Law: Towards Consistent Low Latency in 802.11 Home Networks

Yibin Shen and Zili Meng
Hong Kong University of Science and Technology

Abstract

Wireless ultra-low-latency video streaming over 802.11 Wi-
Fi networks is increasingly popular, but the latency on the
Wi-Fi link is always fluctuating. With the development of
CDNs and edge servers, the fluctuation of the wireless last-
hop is increasingly dominating the fluctuation of the end-to-
end latency. In this paper, we investigate the reasons why
the existing Wi-Fi link layer will have a fluctuating latency
from a systematic perspective. We find that the hierarchi-
cal queueing structure, queue-agnostic rate adaptation, and
delay-insensitive retry management of the existing link layer
design are the main reasons to a latency spike when chan-
nel fluctuates. Thus, we propose LAtency-bounded Wi-Fi
(Law), an 802.11 link layer architecture to provide a consis-
tent low latency for the application. Law exploits the loss-
tolerance ability from the upper layer video streaming ap-
plication and significantly avoids the latency spikes caused
by the blockage in the link layer at the cost of acceptably
additional packet loss. Law maintains a high goodput by
carefully redesigning the queueing structure and introducing
fine-grained control for each transmission opportunity. We
implement the prototype of Law on OpenWiFi and test it
with WebRTC — both the tail frame latency and stall rate can
be significantly reduced over existing baselines.

1 Introduction

Wireless ultra-low-latency video streaming, such as mixed
reality (MR), videoconferencing, and cloud gaming through
Wi-Fi networks, are becoming increasingly popular among
Internet users due to its convenience. These applications ex-
tremely care about the consistency of the low latency. For ex-
ample, cloud gaming requires an end-to-end latency less than
100 ms, and as reliable as 99.9% or even higher [37,48, 62].
In the meantime, with the development of Wi-Fi networks,
and the deployment of content delivery networks (CDN5s)
and edge servers, today’s network services can provide sat-
isfactory bandwidth as well as median latency with Wi-Fi
access — the median latency for mobile devices is 25 ms [14].

However, the stringent in consistency conflicts with the
nature of bandwidth fluctuation in 802.11 Wi-Fi networks.
Since Wi-Fi networks have contention-based connections
and unstable channel quality, with the current architecture,
they can not provide a consistent low latency all the time —
easily, the latency just in the Wi-Fi last-hop will rise to even
more than 100 ms [19, 67,72, 82]. This issue is outstanding
in the whole end-to-end path as previous efforts show that
Wi-Fi last-hop transmission accounting for more than 90%

Wi-Fi AP &

Overcomplicated hierarchical queueing structure

——m - :

Queue-agnéstic rate adaptation

o 5

Delay-insensitive retry management

5@} Driver i E NIC i

Kernel

Figure 1: Wi-Fi link layer design is not systematically suit-
able for low-latency applications.

of the end-to-end latency fluctuation (§2.1, [27,60]). More-
over, this can be increasingly felt as the median RTT contin-
ues to decrease and the latency fluctuations in the rest of the
transmission system stabilize. Previous reports showed that
users typically could reach the nearby datacenters or edge
servers within 10 ms (one-way transmission latency, which
is approximately half-RTT) [13,22]. Especially for ultra-low
latency video, such as cloud gaming, one of the latest papers
indicates that in 90% of cases, the base RTT is less than 20
ms [73]. In other words, wireless networks are increasingly
dominating the entire end-to-end transmission loop.

The key reason is that the Wi-Fi link layer is not system-
atically designed for low latency in different perspectives:

* Overcomplicated hierarchical queueing structure.:
Designed for maximizing the throughput, 802.11 sys-
tems have a hierarchical queueing structure similar to the
multi-level caching. The MAC subsystem, Wi-Fi driver,
and Network Interface Card (NIC) hardware all have
their own queues and independent schedulers. With the
stringent latency requirement, controlling multiple queues
with packets accumulated at different places is difficult.

* Delay-insensitive retry management. When the packet
transmission is corrupted, the 802.11 driver will retry to
send it several times before it gives up and lets the upper
layer handle the packet loss. However, the existing retry
management is not aware of the delay for the packet. For
example, Qualcomm’s ath9k driver will keep retransmit-
ting the same packet for 31 times before giving up the
transmission [6,9], which can take up to hundreds of mil-
liseconds. What’s worse, this will further block the trans-
mission of the subsequent packets, leading to stalls.

* Queue-agnostic rate adaptation. 802.11 needs to adapt
the data rate based on the channel conditions [20,76]. For
example, when the channel quality degrades, the sender
will decrease the modulation coding scheme (MCS) to in-
crease the success rate at a cost of a lower data rate. How-
ever, determining the data rate only based on network con-

dition is insufficient — blindly reducing the data rate will

result in bufferbloat in the queue before transmission, in-

curring a high end-to-end delay.

There are a number of research efforts reducing the la-
tency for the Wi-Fi link layer, such as flow scheduling in-
cluding Wi-Fi Multimedia (WMM) [1, 11], and some re-
search work [43, 57, 65]. However, centralized at these
designs is to prioritize low-latency flows over other flows
rather than providing a consistent low latency. For exam-
ple, when the channel sharply fluctuates and the flows with
the highest priority still can not send through, all the issues
mentioned above still can not be mitigated. There are also
some individual efforts that optimize latency by rate adapta-
tion [55], transmission opportunity (TXOP) [15], and active
queue management (AQM) [17,32,33, 64, 66]. But they are
mainly algorithmic level optimizations and still suffer from
the issues above. These methods still introduce hundreds of
milliseconds of latency at the tail, even when there are no
competing flows (§4, [26,40]).

Our key observation is that for ultra-low-latency applica-
tions, getting dropped at the link layer might be more bene-
ficial than getting blocked. Ultra low-latency video stream-
ing is, in fact, loss-tolerant at the application layer to a cer-
tain extent. Error concealment mechanisms, including for-
ward error correction (FEC) [61,69,75,79] and loss-tolerant
video codec [25, 49, 52, 74], provide great recovery ability
regarding packet loss. The reduction of RTT and latency-
sensitive congestion control algorithm (CCA) [16,21,44,68]
also makes the cost of retransmission at the link layer and
transport layer comparable. By this way, we could reduce
tail latency significantly with little cost, resulting in overall
benefits at the application layer.

Therefore, we propose Law, which implements a
LAtency-bounded Wi-Fi link layer design for low-latency
video streaming. Law can ensure that each packet stays at
the link layer for no longer than a time limit by discarding
packets that are likely to result in blockage and high end-to-
end latency. Law enforces the principle of bounded latency
to the queueing structure, retransmission control, and rate
adaptation of the 802.11 system.

However, it is non-trivial to maintain the goodput in the
same time of providing a bounded latency. Simply dropping
too many packets will lead to massive retransmissions and
not result in benefits in end-to-end latency. Therefore, we
have to carefully maximize the goodput. We first break down
the hierarchical queueing structure and merge all the queues
into one so that we can easily manage the packets that are
severely delayed. With this unified queue, we jointly adjust
the data rate and retransmission limit based on channel qual-
ity, queue length, and packet latency variations. We also pre-
cisely control at a finer granularity of per transmission oppor-
tunity rather than periodically adjusting the parameters. We
further adjust the packet loss rate and loss pattern to maxi-
mally utilize the loss-tolerance ability from the upper layer.

Law can achieve an optimal effect for real-time services with
low RTT and a certain degree of loss-tolerance, including but
not limited to applications from CDNs and edge servers.

We deploy the proposed latency-bounded link layer on
OpenWiFi [4,47] (around 2K lines of C and Verilog codes)
and conduct real-world experiments with WebRTC [12].
And results in §4 show that Law can reduce 99.9ile per-
packet latency by 75.3% to 83.2% compared to baselines
while controlling the packet loss to below 1% accurately.
From the application layer, for low-latency video stream-
ing, Law also reduces the 99ile frame delivery latency by
50.6% to 70.3%. Even when compared to much more pow-
erful commercial routers, Law can still reduce the 99.9ile
tail latency by 46.0%. In addition, we demonstrate Law’s
robustness in handling different scenarios such as TCP BBR,
traffic with competing flows, and fairness.

Our main contribution can be summarized as follows:

* We illustrate that the overcomplicated hierarchical queue-
ing structure, queue-agnostic rate adaptation, and delay-
insensitive retry management in the existing Wi-Fi system
are the root cause of latency fluctuation.

¢ We simplify the queueing structure in the Wi-Fi link layer,
retaining the management only in the Wi-Fi driver as well
as minimizing the hardware queues to make latency con-
trol efficient and reliable. We co-design a fine-grained
latency-sensitive data rate and retry adaptation algorithm.

¢ We implement Law over the OpenWiFi hardware and
evaluate with WebRTC. Extensive real-world experiments
show that Law can effectively control the packet-level la-
tency and improve application-level performance.

2 Background and Motivations

2.1 Tail Latency in Wi-Fi

Ultra-low-latency video streaming requires delivering video
contents with minimal delay, typically under 100 millisec-
onds [37,48]. To achieve that, various research works on
latency optimization have been proposed in the applica-
tion layer, including packet loss recovery, latency-sensitive
CCAs, frame pacing [7], etc. And ultra-low-latency stream-
ing is mostly based on edge server (e.g., cloud gaming), peer-
to-peer connection (e.g., WebRTC, screen casting), or mul-
tipath transport system [29, 81, 82], which further promotes
applications to meet ultra-low-latency requirements.

Even as upper layers have been largely enhanced, the la-
tency performance with Wi-Fi access is still unacceptable.
We collect some previous measurements in Table 1 — various
works have shown that it is not uncommon for a Wi-Fi net-
work to fluctuate up to 100ms latency for a single packet. As
long as the base RTT is as low as 10-20 ms, Wi-Fi last-hop
transmission is dominating the overall end-to-end latency.

To demonstrate this, we also conducted fortnight-long ex-
periments in our campus from an edge server with the same
experimental setting in §4.1 to see exactly how much the

Much shorter than RTT

| 90% {
— B
()
X=—4 D
| 90% }
Comparable to RTT

Figure 2: Wi-Fi last-hop transmission is increasingly being
the bottleneck in ultra-low-latency streaming.

Packet-level performance

ABC [40] Extreme per-packet delays over 300ms are ob-
served at 95ile.

QAIr [67] Wi-Fi last-hop RTT can be higher than 100ms
at 80ile.

Augur [82] | 99.9ile Wi-Fi RTT goes above 150ms even in
the 5G band.

Frame-level performance
0.2% of frames suffer high latency more than
100ms.
Frame delivery latency at the 99.9ile exceeds
200ms.

Hairpin [61]

Augur [82]

Table 1: Poor latency performance of Wi-Fi last-hop

wireless last-hop transmission contributes to the overall la-
tency. The access point (AP) used here is a TP-LINK TL-
WDR4310 (refreshed with OpenWRT 23.05.0) [10]. We
measure the proportion of the Wi-Fi last-hop transmission
over the end-to-end latency and present the result categorized
by different end-to-end latency in Fig. 3. Wi-Fi last-hop be-
comes the primary contributor to the latency when the end-
to-end latency increases. And when the overall latency gets
higher than 70 ms, the Wi-Fi last-hop generates more than
95% of the overall latency in most cases. Just as illustrated
in Fig. 2, latency in Wi-Fi networks has become more and
more comparable to the end-to-end latency. And Wi-Fi last-
hop transmission are increasingly being the bottleneck in the
end-to-end transmission of ultra-low-latency streaming.
Wi-Fi tail-latency breakdown. We further conduct a la-
tency breakdown of the Wi-Fi last-hop latency in Fig. 4. As
the latency increases, queueing delay, including three queues
in Fig. 1, and transmission time (airtime plus management
intervals) both increase a lot. For latencies above 70 ms,
queueing delay contributes for more than 80% on average.
And the other part includes latency from the Linux kernel
and IP stack, etc. Latency produced in the link layer be-
comes more and more critical when the overall number gets
higher. In this case, the effect of existing solutions for the
higher layers [40, 60] is limited.

2.2 Design Gaps in Wi-Fi Link Layer

Our insight is that the Wi-Fi link layer is systematically not
suitable for ultra-low-latency streaming.

100

100 Transmission time
= % * = % 80- HEE Queuing delay
& 754 T £ Other
& ol | % 601
£ 0 . o 401
8 £
g_’“.; 25 ! F 204 l I

0+—= 0

<20 2040 40~70 >70
Last-hop latency (ms)

<20 20~4040~70 >70
End-to-end latency (ms)

Figure 3: The proportion of Figure 4: Wi-Fi last-hop la-
Wi-Fi last-hop transmission tency breakdown. Queueing
in end-to-end latency. The delay and transmission time
median proportion of the last- are the main contributors to
hop reaches above 95% when high tail latency.

latency increases.

Overcomplicated hierarchical queueing structure: We
introduce the queueing structure in OpenWRT and Qual-
comm’s ath9k driver as the state-of-the-art open-source sys-
tem for Wi-Fi routers, as shown in Fig. 5.

First, packets are enqueued into the flow queues main-
tained by the MAC80211 subsystem in the form of a MAC
Protocol Data Unit (MPDU) and wait for the lower-layer
driver to pull. When needed, the driver will actively
pull packets from the flow queues for further transmission.
Meanwhile, the link layer data transmission rates are opti-
mized here for each packet. The driver keeps retry queues
to store packets that have failed in previous transmissions in
hardware, a.k.a. software retransmission. The driver then
performs frame aggregation and header packing to form a
data frame (a.k.a,, Physical Layer Service Data Unit, PSDU).
The PSDUs are then written to the hardware queues. The
maximum length of a hardware queue is 8.

Such overcomplicated hierarchical queues incur latency
for different reasons, e.g., arrival rate and flow competing
in flow queues, channel contention in hardware queues, etc.
And we list the specific reasons for each layer in Fig. 6. Ex-
cept for the statistics from Fig. 4, we further illustrate that
queueing delay is the main contributor to the high tail latency
using real-world traces. As Fig. 7 illustrates, the queueing
delay increases dramatically to 80 ms when channel status
fluctuates, but the reduction of the queue delay is quite slow.
In conclusion, hierarchical queues have little awareness of
each other and is challenging to be coordinated to react to
rapid changes.

Delay-insensitive retry management: We also picture the

retransmission process in Fig. 6. Retransmissions in the Wi-

Fi link layer have two types: software retransmission in the

driver and hardware retransmission in the hardware.

¢ Hardware retransmission: If the NIC hardware fails
to receive the ack for the current PSDU after a timeout

(typically less than 1 ms), the hardware will start backoff

contention and retry for a certain times. The limit of the

number of hardware retransmissions is set based on the

[Packet I:l PSDU O Queue Scheduler
A Rate Adaptation O Frame Aggregator
ACx4
MAC TID Flowqueues TID Flow queues

Retry queue Retry queue

Driver

Hardware

Tm——

TXFIFO queue

Figure 5: A brief introduction of the queueing structure in
ath9k.

Arrival rate Time

| Flow Queue

Flow competing @ T
Sendingrate | Driver Queue |

Sending rate
Retransmission
Channel contention
Status fluctuation
/xx\ x x X x
- Management interval N

SIFS DIFS | Backoff contention Window |

Figure 6: Transmission scheduling in ath9k and reasons for
high latency in each layer.

S K &]

Hardware Queue |

x % x

data rate. When the number of hardware retransmissions
reaches the limit, the packet is returned to the software
retry queue in the driver.
Software retransmission: When the failed PSDU is
returned to the software retry queue, there will be addi-
tional rounds of software retries. Packets are dropped only
if the total number of hardware retransmissions is greater
than a threshold, which is 31 times in ath9k. So packets
will have a long delay before getting discarded.

* Qut-of-order delivery: The hierarchical packet
scheduling also brings out-of-order delivery. If the earlier
frames fail after several hardware retransmissions while
the subsequent frames succeed, packet loss has already
been detected on the client due to the out-of-order deliv-
ery.

Moreover, simply setting a lower number threshold for the
number of retransmissions does not work. As shown in Fig.
8, we tested three signal strength (RSSI) that are common

7 1 [- 80
1 —e— Queueing delay
! —— MCS index
61 i (70
i
i 60
51 |
[
i 150 5
x4 i €
i =
2 , 05
31 [}
' 302
2 < | Massive retries and ~25ms TX
time for an AMPDU 20
N Massive retries and ~15ms TX
1 f time for a single MPDU L10
A packet is lost
0 i Channel starts to fluctuate 0

0 10 20 30 40 50 60
Packet sequence
Figure 7: A trace that shows hierarchical queues and queue-
agnostic RAA can not cope with rapidly increasing latency.

in daily life [63, 72]. The percentage of packets retransmit-
ted varies a lot at different RSSI by up to 15x. Further-
more, we present another case in Fig. 9 to show how the
delay-insensitive retry management harms transmission la-
tency. Several PSDUs take more than 10 retransmissions and
consume dozens of milliseconds for transmission time. The
impact of packet loss over video stalls was also unveiled by

previous production-level measurements [82].

Queue-agnostic rate adaptation: As a higher data rate

tends to lead to a higher probability of packet loss in phys-

ical transmission, rate adaptation algorithms (RAAs) aim at
choosing an appropriate rate under the current channel sta-
tus. Most work on rate adaptation focuses on maximizing
goodput [8,24,42,51], while a few of them pose optimiza-
tion regarding energy-efficiency [54], extremely low loss rate

for gaming devices [78].

However, the link layer RAAs proposed for Wi-Fi APs
have two problems in providing consistent low latency:

* They are coarse-grained. Existing RAAs only set the data
rate once for each packet or periodically and rely on re-
transmissions to make up for inaccurate rates, which is
insufficient for rapid fluctuations at the transmission op-
portunity level.

e They are network-aware but queue-agnostic. Existing
RAAs mainly focused on channel capacity to adjust the
sending rate. But this will backpressure the packets to the
queue backlog on the 802.11, leading to high latency. And
looking back to Fig. 7, the RAA has been more conserva-
tive after the 13th packet, but also contributed to the spike
of the queueing delay.

2.3 Loss-tolerance in the Upper Layers

Our key observation is that for ultra-low-latency applica-
tions, getting dropped at the link layer can be more beneficial
than getting blocked. The status-quo frameworks have pro-
vided packet recovery abilities and improved loss-tolerance

Proportion (%) Loss Rate (%)

100 98.29 EEm No retry
91.08 1 retry
<= 3retries
<= 6 retries
80 1 > 6 retries
70.75
—_—
---- Loss rate
60~ —
20
151 0.4
10
F0.2
5 4
0- -0.0

Figure 8: The relationship between the number of retrans-
missions, packet loss rate, and RSSI. Wi-Fi performs a lot
of retransmissions to ensure a relatively low loss rate, which
results in high latency.

at the application layer and transport layer [34,45].

Forward error correction: FEC is a widely used technique
to recover losses. Existing FECs used in ultra-low-latency
streaming are implemented by means of redundant coding,
reproducing lost packets without retransmission. Webrtc (the
state-of-the-art open source low-latency streaming platform)
provides three coding methods in rows, columns, and 2D ar-
rays [79]. We use WebRTC to test the performance of FEC
with no additional packet loss and 1% additional packet loss.
The test settings are described in §4.1, and the FEC redun-
dancy ratio is fixed to one eighth, which is a commonly used
rate in previous work [53,61]. We present the results in Fig.
10. FEC could easily cope with the additional loss with a
mere increase of no more than one RTT in 99.9ile latency.

Error concealment in video codecs: There have been a
number of efforts in both industry and academia to improve
the packet loss resistance of codecs. The error concealment
is a common technique used in the state-of-the-art codecs,
e.g., H.264 [49,52,74]. It requires the encoder to reduce the
compression rate and provide some information redundancy
to allow the encoder to reconstruct the lost data with certain
algorithms to ensure frame integrity [56]. Nowadays, there is
also some work on frame skipping [36] or neural codecs [25,
77] specially for loss-tolerant ultra-low-latency streaming.

Interaction with congestion control: = Moreover, slight
packet losses will not lead to bitrate decrease of CCAs
in most of ultra-low-latency video streaming. Ultra-low-
latency streaming usually uses latency-sensitive CCAs that
aim to keep buffers in networks clean and utilize latency
increase as the signal to reduce the sending rate. Mean-
while, latency-sensitive CCAs are highly loss-tolerant. For
example, GCC can tolerate without rate decrease 2% packet
loss [28], while BBR can tolerate with at least 5% random
packet loss [21].

25 50 |
—— Retransmission count 99.9
—e— Transmission time
991

981
951

Time (ms)

10

Percentile (%)

Hardware retransmission

904 —4— No additional
5 10 —o— 1% additional
501
LUy ! i
0 0 0 100 200
0 20 40 60

PSDU count Frame delivery latency (ms)

Figure 9: A trace that shows Figure 10: Frame delivery

massive hardware retransmis- latency with different loss

sions cost a lot of time. rate. 1% loss does not affect
much due to FEC.

99.99ile latency Loss rate

3.0

n

E 400 _25
> S

< 300 3 2.0
© 15
% 200 <

< © 1.0
g 100 & 05
: .
o

Default Setting A Setting B Default Setting A Setting B

Figure 11: Naive modifications lead to negative optimiza-
tion. Setting A and B are introduced in §3.1.

3 Law Design

In this section, we introduce our Law Wi-Fi link layer de-
sign.

3.1 Basic Idea and Challenges

Considering existing Wi-Fi link layer designs and state-of-
the-art ultra-low-latency streaming systems, we proposed
our basic idea of making use of the loss-tolerance in the up-
per layer to reduce the latency in the Wi-Fi last-hop. We
aim to implement a latency-bounded link layer by dropping
packets that are perceived to be or have already suffered high
latency. Simply send fast when latency dramatically grows
instead of trying to be reliable and make sure all the packets
stay in the link layer for no longer than the latency bound.
We allow reasonable packet loss and wait for the application
layer to recover. However, to realize this, there are still a few
challenges ahead.

Queueing latency is hard to control: As we’ve shown in
Fig. 7 and Fig. 9, even a single packet may lead to dozens of
milliseconds of latency. This kind of latency affects all three
layers of queues and brings the following technical prob-
lems:

* Controlling queue length will not work for Wi-Fi net-
works. In situations where a single packet can cause la-
tency to fluctuate badly, queue length is no longer an effi-
cient controller of latency.

* Hierarchical queues lead to a discrete distribution of la-
tency, and managing latency for each queue separately
can be harmful. Applying a latency bound for a particu-

lar layer of queues can not address latency jitters and can

even significantly affect the overall performance.
We made a simple modification to OpenWiFi to test how
naively applying latency limits to the current queueing struc-
ture will affect the loss rate and throughput. We measure the
performance on packet-level and the testbed used is the same
as in §4.1. We apply a limit of 25ms to flow queues in the
MAC layer and limit the sum of the length of the four AC
queues to 8 packets in hardware in Setting A. We present the
results in Fig. 11. Even with a terrible 8.0 increase in loss
rate compared to the default setting, the 99.99ile per-packet
latency of Setting A is still nearly 200ms.
Aggressive structure revision may lead to negative opti-
mization: To address the issues caused by the hierarchical
queueing structure, it is easy to think of simplifying the cur-
rent structure. But it is not as simple as it seems. In Fig.

11, we simply disable hardware queues for Setting B. And

we can see a more than 400 ms 99.99ile per-packet latency
and a 2.5% increase in loss rate compared to the default
setting. The main reason behind this is that we sometimes
have to wait for an interrupt and communication between the
hardware and software to pull packets from the driver before
transmission if we remove the hardware queue. During this
period, it is highly likely that the initially idle channel is oc-
cupied by other devices. That would lead to massive missed
transmission opportunities and performance degradation in
the contention-based Wi-Fi channel.

Active packet dropping needs to be carefully controlled:
We expect to counter the fluctuations of the wireless channel
by sending packets fast or even dropping packets to ensure

a consistent low latency. But still, there are two key points

in the system design that must be concerned with or we will
not be able to achieve the improvement we desire.

* Make sure that dropped packets are within the upper
layer’s recovery capabilities. Loss recovery techniques
are typically executed within a frame or a group of pack-
ets. For example, interleaved XOR FECs [79] are en-
coded by rows and columns in a group of packets, and the
maximum number of consecutive packet losses that can
be recovered is the number of columns. Reed-Solomon
FECs [75] divide data packets and redundancy into blocks
of the same size, then decode the desired lost data blocks.
However, the number of recoverable lost packets in a sin-
gle video frame is still limited by the redundancy ratio.
Extra end-to-end retransmissions are definitely not what
we want. So, not only is the loss rate what we have to
control, but the loss pattern also matters a lot.

* Precisely drop packets as soon as the queue starts to grow.
Our ultimate goal is to avoid high latency, not to start re-
acting after it occurs. So we not only focus on network
capacity, but also the queueing latency variations and the
length of building-up queues. A latency-sensitive, rapid,
and precise packet scheduling mechanism needs to be pro-
posed.

3.2 Framework Overview

The key objective of Law’s design is to provide a bounded
latency while still trying to maximize the goodput with fine-
grained control. The fine granularity has two perspectives:

* Instead of modularized queue control for each layer indi-
vidually, we integrate all the queues into one big queue
and carefully control the overall queueing delay for each
packet (§3.3).

¢ Instead of coarse-grained parameter controls such as fixed
retransmission limits carried by each data rate, we update
the sending rates and retransmission limit for each trans-
mission opportunity (§3.4).

The overview of Law’s link layer structure can be simpli-
fied as Fig. 12. The rest of the section describes the two parts
of our design in detail.

3.3 Queueing Structure Reshaping

Our solution is to merge flow queues, retry queues, and a part
of the hardware queues together. We can also tell from Fig.
12 that we moved the flow queues down to the driver and no
longer keep the retry queues in the driver. In hardware, we
only store at most two PSDUs across four ACs at the same
time. In this way, we partly merge hardware queues into
driver queues.

For packets that are returned from hardware to driver for
software retransmission, we push them immediately back
to the hardware queue without queueing (during which our
joint rate and retransmission control will be made, we leave
the details in §3.4). By default, every packet could only
have one time software retransmission. Such retransmission
scheduling, plus keeping at most two PSDUs in the hard-
ware, also minimizes the negative effect of out-of-order de-
livery.

With such a reshaped queueing structure, we can manage
latency quite wisely. We set a threshold Limit, for the la-
tency of packets in the driver. Any packets with more than
Limit, latency in the driver will be dropped. In the current hi-
erarchical queues, we have to divide the time limit into three
layers, e.g., 10 ms each. Then we can achieve an overall 30
ms latency bound. However, there are many cases where a
packet is dropped even though its overall latency does not
exceed 30 ms (Fig. 13). However, all three cases in the fig-
ure can be transmitted if we only have one queue with a 30
ms threshold. Centralizing latency and controlling latency
by one queue can minimize the unnecessary loss.

We give a simple explanation about the additional loss
brought by hierarchical queues in Fig. 14. L, denotes
the latency in a single layer’s queue, L, denotes the cu-
mulative latency across three layers. We can think of the
latencies generated by each of the three queues as indepen-
dent variables. And their sum will result in a more concen-
trated distribution of latency values, which is the distribution
of overall latency. Thus, the number of packets with latency

TID

4 H

MAC

Driver

Bypassed
TID

Hardware|

Rate & retry control

o O

Delay in flow queue Delay in hardware queue P(Lsingle<X)
Delayinretryqueue (& Software retransmission — P(Ltotar<X)
| iti
I 10ms I 10ms I 10ms : Additional loss
1 1 , 1 7’
| 1 200 , ’
[= 4 1 .
3 s 1 s
e ‘ . 7 4
e Jumwid
c % Median

Figure 12: Overview of Law.

higher than the threshold is reduced.

Maximize transmission efficiency: However, it is non-
trivial to merge all the queues together. As introduced above,
Law still stores two PSDUs in hardware. One important rea-
son to maintain some packets in the hardware is to maximize
every transmission opportunity as long as it is available in
the channel (§3.1).

Moreover, it is not wise to simply use the same latency
bound across driver and hardware. Let us say that we use
simply an overall threshold Limit,. One packet may enter
the hardware and start transmission after Limit,/2. But the
transmission keeps failing due to channel fluctuation, and the
packet will still occupy the rest Limit,/2 for hardware re-
transmissions, resulting in blockage and increased queueing
delay for the following packets. It is definitely much better
to end transmission early and return the packet back to the
driver to re-select a data rate for this packet.

So our response to this is to maintain two separate thresh-
olds in driver and hardware. We set a time limit Limit;, at the
packet level (PSDU) in hardware. The TX time (counting
from the time when the PSDU starts to be sent by the hard-
ware, including management intervals, backoff contention
windows, and airtime) of each PSDU must not exceed this
limit. Once the limit is reached, we stop hardware transmis-
sion and return the packet back to the driver. In this way, the
latency of all packets produced by the Wi-Fi link layer can
be kept below Limit, + 2 * Limity,. Since the length of driver
queues is often much larger than 2, Limit, will be much
larger than Limit;, too. In this way, Law maximizes trans-
mission efficiency while still ensuring centralized latency in
the driver.

3.4 Rate and Retransmission Control

We try to let packets pass quickly when the queueing delay
starts to increase or the number of waiting packets exceeds
the network capacity, instead of keeping retransmitting them.
When channel status fluctuates, a too low data rate will lead
to queue accumulation. On the other hand, a too high data
rate may result in massive retransmissions, which also lead
to queue accumulation. However, with consideration for re-
transmission limit adaptation, e.g., by choosing a relatively

Figure 13: Latency bounds in hierarchical Figure 14: Integrated queues provide a
queues lead to unnecessary loss.

more centralized latency distribution.

high rate and a strict retransmission limit at the same time,
this problem can be solved perfectly with reasonable packet
loss. Therefore, we strive to balance and select the optimal
rate and retransmission limit.

We first control the packet loss rate and maximize
throughput by a fine-grained RAA that re-selects the rate
for each software retransmission. Secondly, to keep the
queue latency at a low level, we further co-design a latency-
sensitive rate and retransmission control strategy for each
transmission opportunity.

Global stats | Explanation
Limit, latency limit in driver queue
Limity, latency limit in hardware
Lenqyx Limit of the number of packets stayed in driver
State State of rate & retransmission control
Rate Current data rate
Rateprey Previous data rate
Ratey,, Data rate with the minimum average TX time
T EWMA of TX time for all transmitted packets
T; EWMA of TX time for packets transmitted by
rate i
Sn EWMA of transmission success rate for all
transmitted packets
Si EWMA of transmission success rate for packets
transmitted by rate i
Nyue Number of consecutive successful transmis-
sions
Nyet Number of consecutive software retransmis-
sions
Nprob Number of failed probing
Thry Threshold for start probing

Table 2: Parameters used in rate and retransmission control

Parameters calculation: We summarize the parameters we
need in Table 2. Here, we introduce how we calculate the
parameters. First of all, we keep the exponential moving
average (EWMA) of TX time 7,, and software transmission
success rate S, for all packets during runtime. Calculating
software transmission success rate instead of hardware trans-
mission means we focus on whether the current rate could
send the packet to the receiver within Limit,. We also cal-
culate the EWMA of TX time 7; and software transmission
success rate S; for each data rate with index i.

Lost one packet
Rate = min(Rate — 2, Rate,,)

Successful probe

Unsuccessful probe
Rate = Rateyye,

Stable Nree == 2

Probi —p——
robing Rate —=1

SW rtx rate = Rate
HW rtx limit = Limit,

SWrixrate = Rate — 1
HW rtx limit = Limit),

Noue == Thr,
Rate = max(Rate + 1, Ratep;,

ChangeState() ChangeState()

Rate = Ratey,,

ChangeState(;

Cleanup

SW rtx not allowed
HW rtx limit = 2 times

Figure 15: Overview of rate and retransmission control in
Law.

Based on 7}, and S,,, we calculate Len,,,, as shown:

Limit, * Sy)
Ty

Len,, . is used as a threshold to indicate that we should start

reducing queue length by the latency-sensitive rate and re-

transmission control.

Besides, whenever we successfully decide on a new rate,
we reset the number of consecutive successful transmissions
Ny, the number of consecutive software retransmissions
Ny, and the number of failed probing N, to 0.

They will be updated every time a packet is returned from
hardware. And if a software transmission fails, Ny, will be
set to 0. In contrast, if a first-time software transmission suc-
ceeds, Ny, will be set to 0. Finally, Thr, denotes the thresh-
old to start a new probe, which means if Ny, >= Thr,, we
will be able to probe a higher data rate. It is calculated by:

Thry, = (Nprop + 1) 5 IndexO fCurrentDataRate ~ (2)

Len,, =

Latency-sensitive rate and retransmission control: Our
data rate and retransmission joint control algorithm could
be divided into three states: stable state, probing state, and
cleanup state. Stable state is the initial state, and is also
the state where we execute normal data rate adaptation, rate
probing, and retransmission strategies.

When the channel is stable, we enter the probing state and
try to probe higher data rates to increase throughput. We use
two packets for probing and judge the success of the probing
by the following two conditions.

* No packets are lost, and at least one packet is successfully
transmitted without software retransmission.

* The average TX time for these two packets is lower than
the T; of Ratepy,,

The cleanup state is the most important state where we
actually deal with growing queue latency and poor channel
capacity. We enter the cleanup state when either of the fol-
lowing two conditions is met:

* A packet in the driver or just returned from the hardware
has a latency higher than Limit, in the link layer.

* The number of packets currently stored in driver queues
exceeds Len,,gy.

The detailed decision-making function is shown by Algo-
rithm 1. In the cleanup state, we allow two hardware trans-
missions for each software transmission, and no software re-
transmission. And if two consecutive packets are dropped,
we turn down the Rate by one index. On the other hand,
Thr, is fixed to 5 x IndexO fCurrentDataRate. If the num-
ber of consecutive successful transmissions equals Thr,, we
increase the Rate by one index. The overall control flow of
Law’s latency-sensitive rate and retransmission control is il-
lustrated by Fig. 15.

Handling loss pattern: Avoiding consecutive packet loss
is crucial in our design. To ensure that packet loss is dis-
tributed within the resilience of the upper layer, if there are
three consecutively lost packets, we add one more software
retransmission for the current packet as a double insurance.
Besides, packet loss is most likely to occur in the Cleanup
state, as retransmission limits are more stringent. So we use
a more sensitive adjustment to improve the loss control abil-
ity in the Cleanup state as described above.

Algorithm 1: ChangeState() Function

// Called when a packet enters the driver
or is going to be pushed into hardware
Input: Transmission status of the packet
1 if packet comes from hardware |
2 packet will be pushed into hardware then

3 update Lenqx, T, Tiy S, Si

4 if packet’s latency> Limit, then

5 drop packet

6 Ratepey = Rate

7 State = Cleanup

8 else if State = Cleanup &&

9 current packets in driver < Len,,,, then
10 Rate = Ratepyey
11 State = Stable
12 else
13 if current packets in driver> Len,, then
14 Ratepey = Rate
15 | State = Cleanup

4 Evaluation

We implement Law in OpenWiFi on SDRPi with XC7Z020
chipset [3] and AD9631 radio-frequency transceiver [2].
OpenWiFi is a Linux Mac80211 compatible full-stack Wi-Fi
design based on software defined radio (SDR) that currently
supports 20 Mhz, 802.11N data rate, and single-in-single-
out (SISO) for 5G Wi-Fi connection. We chose OpenWiFi
because it is an open-source Wi-Fi platform that allows di-
rect control over hardware. Law requires direct control over
hardware to achieve the dynamic hardware retransmission
control. We skip the original three-layer queues in the MAC
layer, driver, and hardware, replacing them with the queue-
ing structure proposed in Law. The rest of the control flow in
the link layer (e.g., header encapsulation) stays unchanged.
Law overrides the rate and retransmission decisions before

[DDL miss rate

100 T - .-;_—-__::.:'_—"—_::.'_"_'_"_'_"_:-_ 2.0
w 0.951 — Law R 1.5
8 -== Minstrel g
© 0.90 -1 —.— LLRA gl.O' 0.985
TS g
0.85 1 . : o 0.5
0 50 100 150
Per-packet latency (ms) 0.0-

Law MinstrelLLRA TS

(a) CDF of per-packet latency.

(b) Average loss rate and deadline miss rate.

1.856

o
W

0.988 1.043

e
=

Count per second
o
N

o
o

Law Minstrel LLRA TS

(c) Frequency of consecutive losses.

Figure 16: The performance of Law and three baselines on packet-level. Law significantly reduces tail latency. And Law has
the lowest sum of loss rate and deadline miss rate, and the fewest consecutive packet losses.

packets enter the hardware. Regarding possible future de-
ployment for device vendors, we leave the discussion in Ap-
pendix A.

In this section, we evaluate Law by real-world experi-
ments in the following aspects:

» Packet-level. We ensure that Law optimizes packet-level
latency and controls packet loss well to show that Law is
theoretically applicable to low-latency applications. We
verify that Law actually provides bounded latency in the
link layer and test its abilities in controlling packet loss.
Law could achieve up to 83.2% latency improvement at
99.9ile while producing the fewest consecutive losses.

» Application-level. We then measure the improvement of
Law on end-to-end frame delivery latency for low-latency
video applications. We compare Law with some RAAs
proposed in previous research works, as well as some
commercial routers. Law could reduce 99.9ile frame de-
livery latency by more than 58.4% compared to OpenWiFi
baselines and 18.6% to 46.0% compared to commercial
routers.

* Microbenchmarking. Besides, we conduct some mi-
crobenchmarkings to see how Law performs when vary-
ing the experimental targets, including changing parame-
ters and adding a competing flow. We also measure Law’s
performance of TCP BBR flows to demonstrate Law’s ro-
bustness under different traffic types. Finally, we evaluate
Law’s impact on fairness regarding different CCAs.

4.1 Experimental Setup

Testbed. For packet-level experiments, we use Iperf to send
UDP flows with the bitrate fixed to 10 Mbps. The Iperf
sender is run on an OpenWRT router, which is connected to
the OpenWiFi AP by Ethernet directly. As for application-
level experiments, we use WebRTC (M119) as the sender
and receiver of low-latency video streaming. The target bi-
trate and framerate are set to 10 Mbps and 30fps. And the
WebRTC sender is deployed at an edge server for realistic

end-to-end transmission. Both Iperf and the RTC receiver
are run on a MacBook Pro with MacOS 15.3.1, which is con-
nected to the testing OpenWiFi AP within the 5G channel.
And the Limit, and Limit;, are set to 40ms and 3ms as a de-
fault setting. We conducted experiments during office hours
in our laboratory, typically from 1:00 p.m. to 7:00 p.m. The
position of the tested AP and receiver remains unchanged
during the whole evaluation. Due to a certain degree of per-
sonnel turnover within the office, the results obtained under
such an experimental setup can represent the overall perfor-
mance under different levels of channel interference. We ran
each test for at least ten minutes and cycled through the base-
lines to ensure that the result is fair.

Baselines. We used OpenWiFi with the three layers of

queues mentioned above and implemented some related and
frequently noted RAAs as baselines.

* Minstrel [8] is the default RAA used by Linux systems
and is normally considered as the state-of-the-art reactive
RAA.

e LLRA [55] puts latency into the decision-making ratio-
nales. Butitis also only an algorithmic level optimization,
with no innovations in structure and control granularity.

e TS [51] utilizes Thompson-sampling to select data rate.
Thompson-sampling is a machine learning algorithm for
online decision problems under uncertainty where actions
are taken sequentially. TS is considered as the state-of-
the-art reactive RAA with machine learning.

4.2 Packet-level Performance

Latency improvement. We validate the bounded latency for
each packet provided by Law and compare the per-packet
latency with baselines. We present the CDF of per-packet la-
tency in Fig. 16a. Law’s curve shows a clear cutoff around
60 milliseconds. After counting the slight latency from the
router-to-OpenWiFi wired transmission and the kernel, we
can consider this result as a reasonable proof that the la-
tency bound at the link layer is in effect. Compared to three

99.9 B
g % 1.00
[
z % —— Law o 095 / — Law
g 9 —— Minstrel 5 —— Minstrel
& g0l —%— LLRA 0.90 { —— LLRA
] TS s
50 {i 0.854 ! . - |
0 200 400 0 100 200 300

Frame delivery latency (ms) Frame delivery latency (ms)

(a) Frame delivery latency. (b) Latency CDF of non-
retransmitted frame.

w
=
N
o

-
o
o

N
©
o

—
IN
o

Deadline miss rate (%)

Normalized bitrate (%)
(o))
o

N
o o

01 1
Law Minstrel LLRA TS Law MinstrelLLRA TS

(c) Deadline miss rate. (d) Average bitrate.

Figure 17: The performance of Law and three baselines on
frame-level. Law shows significant improvement regarding
99ile, 99.9ile latency, and deadline miss rate. Besides, Law
provides the highest average bitrate.

baselines (Minstrel, LLRA, and TS), Law reduces 99ile per-
packet latency by 47.9% to 78.7%, and 99.9ile per-packet
latency by 75.3% to 83.2%.
Loss control. We also measured Law’s performance on
packet loss control to ensure that Law utilizes a reasonable
range of packet loss to be theoretically compatible with the
application layer. We take the latency bound set in Law as
the deadline for each packet. We show the average loss rate
and deadline miss rate in Fig. 16b. The average loss rate of
Law is slightly lower than 1%, which is illustrated to be well
within the application layer’s recovery capabilities in §2.3.
Besides, Law has the best result in terms of the sum of loss
rate and deadline miss rate. Even as we discussed in §3.1 and
§3.3, due to the trade-off for maximized transmission effi-
ciency, it is hard to achieve the ideal strategy that only drops
packets with latency higher than the overall latency bound.
Law still achieves the best in this metric, which is close to
the optimal performance. We further tested the frequency
of consecutive losses, i.e., the average number of five con-
secutive packet losses per second. We present the results in
Fig. 16¢c. Even with a higher overall loss rate, we reduce the
frequency of consecutive losses by 16.3% to 56.3%, demon-
strating that Law is able to control the loss pattern well to
make it more suitable for low-latency streaming applications.

4.3 Application-level Performance

We then evaluate Law performance with real-world low-
latency streaming to see if Law actually shows improvement
in real-world applications.

Comparison with baselines. We first measure the per-frame
delivery latency and plot the result in Fig. 17a. Law re-
duces 99ile frame delivery latency by 50.6% to 70.3%, and
reduces 99.9ile frame delivery latency by at least 58.4%. We
also measure the average deadline miss rate, i.e., the ratio of
frames experiencing a latency of more than 100ms. 100ms
is a frequently used deadline and requirement for ultra-low-
latency streaming [37,48,61]. We can see the results in Fig.
17c and Law reduces the deadline miss rate by 69.8% to
78.5%.

In addition, we show the role of Law by calculating the
latency of non-retransmitted frames, which refers to frames
in which the last received packet was either recovered by
the FEC or transmitted for the first time. We picture the la-
tency CDF of this group of frames in Fig. 17b. It is clear
that Law shows a cutoff around 180ms while all the base-
lines have non-retransmitted frames with more than 300ms
latency. Note that due to the keyframes and pacing, it is nor-
mal in a 30 fps streaming for large frames to take dozens of
milliseconds just to complete sending. Coupled with slight
latency fluctuations in the rest of the transmission system, it
is reasonable to believe that latency bound in the link layer
imposes an effective impact.

Finally, we measure the effect of Law on video bitrate.

And we can tell from Fig. 17d, Law could achieve a slightly
higher bitrate than all three baselines, showing that Law is
able to promote more aggressive bitrate decisions while en-
suring stable low latency.
In-depth exploration. We further present a trace in Fig. 18a
consists of three frames to show the underlying rationale for
the improvement our design delivers. Firstly, it can be told
that we dropped six packets in three frames, a nearly 10%
packet loss rate. Five of them are dropped in the Cleanup
state. But these packets are well within FEC’s recovery ca-
pability. So Law perfectly distributes the dropped packets by
retransmission control and avoids blockage in the link layer
without additional overhead.

Secondly, at the time points shown by the three green dots
in the figure, Law is able to keep the MCS at least 4, even
with the degradation of channel quality and the increase in
retransmissions. Thus, the packet latency is stabilized by fast
sending, and the rate can even be adjusted upwards to further
clear the waiting packets. With all these accurate controls,
these frames are all delivered within the 100 ms deadline.

We also present the comparison of per-frame loss rate in
Fig. 18b between Law and TS to justify our observations.
Law has almost doubled frames with at least one lost packet.
However, Law reduces 65.3% in terms of the percentage of
frames with more than 20% packet loss.

Comparison with commercial routers. Besides these RAA
baselines above, we also choose some commercial firmwares
for comparison. However, these commercial APs typi-
cally support 40/80 MHz bandwidth, multiple-in-multiple-
out (MIMO), and AC/AX data rate, which means they origi-

7
I tate Cleanli|statef 50
6l — MCS index —— Law
—e— Packet latency
40 TS
5 - —
£
54 L g
. '\ g ou
£3 S 710
Essential points 'v. 207 3
2 @that Law maint-
ains a high rate 10 5 \
| | K
1 .‘__‘} —
" FEC recovered kets
0 0 0.5
0 10 20 30 40 50 60 . .
0.0 0.1 0.2

Packet sequence
Per-frame loss rate

(a) A trace that shows Law is able to keep (b) CDF of per-frame
sending fast and wisely drop packets toloss rate of Law and
maintain low latency. TS.

Figure 18: An in-depth look at the underlying reasons why
Law can lead to improvements.

nally provide higher throughput. So, we align some settings
and try our best to achieve a relatively fair comparison:

* RSSI-aligned-OpenWRT: We use TP LINK WDR4310 re-
freshed with OpenWRT 23.05.0 for this baseline, setting
the Wi-Fi version and bandwidth to 802.11N and 20 MHz
correspondingly. We further adjust the tx power and use
the same antennas to ensure the RSSI of the OpenWRT
AP and the Law is the same. However, TL-WDR4310
supports MIMO2X?2 and can not be disabled, so it theo-
retically provides a doubled maximum throughput.

* RSSI-aligned-commercial: ~ We directly use Edimax
BR6208 AC750 for this baseline. We align the RSSI in
the same way as mentioned above. BR6208AC [5] does
not support MIMO for 5G, but the version of the 802.11
protocol is fixed to AC, so it still provides slightly higher
theoretical throughput than Law.

» Thp-aligned-commercial: We also use Edimax BR6208
for this baseline. We adjust the position of the AP and
ensure an equal throughput (Thp) as Law for BBR flows.

We present the frame delivery latency in Fig. 19. Law
could provide almost the same median latency compared to
all three baselines. Moreover, even in these slightly unfair
tests, we can still reduce the 99.9ile tail latency by 18.6%
and 22.9% compared with two RSSI-aligned baselines. As
for the Thp-aligned baseline, Law reduces the 99.9ile tail
latency by 46.0%.

4.4 Microbenchmarking

We also benchmark Law for realistic performance concerns
from various aspects.

Parameter setting. We first measure the impact of changing
the latency bound. We set the Limit, to 54ms, which means
the total latency bound is changed to 60ms. And we present
the difference of frame delivery latency between these two
settings in Fig. 20. We can tell that Law with 60ms bound
has 3.6% lower 99ile latency while Law with 46ms (de-
fault) bound has 15.1% lower 99.9ile latency. But Law with
60ms bound still reduces 99.9ile frame delivery latency by

m
IS
o
o

1w Law

B RSSl-aligned-OpenWRT
RSSl-aligned-commercial

B Thp-aligned-commercial

w
o
o

N

o

o
L

100 1

Frame delivery latency (

Median 99.9ile

Figure 19: Median and 99.9ile frame delivery
latency of Law and commercial routers.

at least 50.9% compared to baselines. Generally, Law can
achieve relative latency performance under different settings
and. However, a reasonably lower latency bound provides a
better reduction in extreme tail latency.

Handling competing flow. We further test the impact of ad-
ditional competing flow on the performance of Law. We add
a 2 Mbps UDP competing flow using Iperf. The results are
shown in the Fig. 21. Law still shows great improvement
compared to the RSSI-aligned-OpenWRT with 25.4% and
21.3% lower latency at the 99ile and 99.9ile. Law still pro-
vides significant performance improvement even with band-
width contention.

Performance against TCP BBR. We also test how TCP
BBR flows react to Law to see Law’s compatibility with
TCP. We calculate the average throughput of BBR flows for
Law and three baselines in Fig. 22. And Law performs sim-
ilarly with all the baselines, with at least 0.7 Mbps increase
compared to Minstrel and LLRA, and 0.7 Mbps reduction
compared to TS. This proves that Law works well with TCP
BBR flows, not only low-latency streaming applications.
Fairness. We finally measure Law’s impact to fairness. We
evaluate the performance of Law under both TCP BBR and
GCC low-latency streaming, and calculate the Jain Fairness
Index. The comparison of Law and Minstrel is shown in
Fig. 23. Law also provides decent fairness for both BBR
and GCC flows. For TCP BBR, Law leads to a reduction of
less than 1% in the median, but also brings a small increase
in the lower bound and is generally more stable. In the case
of GCC, Law shows a better fairness than Minstrel.

5 Discussion

In this section, we discuss some potential limitations and fu-
ture work of Law.

Differences and coexistence with AQM. AQM algorithms
[17] are a family of queue management algorithms used in
network devices to reduce network latency while keeping
throughput as high as possible [32, 33, 64, 66]. As a mat-
ter of fact, CoDel-FQ has been adopted by the Linux Wi-Fi
subsystem in flow queues. Our work is completely differ-
ent from and fully orthogonal to AQM. AQM often operates

99.9 1 99.9 1
9 991 9 991
2 984 2L 984
g 951 g 951
@ 5 —— Law
o 901 —A&— 46ms bound a 901 RSSl-aligned

—e— 60ms bound - -OpenWRT
50‘ T T 504 T T T
0 100 200 300 0 100 200 300 400

Frame delivery latency (ms) Frame delivery latency(ms)

Figure 20: Impact of latency Figure 21: Impact of compet-
bound. Law maintains a sim- ing flow. Law still outper-
ilar performance under dif- forms the commercial router.
ferent settings.

BBR GCC

’é? 201 1.00 T
255 E T -
g < 0.98 . H
© 0
: n
5 101 g ' H
o = ! 1
g sl ©0961 L |
o c i
z 8 i

O_

Law Minstrel LLRA TS 0.94

Law Minstrel Law Minstrel

Figure 22: Average through- Figure 23: Fairness compar-
put of Law and baselines for ison between Law and Min-
TCP BBR. Law could pro- strel. Law does not harm
vide comparable throughput. transmission fairness.

within a single layer of queues and does not pay attention to
queueing structure, or link layer data rate and retransmission.
We modified the queueing structure and proposed a new rate
and retransmission control algorithm. However, AQM can
still be deployed at the layer of queues in the driver that we
retained. Our action of setting a latency bound does not con-
flict with AQM, we can simply treat it as an additional con-
dition of the active discard action in the AQM algorithm. We
leave implementing AQM into Law as our future work.

Differentiating loss-sensitive flows. As a latency-aware Wi-
Fi link layer design, we demonstrate Law’s improvement for
tail latency in low-latency streaming and performance main-
tenance for TCP traffic with latency-sensitive CCAs. There
are still many network services that use loss-sensitive CCAs,
such as Reno and Cubic. The most straightforward way to
differentiate latency-sensitive traffic is to use DSCP bits or
even simply maintain an IP whitelist. Some recent solutions
are already using DSCP for differentiating flows [18, 71].
However, these methods tend to lack scalability, and the
most intelligent approach is still to identify flows based on
their characteristics. The major difference between these two
types of traffic is that latency-sensitive applications keep the
network buffer low, while loss-sensitive traffic tries to fill the
buffer first. We can easily distinguish them from each other,
and related flow detection work has been proposed [57,59].
After differentiating loss-sensitive flows, we can switch back
to the original transmission schemes for packets in these
flows and easily handle these traffics. We leave differenti-

ating loss-sensitive flows as our future work.

6 Related Work

Loss recovery. Packet loss recovery has been a hot topic
in tail-latency optimization for low-latency streaming. Since
network latency is still one of the bottlenecks of low-latency
streaming, packet loss recovery could avoid retransmission
and directly reduce tail latency. There are many previous
research efforts in optimizing the FEC redundancy strate-
gies [23,35,46,50,69]. Also, some works proposed joint op-
timization of retransmission and redundancy [31,61,80]. Be-
sides, there are research efforts trying to utilize loss-tolerant
codecs to recover lost data [25,36,49,52,74,77]. However,
they are not enough to solve the problem of long tail latency.
As we discussed in §2.2, the loss rate is actually very low
in existing Wi-Fi networks even when latency increases dra-
matically. This means that recovery abilities in the upper
layer are not fully utilized, and link layer structure optimiza-
tion is still critically required.

Wi-Fi latency optimization. Nowadays, there is also some
work on latency optimization for Wi-Fi networks from dif-
ferent aspects. Apart from WMM, AQM, and latency-aware
RAA [55] mentioned above, there are also optimizations by
flow scheduling. Some flow scheduling aims to improve
airtime fairness [38, 39, 43], and some are specially pro-
posed to achieve a better performance for video applica-
tions [57,65]. There are also studies on frame aggregation
strategies [41,58,70] to achieve better latency and transmis-
sion overhead. Link layer CCAs [30,67] have also been pro-
posed to reduce transmission latency in a heavily congested
channel. However, these algorithm-level designs are far from
sufficient to address the high tail latency in Wi-Fi last-hop
under the existing link layer structure. Law could signifi-
cantly improve latency performance mainly due to: (i) archi-
tectural optimization in Wi-Fi link layer towards consistent
low latency, and (ii) a fine-grained latency-sensitive rate and
retransmission control.

7 Conclusion

This paper proposes Law, an 802.11 link layer structure
towards consistent low latency for ultra-low-latency appli-
cations. By reshaping the queueing structure and design-
ing fine-grained data rate and retransmission control, Law
is able to utilize the loss-tolerance capacity from the ap-
plication layer and significantly reduce the tail latency at
both the packet and application levels while maintaining
an acceptable packet loss. Our code is now available at
https://github.com/hkust-spark/Law-NSDI-26.

Acknowledgements. We thank our shepherd, Hongqgiang
Liu, and the anonymous NSDI reviewers for valuable com-
ments. This work is supported by RGC Early Career Scheme
(26212525) and National Key R&D Program of China
(2025YFE0201000). Zili Meng is the corresponding author.

https://github.com/hkust-spark/Law-NSDI-26

References

[1] 802.11e - wi-fi multimedia (wmm). https://www.
rhyshaden.com/wifi_mm.htm.

[2] Ad9631 datasheet and product info. https://www.
analog.com/en/products/ad9631.html.

[3] Amd zynq 7000 socs. https://www.amd.com/
en/products/adaptive-socs-and-fpgas/soc/
zyng-7000.html.

[4] Code repository for openwifi. https://github.com/
open-sdr.

[5] Edimax br6208ac. https://www.edimax.com/
edimax/merchandise/merchandise_detail/
data/edimax/global/home_legacy_wireless_
routers/br-6208ac_v2/.

[6] Linux wireless documentation for ath9k.
https://wireless.docs.kernel.org/en/
latest/en/users/drivers/ath9k.html.

[7] Paced sending. https://webrtc.googlesource.
com/src/+/refs/heads/main/modules/pacing/
g3doc/index.md.

[8] Rate adaptation for 802.11 wireless networks: Min-
strel. https://blog.cerowrt.org/papers/
minstrel-sigcomm-final.pdf.

[9] Retransmission limit in ath9k. https://elixir.
bootlin.com/linux/v6.15-rc3/source/
drivers/net/wireless/ath/ath9k/xmit.c.

[10] Tp-link tl-wdr4310. https://oldwiki.archive.
openwrt.org/toh/tp-1link/t1-wdr4310.

[11] 802.11 qos tutorial. https://www.
ieee802.0org/1/files/public/docs2008/
avb-gs-802-11-qos-tutorial-1108.pdf, 2008.

[12] Psa: Webrtc m88 release notes. https:
//groups.google.com/g/discuss-webrtc/
c¢/AOFj0cTW2c0/m/UAv-veyPCAAJ, 2020.

[13] Azure network round-trip latency statistics.
https://learn.microsoft.com/en-us/azure/
networking/azure-network-latency, 2024.

[14] Speedtest global index. https://www.speedtest.
net/global-index, 2025.

[15] Dmitry Akhmetov, Dibakar Das, Dave Cavalcanti,
Javier Ramirez-Perez, and Laurent Cariou. Scheduled
time-sensitive transmission opportunities over wi-fi. In
GLOBECOM 2022 - 2022 IEEE Global Communica-
tions Conference, pages 1807-1812, 2022.

[16] Venkat Arun and Hari Balakrishnan. Copa: Practical
Delay-Based congestion control for the internet. In
15th USENIX Symposium on Networked Systems De-
sign and Implementation (NSDI 18), pages 329-342,
Renton, WA, April 2018. USENIX Association.

[17] E Baker and G. Fairhurst. Rfc 7567: Ietf recommenda-
tions regarding active queue management, 2015.

[18] Fred Baker, Jozef Babiarz, and Kwok Ho Chan. Con-
figuration Guidelines for DiffServ Service Classes.
RFC 4594, August 2006.

[19] Apurv Bhartia, Bo Chen, Feng Wang, Derrick Pal-
las, Raluca Musaloiu-E, Ted Tsung-Te Lai, and Hao
Ma. Measurement-based, practical techniques to im-
prove 802.11ac performance. In Proceedings of the
2017 Internet Measurement Conference, IMC 17, page
205-219, New York, NY, USA, 2017. Association for
Computing Machinery.

[20] Saad Biaz and Shaoen Wu. Rate adaptation algorithms
for ieee 802.11 networks: A survey and comparison. In
2008 IEEE Symposium on Computers and Communi-
cations, pages 130-136, 2008.

[21] Neal Cardwell, Yuchung Cheng, C. Stephen Gunn,
Soheil Hassas Yeganeh, and Van Jacobson. Bbr:
Congestion-based congestion control. ACM Queue, 14,
September-October:20 — 53, 2016.

[22] Batyr Charyyev, Engin Arslan, and Mehmet Hadi
Gunes. Latency comparison of cloud datacenters and
edge servers. In GLOBECOM 2020 - 2020 IEEE
Global Communications Conference, pages 1-6, 2020.

[23] Ke Chen, Han Wang, Shuwen Fang, Xiaotian Li, Ming-
hao Ye, and H Jonathan Chao. Rl-afec: adaptive for-
ward error correction for real-time video communica-
tion based on reinforcement learning. In Proceedings of
the 13th ACM Multimedia Systems Conference, pages
96-108, 2022.

[24] Syuan-Cheng Chen, Chi-Yu Li, and Chui-Hao Chiu.
An experience driven design for ieee 802.11ac rate
adaptation based on reinforcement learning. In /EEE
INFOCOM 2021 - IEEE Conference on Computer
Communications, pages 1-10, 2021.

[25] Yihua Cheng, Ziyi Zhang, Hanchen Li, Anton Arapin,
Yue Zhang, Qizheng Zhang, Yuhan Liu, Kuntai Du,
Xu Zhang, Francis Y Yan, et al. {GRACE}:{Loss-
Resilient }{Real-Time} video through neural codecs. In
21st USENIX Symposium on Networked Systems De-
sign and Implementation (NSDI 24), pages 509-531,
2024.

https://www.rhyshaden.com/wifi_mm.htm
https://www.rhyshaden.com/wifi_mm.htm
https://www.analog.com/en/products/ad9631.html
https://www.analog.com/en/products/ad9631.html
https://www.amd.com/en/products/adaptive-socs-and-fpgas/soc/zynq-7000.html
https://www.amd.com/en/products/adaptive-socs-and-fpgas/soc/zynq-7000.html
https://www.amd.com/en/products/adaptive-socs-and-fpgas/soc/zynq-7000.html
https://github.com/open-sdr
https://github.com/open-sdr
https://www.edimax.com/edimax/merchandise/merchandise_detail/data/edimax/global/home_legacy_wireless_routers/br-6208ac_v2/
https://www.edimax.com/edimax/merchandise/merchandise_detail/data/edimax/global/home_legacy_wireless_routers/br-6208ac_v2/
https://www.edimax.com/edimax/merchandise/merchandise_detail/data/edimax/global/home_legacy_wireless_routers/br-6208ac_v2/
https://www.edimax.com/edimax/merchandise/merchandise_detail/data/edimax/global/home_legacy_wireless_routers/br-6208ac_v2/
https://wireless.docs.kernel.org/en/latest/en/users/drivers/ath9k.html
https://wireless.docs.kernel.org/en/latest/en/users/drivers/ath9k.html
https://webrtc.googlesource.com/src/+/refs/heads/main/modules/pacing/g3doc/index.md
https://webrtc.googlesource.com/src/+/refs/heads/main/modules/pacing/g3doc/index.md
https://webrtc.googlesource.com/src/+/refs/heads/main/modules/pacing/g3doc/index.md
https://blog.cerowrt.org/papers/minstrel-sigcomm-final.pdf
https://blog.cerowrt.org/papers/minstrel-sigcomm-final.pdf
https://elixir.bootlin.com/linux/v6.15-rc3/source/drivers/net/wireless/ath/ath9k/xmit.c
https://elixir.bootlin.com/linux/v6.15-rc3/source/drivers/net/wireless/ath/ath9k/xmit.c
https://elixir.bootlin.com/linux/v6.15-rc3/source/drivers/net/wireless/ath/ath9k/xmit.c
https://oldwiki.archive.openwrt.org/toh/tp-link/tl-wdr4310
https://oldwiki.archive.openwrt.org/toh/tp-link/tl-wdr4310
https://www.ieee802.org/1/files/public/docs2008/avb-gs-802-11-qos-tutorial-1108.pdf
https://www.ieee802.org/1/files/public/docs2008/avb-gs-802-11-qos-tutorial-1108.pdf
https://www.ieee802.org/1/files/public/docs2008/avb-gs-802-11-qos-tutorial-1108.pdf
https://groups.google.com/g/discuss-webrtc/c/A0FjOcTW2c0/m/UAv-veyPCAAJ
https://groups.google.com/g/discuss-webrtc/c/A0FjOcTW2c0/m/UAv-veyPCAAJ
https://groups.google.com/g/discuss-webrtc/c/A0FjOcTW2c0/m/UAv-veyPCAAJ
https://learn.microsoft.com/en-us/azure/networking/azure-network-latency
https://learn.microsoft.com/en-us/azure/networking/azure-network-latency
https://www.speedtest.net/global-index
https://www.speedtest.net/global-index

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

Yousri Daldoul, Djamal-Eddine Meddour, and Adlen
Ksentini. Performance evaluation of ofdma and mu-
mimo in 802.11ax networks. Computer Networks, Vol-
ume 182, 9 December 2020, 2020. Elsevier. Personal
use of this material is permitted. The definitive version
of this paper was published in Computer Networks,
Volume 182, 9 December 2020 and is available at :
https://doi.org/10.1016/j.comnet.2020.107477.

The Khang Dang, Nitinder Mohan, Lorenzo Cor-
neo, Aleksandr Zavodovski, Jorg Ott, and Jussi Kan-
gasharju. Cloudy with a chance of short rtts: Analyz-
ing cloud connectivity in the internet. In Proceedings of
the 21st ACM Internet Measurement Conference, pages
62-79, 2021.

Luca De Cicco, Gaetano Carlucci, and Saverio Mas-
colo. Understanding the dynamic behaviour of the
google congestion control for rtcweb. In 2013 20th In-
ternational Packet Video Workshop, pages 1-8, 2013.

Sandesh Dhawaskar Sathyanarayana, Kyunghan Lee,
Dirk Grunwald, and Sangtae Ha. Converge: Qoe-
driven multipath video conferencing over webrtc. In
Proceedings of the ACM SIGCOMM 2023 Conference,
ACM SIGCOMM ’23, page 637-653, New York, NY,
USA, 2023. Association for Computing Machinery.

Xinle Du, Jie Li, Yiyang Shao, Wei Wang, Shuihai Hu,
Jingbin Zhou, and Kun Tan. Revisiting congestion con-
trol for wifi networks. In Proceedings of the Sth Asia-
Pacific Workshop on Networking, pages 88-94, 2024.

Tobias Flach, Nandita Dukkipati, Andreas Terzis,
Barath Raghavan, Neal Cardwell, Yuchung Cheng,
Ankur Jain, Shuai Hao, Ethan Katz-Bassett, and
Ramesh Govindan. Reducing web latency: the virtue
of gentle aggression. In Proceedings of the ACM SIG-
COMM 2013 conference on SIGCOMM, pages 159—
170, 2013.

S. Floyd and V. Jacobson. Random early detection
gateways for congestion avoidance. IEEE/ACM Trans-
actions on Networking, 1(4):397-413, 1993.

Sally Floyd, Ramakrishna Gummadi, Scott Shenker,
et al. Adaptive red: An algorithm for increasing the
robustness of red’s active queue management, 2001.

Silas L. Fong, Ashish Khisti, Baochun Li, Wai-Tian
Tan, Xiaoqing Zhu, and John Apostolopoulos. Optimal
streaming codes for channels with burst and arbitrary

erasures. In 2018 IEEE International Symposium on
Information Theory (ISIT), pages 1370-1374, 2018.

Silas L Fong, Ashish Khisti, Baochun Li, Wai-Tian
Tan, Xiaoqing Zhu, and John Apostolopoulos. Optimal

(36]

(37]

(38]

(39]

[40]

[41]

[42]

[43]

streaming codes for channels with burst and arbitrary
erasures. [EEE Transactions on Information Theory,
65(7):4274-4292, 2019.

Sadjad Fouladi, John Emmons, Emre Orbay, Catherine
Wu, Riad S Wahby, and Keith Winstein. Salsify:{Low-
Latency} network video through tighter integration be-
tween a video codec and a transport protocol. In
15th USENIX Symposium on Networked Systems De-
sign and Implementation (NSDI 18), pages 267-282,
2018.

Lorenzo Galati-Giordano, Giovanni Geraci, Marc Car-
rascosa, and Boris Bellalta. What will wi-fi 8 be? a
primer on ieee 802.11bn ultra high reliability. IEEE
Communications Magazine, 62(8):126—132, 2024.

Rosario G Garroppo, Stefano Giordano, Stefano
Lucetti, and Luca Tavanti. Providing air-time us-
age fairness in ieee 802.11 networks with the deficit
transmission time (dtt) scheduler. Wireless Networks,
13:481-495, 2007.

Karina Gomez, Roberto Riggio, Tinku Rasheed, and
Imrich Chlamtac. On efficient airtime-based fair link
scheduling in ieee 802.11-based wireless networks. In
2011 IEEE 22nd International Symposium on Personal,
Indoor and Mobile Radio Communications, pages 930-
934. IEEE, 2011.

Prateesh Goyal, Anup Agarwal, Ravi Netravali, Mo-
hammad Alizadeh, and Hari Balakrishnan. ABC: A
simple explicit congestion controller for wireless net-
works. In 17th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 20), pages
353-372, Santa Clara, CA, February 2020. USENIX
Association.

Nasreddine Hajlaoui, Issam Jabri, Malek Taieb, and
Maher Benjemaa. A frame aggregation scheduler
for qos-sensitive applications in ieee 802.11 n wlans.
In 2012 international conference on communications
and information technology (ICCIT), pages 221-226.
IEEE, 2012.

Daniel Halperin, Wenjun Hu, Anmol Sheth, and David
Wetherall. Predictable 802.11 packet delivery from
wireless channel measurements. In Proceedings of the
ACM SIGCOMM 2010 Conference, SIGCOMM 10,
page 159-170, New York, NY, USA, 2010. Associa-
tion for Computing Machinery.

Toke Hgiland-Jgrgensen, Michat Kazior, Dave Tiht,
Per Hurtig, and Anna Brunstrom. Ending the
anomaly: Achieving low latency and airtime fairness
in {WiFi}. In 2017 USENIX Annual Technical Confer-
ence (USENIX ATC 17), pages 139-151, 2017.

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

Stefan Holmer, Henrik Lundin, Gaetano Carlucci,
Luca De Cicco, and Saverio Mascolo. A Google Con-
gestion Control Algorithm for Real-Time Communica-
tion. Internet-Draft draft-alvestrand-rmcat-congestion-
03, Internet Engineering Task Force, June 2015. Work
in Progress.

Stefan Holmer, Mikhal Shemer, and Marco Paniconi.
Handling packet loss in webrtc. In 2013 IEEE Interna-
tional Conference on Image Processing, pages 1860—
1864, 2013.

Han Hu, Sheng Cheng, Xinggong Zhang, and Zong-
ming Guo. Lightfec: Network adaptive fec with a
lightweight deep-learning approach. In Proceedings of
the 29th ACM International Conference on Multimedia,
pages 3592-3600, 2021.

Xianjun Jiao, Wei Liu, Michael Mehari, Muhammad
Aslam, and Ingrid Moerman. openwifi: a free and
open-source ieee802. 11 sdr implementation on soc.
In 2020 IEEE 91st Vehicular Technology Conference
(VTC2020-Spring), pages 1-2. IEEE, 2020.

Teemu Kdmirdinen, Matti Siekkinen, Antti Y1a-Jaaski,
Wenxiao Zhang, and Pan Hui. A measurement study on
achieving imperceptible latency in mobile cloud gam-
ing. In Proceedings of the 8th ACM on Multimedia Sys-
tems Conference, MMSys’ 17, page 88-99, New York,
NY, USA, 2017. Association for Computing Machin-
ery.

Vineeth Kolkeri, Muhammad Koul, J Lee, and K.R.
Rao. Error concealment techniques in h. 264/avc for
wireless video transmission in mobile networks. 01
2008.

Baldzs Kreith, Varun Singh, and Jorg Ott. Fractal: Fec-
based rate control for rtp. In Proceedings of the 25th
ACM international conference on Multimedia, pages
1363-1371, 2017.

Alexander Krotov, Anton Kiryanov, and Evgeny
Khorov. Rate control with spatial reuse for wi-fi 6
dense deployments. IEEE Access, 8:168898—-168909,
2020.

Sunil Kumar, Liyang Xu, Mrinal Mandal, and Sethu-
raman Panchanathan. Error resiliency schemes in
h.264/avc standard. Journal of Visual Communication
and Image Representation, 17:425-450, 04 2006.

Insoo Lee, Seyeon Kim, Sandesh Sathyanarayana,
Kyungmin Bin, Song Chong, Kyunghan Lee, Dirk
Grunwald, and Sangtae Ha. R-fec: Rl-based fec ad-
justment for better qoe in webrtc. In Proceedings of

[54]

[55]

[56]

[57]

(58]

[59]

[60]

[61]

[62]

the 30th ACM International Conference on Multime-
dia, MM ’22, page 2948-2956, New York, NY, USA,
2022. Association for Computing Machinery.

Chi-Yu Li, Chunyi Peng, Songwu Lu, and Xinbing
Wang. Energy-based rate adaptation for 802.11n. In
Proceedings of the 18th Annual International Confer-
ence on Mobile Computing and Networking, Mobicom
"12, page 341-352, New York, NY, USA, 2012. Asso-
ciation for Computing Machinery.

Chi-Yu Li, Chunyi Peng, Songwu Lu, Xinbing Wang,
and Ranveer Chandra. Latency-aware rate adaptation in
802.11 n home networks. In 2015 IEEE Conference on
Computer Communications (INFOCOM), pages 1293—
1301. IEEE, 2015.

Wei Li and Zili Meng. Poster: Content-aware retrans-
mission for ultra-low-latency video streaming. In Pro-
ceedings of the ACM SIGCOMM 2024 Conference:
Posters and Demos, pages 66—68, 2024.

Shao-Jung Lu, Wei-Xun Chen, Yu-Shao Su, Yu-Shou
Chang, Yao-Wen Liu, Chi-Yu Li, and Guan-Hua Tu.
Practical latency-aware scheduling for low-latency ele-
phant vr flows in wi-fi networks. In 2024 IEEE Interna-
tional Conference on Pervasive Computing and Com-
munications (PerCom), pages 57-68, 2024.

Bakeel Maghat, Mohd Dani Baba, and Ruhani Ab Rah-
man. A-msdu real time traffic scheduler for ieee802.
11n wlans. 1In 2012 IEEE Symposium on Wireless
Technology and Applications (ISWTA), pages 286-290.
IEEE, 2012.

Zili Meng, Nirav Atre, Mingwei Xu, Justine Sherry,
and Maria Apostolaki. Confucius: Achieving consis-
tent low latency with practical queue management for
real-time communications, 2024.

Zili Meng, Yaning Guo, Chen Sun, Bo Wang, Jus-
tine Sherry, Hongqiang Harry Liu, and Mingwei Xu.
Achieving consistent low latency for wireless real-time
communications with the shortest control loop. In
Proceedings of the ACM SIGCOMM 2022 Conference,
pages 193-206, 2022.

Zili Meng, Xiao Kong, Jing Chen, Bo Wang, Ming-
wei Xu, Rui Han, Honghao Liu, Venkat Arun, Hongxin
Hu, and Xue Wei. Hairpin: Rethinking packet loss re-
covery in edge-based interactive video streaming. In
21st USENIX Symposium on Networked Systems De-
sign and Implementation (NSDI 24), pages 907-926,
Santa Clara, CA, April 2024. USENIX Association.

Zili Meng, Tingfeng Wang, Yixin Shen, Bo Wang,
Mingwei Xu, Rui Han, Honghao Liu, Venkat Arun,

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

Hongxin Hu, and Xue Wei. Enabling high quality
{Real-Time} communications with adaptive {Frame-
Rate}. 1In 20th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 23), pages
1429-1450, 2023.

Gaurang Naik, Dennis Ogbe, and Jung-Min Jerry Park.
Can wi-fi 7 support real-time applications? on the im-
pact of multi link aggregation on latency. In ICC 2021
- IEEE International Conference on Communications,
pages 1-6, 2021.

K. Nichols, V. Jacobson, A. McGregor, and J. Iyengar.
Rfc 8289: Controlled delay active queue management,
2018.

Summera Nosheen and Jamil Y Khan. High definition
video packet scheduling algorithms for ieee802. 11ac
networks to enhance qoe. In 2020 IEEE 91st Vehicular
Technology Conference (VIC2020-Spring), pages 1-5.
IEEE, 2020.

Rong Pan, Preethi Natarajan, Chiara Piglione,
Mythili Suryanarayana Prabhu, Vijay Subramanian,
Fred Baker, and Bill VerSteeg. Pie: A lightweight con-
trol scheme to address the bufferbloat problem. In 2013
IEEE [14th International Conference on High Perfor-
mance Switching and Routing (HPSR), pages 148—155,
2013.

Changhua Pei, Youjian Zhao, Yunxin Liu, Kun Tan,
Jiansong Zhang, Yuan Meng, and Dan Pei. Latency-
based wifi congestion control in the air for dense wifi
networks. In 2017 IEEE/ACM 25th International Sym-
posium on Quality of Service (IWQoS), pages 1-10,
2017.

Devdeep Ray, Connor Smith, Teng Wei, David Chu,
and Srinivasan Seshan. Sqp: Congestion control for
low-latency interactive video streaming, 2022.

Michael Rudow, Francis Y Yan, Abhishek Ku-
mar, Ganesh Ananthanarayanan, Martin Ellis, and
KV Rashmi. Tambur: Efficient loss recovery for video-
conferencing via streaming codes. In 20th USENIX
Symposium on Networked Systems Design and Imple-
mentation (NSDI 23), pages 953-971, 2023.

Anwar Saif and Mohamed Othman. Sra-msdu: En-
hanced a-msdu frame aggregation with selective re-
transmission in 802.11 n wireless networks. Journal
of Network and Computer Applications, 36(4):1219—
1229, 2013.

Koen De Schepper, Bob Briscoe, and Greg White.
Dual-Queue Coupled Active Queue Management
(AQM) for Low Latency, Low Loss, and Scalable
Throughput (L4S). RFC 9332, January 2023.

[72]

(73]

[74]

[75]

[76]

[77]

(78]

[79]

(80]

Marie-Theres Suer, Prince Jose, and Hugues
Tchouankem. Experimental evaluation of ieee
802.11ax - low latency and high reliability with
wi-fi 6? In GLOBECOM 2022 - 2022 IEEE Global
Communications Conference, pages 377-382, 2022.

Shibo Wang, Shusen Yang, Xiao Kong, Chenglei Wu,
Longwei Jiang, Chenren Xu, Cong Zhao, Xuesong
Yang, Jianjun Xiao, Xin Liu, Changxi Zheng, Jing
Wang, and Honghao Liu. Pudica: Toward Near-Zero
queuing delay in congestion control for cloud gaming.
In 215t USENIX Symposium on Networked Systems De-
sign and Implementation (NSDI 24), pages 113-129,
Santa Clara, CA, April 2024. USENIX Association.

Yi Wang, Xiaogiang Guo, Ye Feng, Aidong Men, and
Bo Yang. A novel temporal error concealment frame-
work in h.264/avc. Proceedings - IEEE International
Conference on Multimedia and Expo, pages 1-6, 07
2013.

Stephen B. Wicker and Vijay K. Bhargava. Reed-
Solomon Codes and Their Applications. John Wiley
& Sons, Inc., USA, 1999.

Starsky H. Y. Wong, Hao Yang, Songwu Lu, and Vadu-
vur Bharghavan. Robust rate adaptation for 802.11
wireless networks. In Proceedings of the 12th An-
nual International Conference on Mobile Computing
and Networking, MobiCom 06, page 146—157, New
York, NY, USA, 2006. Association for Computing Ma-
chinery.

Jiangkai Wu, Yu Guan, Qi Mao, Yong Cui, Zongming
Guo, and Xinggong Zhang. Zgaming: Zero-latency 3d
cloud gaming by image prediction. In Proceedings of
the ACM SIGCOMM 2023 Conference, pages 710-723,
2023.

Hao Yin, Murali Ramanujam, Joe Schaefer, Stan Ader-
mann, Srihari Narlanka, Perry Lea, Ravi Netravali,
and Krishna Chintalapudi. ADR-X: ANN-Assisted
wireless link rate adaptation for Compute-Constrained
embedded gaming devices. In 21st USENIX Sympo-
sium on Networked Systems Design and Implementa-
tion (NSDI 24), pages 1331-1349, Santa Clara, CA,
April 2024. USENIX Association.

Mo Zanaty, Varun Singh, Ali C. Begen, and Giridhar
Mandyam. RTP Payload Format for Flexible Forward
Error Correction (FEC). RFC 8627, July 2019.

Fan Zhai, Yiftach Eisenberg, Thrasyvoulos N Pappas,
Randall Berry, and Aggelos K Katsaggelos. Rate-
distortion optimized hybrid error control for real-time
packetized video transmission. IEEE Transactions on
Image Processing, 15(1):40-53, 2006.

[81] Zhilong Zheng, Yunfei Ma, Yanmei Liu, Furong
Yang, Zhenyu Li, Yuanbo Zhang, Jiuhai Zhang, Wei
Shi, Wentao Chen, Ding Li, Qing An, Hai Hong,
Honggiang Harry Liu, and Ming Zhang. Xlink: Qoe-
driven multi-path quic transport in large-scale video
services. In Proceedings of the 2021 ACM SIGCOMM
2021 Conference, SIGCOMM 21, page 418-432, New
York, NY, USA, 2021. Association for Computing Ma-
chinery.

[82] Yuhan Zhou, Tingfeng Wang, Liying Wang, Nian Wen,
Rui Han, Jing Wang, Chenglei Wu, Jiafeng Chen,
Longwei Jiang, Shibo Wang, Honghao Liu, and Chen-
ren Xu. AUGUR: Practical mobile multipath transport
service for low tail latency in Real-Time streaming. In
21st USENIX Symposium on Networked Systems De-
sign and Implementation (NSDI 24), pages 1901-1916,
Santa Clara, CA, April 2024. USENIX Association.

Appendices

Appendices are supporting material that has not been peer-
reviewed.

A Compatibility with Commercial Hardware

As mentioned in the main text, we retain the original control
process unchanged in data processing, except for the queue-
ing structure, retransmission and rate control. This also in-
dicates that although we have modified the queueing struc-
ture, it does not mean that Law is completely in conflict with
the original queues. Law can be treated as a patch or sub-
module for the current link layer design. All packets in the
router will be divided into flows, so one possible solution
is to deploy parts of Law above the hardware as a standby
submodule. Only latency-sensitive flows are directed to the
Law, while the remaining flows continue to pass through the
original queues. Packets from both are rejoined when enter-
ing the hardware, which uses the Law hardware design. An-
other solution is to completely replace the queueing structure
and switch data rate and retransmission control algorithms to
meet the requirements of different applications. Different ap-
proaches face tradeoffs between system overhead, through-
put, fairness, latency, and so on.

B Parameter Setting

Here, we introduce how we choose the default parameter set-
tings, such as Limit, and the hardware retransmission limit.
The value of Limit, can be ideally determined based on ap-
plication throughput, latency requirements, and the level of
loss tolerance. Taking our experimental setup as an example,
we want to control the packet loss rate below (1 — o). We
can find a latency threshold such that, under a certain base-
line, the proportion of packets has a latency lower than this
threshold is exactly . In this way, we can obtain multiple

threshold values f3, from different baselines, as shown in Fig.
24. We can then select a value within the interval from f3; to
B> as the overall latency bound, and try to set Limit, based
on this.

We also make the following explanations to discuss some
of our observations during implementation and clarify why
we set the hardware retransmission limit as given in §3.4. If
we ideally treat each hardware transmission as an indepen-
dent random event with a success probability of p, then the
probability of a packet being successfully received just at the
n'" hardware transmission can be calculated as:

X,=px(1—-p)"' (n=1,2,3,...) 3)
When p > 0.5, we can easily prove that:
X > X1+ Xnt2 + X3+ “4)

This indicates that the more retransmissions we have, Law’s
efficiency in the tradeoff between latency (number of retrans-
missions) and transmission success rate decreases. Further-
more, the larger p is, the smaller the gains in the transmission
success rate from massive retransmissions.

Even if the moving average probability of successful hard-
ware transmission for a certain data rate is p, the probabil-
ity of successful transmission in the extremely short time (a
short interval under specific channel conditions) is not p. For
example, from our observation, if the chosen data rate han-
dles the channel conditions well, the probability of success-
ful transmission will often be closer to 1 than p. This leads
to a more unworthy tradeoff, as we just discussed. That’s
the reason we set the hardware-related parameters as in §3.4,
enabling a more sensitive and more accurate rate adaptation
with an efficient latency-reliability tradeoff.

a-——7’/’—'—’_—‘_

CDF

—— Minstrel
LLRA

0.85

B1B2
Per-packet latency (ms)

Figure 24: Tllustration for the threshold interval calculation.

	Introduction
	Background and Motivations
	Tail Latency in Wi-Fi
	Design Gaps in Wi-Fi Link Layer
	Loss-tolerance in the Upper Layers

	Law Design
	Basic Idea and Challenges
	Framework Overview
	Queueing Structure Reshaping
	Rate and Retransmission Control

	Evaluation
	Experimental Setup
	Packet-level Performance
	Application-level Performance
	Microbenchmarking

	Discussion
	Related Work
	Conclusion
	Compatibility with Commercial Hardware
	Parameter Setting

