a typical metric to evaluate the video quality.

https://doi.org/10.1145/3672202.3673746
https://doi.org/10.1145/3672202.3673746


ACM SIGCOMM Posters and Demos ’24, August 4–8, 2024, Sydney, NSW, Australia Wei Li and Zili Meng

Figure 2: The loss of differ-
ent packets has different signifi-
cance to the user experience.

Figure 3: The metric is able to
distinguish the importance of
different frames.

quality. Then we differentiate retransmission packets according to
the significance. We preliminarily evaluate our idea with libx264
and an open-source video dataset, and find that our method can
reduce the end-to-end latency by up to 1/3 with negligible SSIM loss
and push forward the Pareto frontier [1] compared with baselines.

2 Design
We define the load time of a frame as the total time required to
receive all the packets. If we retransmit a packet, we may need more
time to receive the packet. Therefore, by making decisions about re-
transmission for each packet, we can effectively reduce the number
of retransmissions. However, the action space for decision-making
is exponential growth to the total number of packets, which is
deemed unacceptable. Ideally, we can retransmit only the important
packets and we find that the significance of packets is determined
by two factors:
Video quality. As shown in Fig. 2, the SSIM loss decreases when
the index of the lost packet increases. This is also related to the
mechanism of video codecs – one video frame contains tens to hun-
dreds of packets, and packets at the beginning of a frame are more
critical than packets at the end. In Fig. 2, 40% of the packet losses
will only incur an SSIM loss of less than 0.05, which is negligible to
the quality degradation.
Retransmission time. If the retransmitted packet is at the begin-
ning of a frame, the time cost is negligible because we can receive
other packets when waiting for the packet. On the contrary, when
the last packet of a frame is lost, we have to wait for at least one
RTT before we can decode the frame. In other words, the time cost
of retransmission in a frame is inversely proportional to the index
of the lost packet.

We define the expectation of SSIM loss as E[𝑆𝑖 |𝑟 ], for frame
𝑖 under a specific loss rate 𝑟 , assuming no retransmission. This
expectation represents the significance of frame 𝑖 to the overall
video quality. Additionally, we consider the expected time cost of
retransmission, which is influenced by the frame size 𝑓𝑖 . The ratio
𝑄𝑖 = E[𝑆𝑖 |𝑟 ]/𝑓𝑖 is the metric to measure the importance of a frame.
Furthermore, we define 𝑄𝑎 as the average of 𝑄𝑖 values across the
entire video and 𝜆 as the coefficient to adjust the threshold. Then
we adopt the following approach:
• If 𝜆𝑄𝑖 is higher than 𝑄𝑎 , it indicates that frame 𝑖 is crucial for
video quality, requiring retransmission of the lost packets.

• If 𝜆𝑄𝑖 falls below the average level, it suggests that those packets
of frame 𝑖 is not worth retransmitting.

Figure 4: Compare our method
with two baselines and burst
length is 8 frames.

Figure 5: Compare different
methods with different duration
of bursts.

3 Evaluation
We estimate E[𝑆𝑖 |𝑟 ] using the Monte Carlo method. Subsequently,
we perform an experiment to demonstrate the variability of 𝑄𝑖

among different frames and its effectiveness in differentiating them.
In Fig. 3, red line represents𝑄𝑎 . Notably, certain frames exhibit peak
values significantly higher than𝑄𝑎 . This observation indicates that
the metric serves as a high signal-to-noise ratio signal, enabling
easy identification of important frames.

To evaluate the effectiveness of our solution, we compare it
against two baselines: the deadline-aware and the probabilistic loss
recovery method. Deadline-aware baseline sets the maximum num-
ber of retransmissions 𝜋 per lost packet and will give up retransmis-
sion after 𝜋 retransmissions. The probabilistic method is the proba-
bility 𝑝 of retransmission per lost packet. We also test the different
values of 𝑝 = {0, 0.1, 0.2, ..., 0.9}, 𝜋 = {0, 1, 2}, 𝜆 = {0, 1, 2, ..., 8}, and
the case that retransmits all packets.

We implement a simple simulator using libx264. In the simu-
lation, we suppose RTT is 15 ms, bandwidth is 40 Mbps, the loss
rate is 10% and the frame rate of the video is 30fps, taking from
the typical network conditions [9]. We suppose only one burst hap-
pens during the whole video. Then we use the video from YT-UGC
Dataset [11] as the test video, each with a duration of 20 seconds. In
Fig 4, the burst length is 8 frames and the simulation result shows
that our method reduces the SSIM loss with the same load time.
For example, if we limit the load time to 40ms, the SSIM loss of our,
deadline-aware and probabilistic method are 0.025, 0.075, and 0.14.

Then we set burst length from 1 frame to 16 frames in the exper-
iment following [9]. Fig 5 shows the performances of these three
methods with different burst lengths. We limit the load time to 40ms
and compare the SSIM loss results. Our method can achieve the
best result in all scenarios and reduce the SSIM loss with baselines
by 50%-95%.

4 Conclusion and Future Work
This poster proposes a content-aware loss recovery mechanism that
enables receivers to optimize the QoE when packet loss occurs by
only retransmitting important frames. The simulation experiment
demonstrates that our method breaks the trade-off between user
experience and load time.

For future work, one challenge is how to collect load time and
content information efficiently for live video streaming. Another
challenge is addressing the handling of more frequent and longer
bursts. Currently, we only consider the scenario where bursts occur
every 20 seconds.



Poster: Content-aware Retransmission for Ultra-low-latency Video Streaming ACM SIGCOMM Posters and Demos ’24, August 4–8, 2024, Sydney, NSW, Australia

References
[1] Pareto front-wikipedia. https://en.wikipedia.org/wiki/Pareto_front.
[2] Mark Allman, Vern Paxson, and Ethan Blanton. Tcp congestion control. IETF

RFC 5681, 2009.
[3] Gaetano Carlucci, Luca De Cicco, Stefan Holmer, and Saverio Mascolo. Con-

gestion control for web real-time communication. IEEE/ACM Transactions on
Networking, 2017.

[4] Ke Chen, Han Wang, Shuwen Fang, Xiaotian Li, Minghao Ye, and H. Jonathan
Chao. Rl-afec: Adaptive forward error correction for real-time video communi-
cation based on reinforcement learning. In Proc. ACM MMSys, 2022.

[5] Yihua Cheng, Ziyi Zhang, Hanchen Li, Anton Arapin, Yue Zhang, Qizheng
Zhang, Yuhan Liu, Kuntai Du, Xu Zhang, Francis Y. Yan, Amrita Mazumdar, Nick
Feamster, and Junchen Jiang. GRACE: Loss-Resilient Real-Time video through
neural codecs. In Proc. USENIX NSDI, pages 509–531, Santa Clara, CA, April 2024.
USENIX Association.

[6] Yuchung Cheng, Neal Cardwell, Nandita Dukkipati, and Priyaranjan Jha. The
rack-tlp loss detection algorithm for tcp. IETF RFC 8985, 2021.

[7] Sadjad Fouladi, John Emmons, Emre Orbay, Catherine Wu, Riad S Wahby, and
Keith Winstein. Salsify: Low-latency network video through tighter integration
between a video codec and a transport protocol. In Proc. USENIX NSDI, 2018.

[8] Zili Meng, Yaning Guo, Chen Sun, Bo Wang, Justine Sherry, Hongqiang Harry
Liu, and Mingwei Xu. Achieving Consistent Low Latency for Wireless Real Time
Communications with the Shortest Control Loop. In Proc. ACM SIGCOMM, 2022.

[9] Zili Meng, Xiao Kong, Jing Chen, Bo Wang, Mingwei Xu, Rui Han, Honghao
Liu, Venkat Arun, Hongxin Hu, and Xue Wei. Hairpin: Rethinking packet loss
recovery in edge-based interactive video streaming. In Proc. USENIX NSDI, 2024.

[10] Michael Rudow, Francis Y Yan, Abhishek Kumar, Ganesh Ananthanarayanan,
Martin Ellis, and KV Rashmi. Tambur: Efficient loss recovery for videoconferenc-
ing via streaming codes. In Proc. USENIX NSDI, pages 953–971, 2023.

[11] Yilin Wang, Sasi Inguva, and Balu Adsumilli. Youtube ugc dataset for video
compression research. In 2019 IEEE 21st International Workshop on Multimedia
Signal Processing (MMSP), pages 1–5. IEEE, 2019.

[12] ZhouWang, Alan C Bovik, Hamid R Sheikh, and Eero P Simoncelli. Image quality
assessment: from error visibility to structural similarity. IEEE transactions on
image processing, 13(4):600–612, 2004.

https://en.wikipedia.org/wiki/Pareto_front

	1 Introduction
	2 Design
	3 Evaluation
	4 Conclusion and Future Work
	References

