
Inferring In-Network Queue Management from End
Hosts in Real-Time Communications

Yaning Guo1, Zili Meng3, Bo Wang1,2, Mingwei Xu1,2
1Tsinghua University 2Zhongguancun Laboratory 3Hong Kong University of Science and Technology

Abstract—Active queue management (AQM) algorithms,
widely deployed in the internet, are designed to signal end
hosts with network conditions in the format of packet losses.
However, real-time communication (RTC) applications adopt
delay-sensitive congestion control algorithms (CCAs), which are
no longer responsive to losses or explicit notifications from
AQMs. Moreover, packet losses introduced by different AQMs
will further degrade the performance of RTC applications due
to unexpected and unnecessary loss recovery. We are therefore
motivated to understand the behaviors of AQMs and take
necessary countermeasures for RTC applications proactively. For
example, with the help of AQM inference, RTC applications
will benefit by using loss recovery mechanisms that adapt to
various kinds of AQMs to deal with packet losses. However, it
is challenging to infer the AQM from end hosts since numerous
AQMs have different configurations after decades of evolution.
We analyze the temporal behaviors of loss series, extract the
inherent invariant features of different AQMs, and categorize
them into three types. Our simulation shows that AQM inference
can classify AQMs with an accuracy of 96%. We also evaluate a
use case on using the AQM inference to improve the loss recovery
mechanism (forward error correction, FEC). Our FEC method
based on AQM inference improves the recovery rate by at least
56%, and finally reduces the end-to-end delay by 13%.

Index Terms—Active queue management (AQM), Congestion
control algorithms (CCAs), Forward error correction (FEC)

I. INTRODUCTION

In recent years, various RTC applications, such as video
conferencing and cloud gaming, have become rather prevalent
in people’s daily life. Users can enjoy abundant real-time
contents and the convenience of remote cooperation anywhere
through RTC applications. RTC applications take low latency
as a prominent advantage so latency optimization for these ap-
plications is of great significance and also receives widespread
concern from both industry and academia. For example, in
order to reduce the end-to-end delay, researchers introduce
advanced CCAs [1–3].

However, a key observation in our paper is that the evolution
of those recently advanced latency optimizations on the end
hosts may not work well with mechanisms on in-network de-
vices. Specifically, AQM algorithms, which have been widely
deployed and are designed to control the bottleneck queue
length as well as signal the end hosts with network conditions,
might introduce side effects when they meet with the latency
optimization mechanisms of RTC applications such as CCAs.
Most AQMs notify the end hosts in the format of packet losses,
while advanced CCAs adopted by RTC applications are no
longer responsive to losses. Such a mismatch can actually
further degrade the performance of RTC applications. AQM

intentionally drops packets as feedback for end hosts, but
the video streams in RTC applications cannot tolerate such
packet losses – they will retransmit the lost packets to ensure
the image quality. In this case, the end-to-end delay will be
degraded. Instead of improving performance, AQMs introduce
undesirable consequences.

In response, we are motivated to infer the AQM from end
hosts. Our insight is that if end hosts are aware of the behavior
of AQMs in the network, they can proactively mitigate the
potential drawbacks of unexpected packet losses brought by
AQMs and further improve end-host latency optimizations.
End hosts use loss recovery mechanisms such as FEC methods
to proactively compensate the packet losses with redundant
packets. The number of redundant packets is chosen based
on the future packet losses which are controlled by AQMs.
Therefore, AQM inference can help end hosts achieve a more
precise loss prediction and use the prediction to implement
FEC methods better. For the essential issue of incompatibility
between CCAs of RTC applications and AQMs, CCAs can
adaptively modify according to the characteristics of AQMs.
In this way, CCAs can achieve a rapid identification of
various congestion signals varying between different AQMs
and make appropriate adjustments of the sending rate. This
fundamentally suppresses queuing and further packet losses.

However, it is challenging to know the exact AQM of the
bottleneck queue. Numerous AQMs have been proposed in the
last several decades. Moreover, diverse end-to-end traffic and
AQM parameters can also interfere with our inference, as they
can make the loss rate and loss trends indistinguishable over
a period of time. When the servers notice a single packet loss
(or losses in a short time interval), it is difficult to confidently
categorize the AQMs. To address these challenges, we analyze
the loss behaviors of commonly used AQMs and categorize
them into three types. These three types can represent common
kinds of packet loss trends and patterns. Each type has its
particular features and typical loss behaviors. Instead of using
single-point data that contains little information, we splice the
single-point data into time series and infer through these time
series that can reflect some characteristics. To eliminate the
interference of external factors, we capture inherent features of
AQMs for inference because of their invariance and determine
the type by judging whether the time series exhibits unique
features of a certain type of AQM.

Our evaluation shows our AQM inference mechanism is
effective and significantly improved the performance of the
FEC method. The inference accuracy is higher than 96% and

the relative error of loss prediction after AQM inference is less
than 20%, which means that we can accurately obtain the type
of AQM and the loss model. For FEC methods, our method
achieves an average recovery rate of exceeding 85%, which is
56% higher than the baseline with a similar redundancy rate.
Such an AQM inference can also help to improve the end-to-
end delay by 13% compared to state-of-the-art mechanisms
without knowledge of AQM inference.

II. BACKGROUND AND MOTIVATION

A. Mismatch between CCAs of RTC applications and AQMs

RTC applications commonly utilize delay-sensitive CCAs.
They apply different transport protocols thus different conges-
tion feedback methods. For the TCP/QUIC protocol, Copa [2]
and BBR [1] use ACK packets to run delay estimation and
bandwidth measurement respectively to change their conges-
tion window. GCC [3] and NADA [4] used with UDP deter-
mine the network states according to the delay, bandwidth,
packet losses and other information provided in the feedback
message sent by the clients. These algorithms have similar
purposes: strictly control queuing delay and react fast enough
to perceive the rise of delay.

However, some delay-sensitive CCAs are insensitive to
packet losses. Copa has no specific design for packet losses
and BBR does not react to the loss rate below 0.2. GCC
has the logic for packet losses though, it’s much simpler and
less flexible compared to the delay-based logic and will only
decrease the sending rate after the loss rate is greater than 0.1.

In contrast to these CCAs, in-network AQMs treat the
packet loss as the congestion signal and also use it to reduce
queuing. Some AQMs have been proposed in recent years and
use different loss mechanisms. The packet loss probability of
RED [5] and ARED [6] is positively correlated with the queue
length. CoDel [7] aims to maintain the time when the queuing
delay exceeds the target shorter than the threshold time. PIE
[8] also focuses on queuing delay and designs a proportional-
integral controller to update the loss probability.

This mismatch between CCAs and AQMs coupled with the
lack of cooperation due to different deployment locations can
bring adverse consequences. When the queue starts to pile
up, some AQMs immediately drop packets to inform end
hosts. However, the initial small amount of packet losses are
usually ignored by the above delay-sensitive CCAs so end
hosts will not change their sending rate until the queue keeps
growing to a level that the delay-based congestion control
is triggered. This is not a fatal drawback when the network
is stable, but the available bandwidth of bottleneck can be
suddenly reduced by 10× [9] while CCAs cannot respond in
time in such a deteriorated network condition, the queue will
build up rapidly because of the extreme disparity between the
sending rate and the available bandwidth. As a result, AQMs
will eventually create numerous packet losses and the loss rate
will increase dramatically in a short period of time. Even after
CCAs adjust their sending rate, the queue still takes some time
to be drained, and packet losses will also continue to occur
during this period. Retransmission caused by packet losses can

0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 00 . 0
0 . 1
0 . 2
0 . 3
0 . 4
0 . 5
0 . 6
0 . 7
0 . 8

Fra
me

 Lo
ssr

ate

F r a m e

 R E D
 F I F O
 C o D e l

Fig. 1: Different loss trends influenced by AQMs

greatly increase the delay and lead to blurry frames or jitters.
This phenomenon inspires us to make CCAs and AQMs

cooperate with each other to compensate for the negative
effects. Because AQMs are implemented in the network, the
realistic approach should be carried out on the end hosts, that
is, the design of end-host mechanisms is supposed to become
AQM-aware and fully consider the influence of AQMs.

B. Significance of AQM inference

We describe the important role of AQM inference in two
aspects in this subsection. On one hand, end hosts choose FEC
methods to combat packet losses, we can use AQM inference
results for FEC methods. On the other hand, through AQM
inference, we can also adjust the design mechanism of CCAs
to mitigate the aforementioned mismatch.

1) FEC: The performance of FEC methods depends on
the relationship between the proportion of redundant packets
and the real loss rate. If this proportion is higher than the
real loss rate, end hosts have to waste extra bandwidth and
increase operation cost while if it’s smaller, retransmission is
still required after one round of transmission which increases
the latency. This indicates that advanced FEC methods require
accurate loss prediction.

Meanwhile, packet losses which are controlled by AQMs,
cannot be formalized with a single regularity. There are many
AQMs in practice and the loss logics have their own par-
ticularity. Different AQMs can calculate completely different
loss rate for the same queue state, not to mention some
AQMs focus on the queue’s historical states, even if queues
experience the same congestion process, the overall loss trends
may display dissimilar ways. Fig. 1 shows that under the same
network condition and end-to-end traffic, different AQMs can
create multiple loss trends.

The overall trend of packet losses is closely related to
AQMs but none of current FEC methods consider AQMs in
their prediction, obviously this will reduce their accuracy and
generality. FEC methods can be divided into two types. Some
methods [10] [11] employ simple time series models which
just relate the real-time loss rate to the previous network state.
When the loss rate increases due to congestion, they may still

AQM\CCA Delay-based Loss-based
FIFO(1000p) 2.8s ✓ 5.84s

CoDel 2.32s 1.72s ✓

TABLE I: Delay duration under different combinations of
AQMs and CCAs. CCAs here are delay-based logic and the
modified loss-based logic of GCC that begins to reduce the sending
rate as soon as end hosts are conscious of packet losses. In order
to control variables, these two CCAs reduce the sending rate at the
same speed after noticing the network congestion. Delay Duration
is the time when the end-to-end delay is larger than 200ms.

0 . 1 6 0 . 1 2
0 0

0 . 4 4 0 . 4 8
0 . 6 8 0 . 7 6

1 . 8 x 3 x 4 . 5 x 6 x0 . 0
0 . 1
0 . 2
0 . 3
0 . 4
0 . 5
0 . 6
0 . 7
0 . 8

Du
rat

ion
 Re

du
ctio

n(s
)

B a n d w i d t h R e d u c t i o n

 2 5 0 p
 1 0 0 0 p

(a) Delay

1 7 3 6 . 4 1

8 3 3 . 6

2 1 9 . 1 7 1 2 2 . 8 1 13 1 5 . 2 4

- 3 7 0 . 7 4 6 0 0
1 . 8 x 3 x 4 . 5 x 6 x- 5 0 0

0
5 0 0

1 0 0 0
1 5 0 0
2 0 0 0

Co
nv

erg
ed

 BW

Re
du

ctio
n(k

bp
s)

B a n d w i d t h R e d u c t i o n

 2 5 0 p
 1 0 0 0 p

(b) Bandwidth

Fig. 2: Delay and throughput performance under different
CCA and AQM parameters. k in kx of the x-axis represents the
bandwidth reduction ratio.(a)The time by which delay duration is
shortened after using more sensitive parameters. Delay duration
is the time when end-to-end delay is larger than 200ms. (b)The
amount by which the converged bandwidth is reduced using more
sensitive parameters.

provide a low loss rate while after the network becomes stable
again, they may carry on radical prediction. Other schemes
[12] [13] [14] use machine learning to predict the loss rate. The
limitation is that packet losses can display various evolutionary
trends but the model can’t learn all of them. Moreover, packet
losses under different bottleneck queues dissatisfy a single
model therefore such model training is not targeted.

Besides, The specific loss pattern determined by AQM also
influences the selection of FEC parameters. If the packet is
lost based on the probability, the redundancy rate should be
appropriately higher to ensure the successful arrival of the
frame. However, if packets are lost at a certain time interval,
the number of redundant packets can be a little conservative.
It is necessary to focus on the implementation differences
brought by different AQMs in the FEC method.

2) CCA: At present, CCAs on the end hosts indepen-
dently judge the network condition based on the client’s
feedback without cooperation with in-network AQM mecha-
nisms, which leads to the neglect and inappropriate processing
of congestion signals. For example, [15] concludes that the
synergy effect of delay-sensitive CCAs and some AQMs is
not satisfying. We compare the duration of delay increase
with different combinations of AQMs and CCAs in the face
of congestion in TABLE I. For CoDel, compared with delay
signals exceeding the thresholds set by CCAs, loss signals are
sent to the end hosts earlier so loss-based CCAs can respond
faster to the congestion and get better latency performance.
In contrast, the duration is shorter for FIFO combined with
delay-based CCAs because packets are not dropped until the
queue is sufficiently inflated. For different types of AQMs, the
optimal choice of CCAs is different.

The parameters of CCAs should also be adjusted adaptively
with the parameters of AQMs. Fig. 2 shows the performance
presented by FIFO of different queue sizes combined with
different sensitivity parameters. The results show that for FIFO
of small queue size, more sensitive parameters have either
negligible or little help in shortening the duration of delay
increase but can drastically decrease the converged bandwidth.
On the contrary, more sensitive parameters are necessary for
FIFO of large queue size because all reduced packets for
transmission can play a role in preventing queue accumulation
and the reduction of convergence bandwidth is relatively
small or even negative because the overall congestion time
becomes significantly shorter. This indicates that the internal
parameters of CCAs can also be adjusted in combination with
in-network AQMs to achieve a better trade-off of different
network indicators.

III. CHALLENGE

Chanllenge & Solution 1: There are many types of AQMs
in practice. We carry out a generalized classification for
common AQM types based on their packet loss behaviors.
We find the most suitable type for each loss case and then
establish the loss model within the type.

Chanllenge & Solution 2: We have to infer the type of
AQMs under the disturbance of multiple factors and two
types of AQMs may also display similar loss evolution in a
certain period of time. AQMs are designed with a complete
self-consistent logic for queue accumulation and mitigation,
which is manifested with coherent loss behaviors. They can
be summarized into some expressible characteristics. These
characteristics are independent of other factors and faithfully
belong to a certain type of AQM. The purpose of our method
is to capture invariant loss characteristics for inference. Mean-
while, characteristics are difficult to be reflected by a few
points of data in a short period of time so we extract useful
features from the time series consisting of all queue state and
loss information in a loss event.

IV. DESIGN

The overall design framework is as Fig. 3, We splice the
single-point data containing queue and loss information from
the previous loss event into a time series and extract features
from the series to infer the AQM type of the bottleneck
queue and establish the corresponding loss model. Generally
speaking, the bottleneck in the network does not change for
a period of time, neither does the regularity of packet losses
at the bottleneck. Therefore, when the queue starts piling up
again and end hosts perceive the congestion after one RTT,
end hosts can predict the future loss rate for FEC methods
based on the previously obtained loss model. After the current
loss event ends, the statistics about packet losses are processed
again and used as the basis for the next loss event.

A. Queue and Loss indicators

To extract features, end hosts first need to estimate the
single-point data of the bottleneck queue and loss information.

Fig. 3: Overall Framework

End hosts use the feedback of per-packet arrival time and
loss information from clients to estimate the queue state. End
hosts estimate each packet’s queuing delay QDelay by Eq.
1, minOwd refers to the minimum one-way delay in the past
period of time.

QDelay = ArrT ime− SendT ime−minOwd (1)

Besides QDelay, QueueLength is also required for feature
extraction. Although end hosts are aware of the traffic of flows
sent by themselves, they also need to estimate the traffic of
competing flows. End hosts continuously calculate the instan-
taneous rate at which clients receive packets (ReceiveRate)
based on per-packet arrival time and add it to a Rate list.
For each packet, end hosts estimate the ReceiveRate for a
short time window around the packet’s arrival time and update
Rate list. This Rate list retains the values of ReceiveRate
for a relatively long period of time before and after this
packet arrives at the client, then the max(ReceiveRate)
on the Rate list is considered to be the DequeueRate
during the period the packet is about to leave the queue. End
hosts can obtain the traffic of the competing flow based on
the difference between DequeueRate and ReceiveRate
computed for this packet. Combining the competing traffic
with their own traffic can provide an estimate of the overall
traffic and QueueLength.

We also define the indicator DropSpeed and lossrate
respectively representing the number of packets lost per unit
of time and the percentage of lost packets in all packets. These
two indicators are calculated for a group of packets (frames)
that are sent as a burst [16]. We obtain a series of single-
point data of the queue and loss information. They are then
connected in the order of the sending time to form a time
series for the following AQM inference.

B. Feature extraction and AQM inference

Features are displayed for three aspects: Trend, End and
Pattern. Our method accomplishes a packet-level feature
extraction to better understand the loss mechanism through
fine-grained analysis. Following is a detailed description of
the features of these three aspects.

• Trend: It records whether the indicators such as
lossrate and DropSpeed show generally rising or

Pattern
In groups with packet losses, packet losses basically
occur at the tail of the group and the corresponding
QueueLength fluctuates within a small range.

End

The QueueLength at the end of the loss event still
has a certain size, may even be nearly close to the
maximum value for the whole period and gradually
decreases to a balanced state.

TABLE II: Spike Features

Trend

When the QDelay begins to gradually decrease, the
DropSpeed continues to rise (the rising speed may
be very small and appears little changed) until the
end of loss (when QDelay still has certain value).

Pattern

In groups with relatively low lossrate,continuous
losses occur less frequently. Packets are lost with a
function of the packet loss time interval and this
interval is stable during the entire period.

TABLE III: Cliff Features

falling trends or just fluctuate in a small range within a
given period of time. It also refers to when the queue
state (QDelay and QueueLength) has a certain trend
the corresponding trend of loss information (lossrate
and DropSpeed).

• End: Comparison of the value of indicators at the end of
the queuing or the loss event to the peak value during the
entire period. It also records the trend of these indicators
near the end.

• Pattern: 1⃝The degree of tail packet losses within a
group. 2⃝The degree of continuous packet losses. 3⃝Time
interval characteristics of packet losses.

AQMs are classified into three types: Spike, Cliff and Hill.
We then extract features and infer the AQM type. Through
the degree to which the behaviors of time sequences match
the features of a type of AQM, we determine whether the
bottleneck queue belongs to that type of AQM.

Spike: This type of AQM has a very simple loss logic. If
the number of currently queued packets exceeds the queue size
limitation, the new packet will be dropped, otherwise, it can
enter the queue. Inference for this type is based on the features
of Pattern and End as in TABLE II.

Cliff: This type of AQMs is different from the ones that
generally give the loss probability. When the queue exceeds
the threshold, it gradually reduces the time interval between
each packet loss to alleviate queue accumulation. The result of
this design is that even if the queue starts to become shorter,
the speed of packet losses still gradually increases until the
queue reaches the threshold requirement. Inference for this
type is based on Trend and Pattern as in TABLE III.

Hill: The lossrate either corresponds to the real-time
queue state or the cumulative state of the queue evolution
(CumulQ). Inference for this type focuses on Trend to es-
tablish a relationship between lossrate and CumulQ.

We use the EWMA method to calculate the CumulQ
through Eq. 2. qw indicates how much the change of
lossrate lags behind the change of QueueLength. Dif-
ferent candidates of qw should make the CumulQ show clear

Spike Cliff Hill Total
96.25% 96.0% 97.48% 96.89%

TABLE IV: Inference accuracy of different types of AQMs

S p i k e C l i f f H i l l0
2 0
4 0
6 0
8 0

1 0 0

Re
lat

ive
 Er

ror
 (%

)

A Q M T y p e

 O u r s
 A d a p t i v e
 D e e p R s
 W e b R T C

Fig. 4: Loss prediction

differences and the candidates’ collection can cover various
levels of lagging degrees.

CumulQ = (1− qw) ∗CumulQ+ qw ∗QueueLength (2)
We estimate the CumulQ and realize Linear fit for

lossrate and CumulQ. We define the CorresDegree
to choose qw. CorresDegree is computed according to the
difference of coefficients from the linear fit for the period when
lossrate increases and the entire period, which represents
the degree of conformity between qw and the actual loss
performance. The fitting error of linear fitting should also be
considered. The most appropriate qw is selected following the
highest CorresDegree, together with the coefficients of the
corresponding fitting result to establish the loss model.

If there is no obvious correlation between the lossrate
and CumulQ, and considering that to alleviate queuing, AQMs
continuously increase the loss rate when there exists queuing,
the lossrate may add a value at a regular time interval,
the value is the function of QueueState. We can calculate
the corresponding coefficients according to the total change
of the lossrate over a period of time and the value of the
QueueState at each update within this period.

C. Loss Model and loss prediction

During the process of AQM inference, end hosts establish
the loss model according to the loss mechanism of each type
and calculate key parameters. For the new loss event, end hosts
estimate the DequeueRate as described in IV-A to predict
the future queue state. The loss rate can then be expressed:
lossrate = f(queuestate), f represents the loss model. End
hosts fine-tune the result of the loss prediction based on the
type of AQM to obtain the proportion of injected redundant
packets.

V. EVALUATION

A. Experimental Setup

Traces: We evaluate our method with NS-3 simulation and
establish a link with 50ms RTT and 30Mbps initial bandwidth

of the bottleneck queue which is deployed with different
AQMs. End hosts initially send packets at a sending rate
slightly less than 30Mbps and they use two time intervals (5ms
and 40ms) of sending a group of packets (frame) as a burst.
Then we use two ways to change the available bandwidth. The
first way is that the available bandwidth is reduced from 2x to
10x. End hosts then take different response time to adjust the
sending rate to the new bandwidth. The second way is that the
available bandwidth changes every 200ms, and the bandwidth
distribution satisfies a Gaussian distribution with mean values
of 10Mbps, 15Mbps, 20Mbps and 25Mbps, and a standard
deviation of 5Mbps. We totally generate 418 traces including
9 AQMs of different types or parameters. We leave real-world
experiments as our future work.

Metrics: We evaluate the accuracy of AQM inference for
all traces. We also combine traces (correctly infer the type)
belonging to the same AQM, the former trace establishes the
loss model for the latter trace. We examine the effectiveness of
the obtained loss model based on relative error measurement of
loss prediction for the latter trace. We further evaluate the per-
formance of the FEC method for traces of 6 different AQMs.
These AQMs are from the second and third types because they
are suitable for the FEC method (The redundant packets are
not more than data packets). We measure the recovery rate,
redundancy rate and also application-layer metrics, the end-
to-end delay. If the number of injected redundant packets is
greater than or equal to the actual number of lost packets, this
frame (a group of packets sent in a burst) can be recovered.
The redundancy rate is the ratio of the number of redundant
packets to that of data packets.

Baselines: We use Adaptive-FEC and Learning-FEC as
baselines. For adaptive-FEC, we take the lossrate for the latest
one second to multiply a coefficient as the prediction result
of future lossrate, the coefficients vary from 1 to 10 and
they are labeled Adap*x and A*x in Fig 4,5, where x is the
coefficient. We also compare the FEC method in WebRTC
[17], which uses a lookup table to map past lossrate to a
certain redundancy rate. In Fig 4,5, it’s labeled WebRTC or
WR. Learning-FEC uses the the LSTM model in DeepRs [13]
to predict, training traces are generated with AQMs of different
types and parameters. It’s labeled DeepRS or DR in Fig 4,5.

B. AQM inference and loss prediction

AQM inference accuracy is shown in TABLE IV, three
types of AQM can achieve an average accuracy of 96.89%
and the inference accuracy of each type of AQM is more than
95% which demonstrates the effectiveness of our inference
method. Fig. 4 shows the mean and standard deviation of the
relative error of the loss prediction and the average relative
error of our method is less than 20% under the three types of
AQMs, which is several times lower than the adaptive and the
learning-based prediction. The small standard deviation of the
prediction accuracy indicates that our method is less affected
by the varied network environment.

0 . 2 0 . 3 0 . 4 0 . 5 0 . 6 0 . 7 0 . 8 0 . 9 1 . 00 . 0
0 . 1
0 . 2
0 . 3
0 . 4
0 . 5

O u r sA d a p * 1
A d a p * 2

A d a p * 3
A d a p * 4

A d a p * 5

A d a p * 1 0

D e e p R S

W e b R T C

Re
du

nd
an

cy
Ra

te

R e c o v e r y R a t e

B e t t e r

(a) FEC for Cliff

3 1 4 . 3 4

5 3 6 . 5 3

5 1 6 . 3 7
4 9 2 . 6 8

4 7 0 . 6 9
4 4 9 . 6 3

3 9 2 . 0 1

4 8 8 . 0 1 1

3 6 4 . 9 1

O u r s A * 1 * 2 * 3 * 4 * 5 * 1 0 D R W R2 0 0

3 0 0

4 0 0

5 0 0

6 0 0

M e t h o d

De
lay

(m
s)

(b) Delay for Cliff

0 . 3 0 . 4 0 . 5 0 . 6 0 . 7 0 . 8 0 . 9 1 . 00 . 0
0 . 1
0 . 2
0 . 3
0 . 4
0 . 5
0 . 6
0 . 7

O u r s
A d a p * 1

A d a p * 2
A d a p * 3

A d a p * 4
A d a p * 5

A d a p * 1 0

D e e p R S
W e b R T C

Re
du

nd
an

cy
Ra

te

R e c o v e r y R a t e

B e t t e r

(c) FEC for Hill

2 6 1 . 2 4

4 1 5 . 5 4
4 0 8 . 6 4

4 0 2 . 8 5

3 9 6 . 9 7
3 9 0 . 6 4

3 6 8 . 9 1
3 5 1 . 3 8

3 6 2 . 7

O u r s A * 1 * 2 * 3 * 4 * 5 * 1 0 D R W R2 0 0

2 5 0

3 0 0

3 5 0

4 0 0

4 5 0

M e t h o d

De
lay

(m
s)

(d) Delay for Hill

Fig. 5: Performance of FEC method

C. FEC method

In Fig. 5, We show the mean and standard deviation of
the recovery rate as well as the mean of the redundancy rate
of FEC methods for the second and third types of AQMs.
Our method performs better than all baselines. Our method
can achieve the average recovery rate larger than 85% which
is greater than other methods and maintain advantages under
various network conditions. Moreover, our method does not
sacrifice the redundancy rate for the recovery rate, we can
achieve a 56.9% ∼ 72.76% increase in the recovery rate with
a similar redundancy rate as other baselines. This is because
our method can dynamically predict packet losses according
to the characteristics of each type of AQM instead of aggres-
sively adding redundant packets. Our method accomplishes
the balance between recovery rate and redundancy rate, and
performs better in these two metrics. Because our method
avoids retransmission, it also has a significant improvement in
end-to-end latency performance, which can achieve a reduction
of 13.86% ∼ 25.65% compared to the baseline with the
smallest delay.

VI. DISCUSSION

A. Implementation

Our method is implemented on the end hosts without the
support of in-network devices. All required information used
for inference can be obtained directly from the transmission
protocol. This design can be practically deployed on the end
hosts as an independent module and we anticipate that even
if the applications and CCAs used by end hosts change, the
execution of the module of AQM inference will still unlikely
be affected. AQM inference is only executed once after
each loss event, and will not frequently consume computing
resources.

B. The type of packet Losses

Packet losses discussed in this paper are because of the
queuing of packets at the bottleneck and in-network devices
drop the packets according to the loss mechanisms of AQMs.
In fact, there are still other types of losses such as packet
losses due to low signal to interference plus noise ratio
(SINR) of wireless channels but this kind of packet losses
can be distinguished from packet losses caused by AQMs.
Because this kind of wireless losses is not accompanied by an
increasing latency while our AQM inference is executed only
when end hosts perceive packet losses with increasing latency.

VII. RELATED WORK

The latency of RTC applications has been intensively in-
vestigated for decades. Among them, delay-sensitive CCAs
and AQMs have been introduced in II. As for mismatches
between these two measures, a variety of solutions have also
been proposed to solve the problem.

Forward Error Correction. Except for our AQM-aware
FEC method, there are numerous other FEC methods. No
matter whether use traditional heuristic algorithms [10, 11, 18]
or machine learning algorithms [12–14], the decision inputs
of these algorithms are similar: they adapt the redundancy
rate by inferring the network conditions. However, few of
them are aware of the packet losses by the AQMs, especially
the patterns of different AQMs. Our solution is capable of
protecting packets from the packet losses due to AQMs while
achieving a low redundancy rate as well.

End host-network coordination. Meanwhile, there are
also some end host-network coordination research efforts in
exchanging the in-network conditions with end hosts. Explicit
congestion control (ECN) mechanisms enable the end hosts
and network devices to cooperate with each other and achieve
cross-layer optimization to solve the above problems. For
example, in Kickass [19] and ABC [20], routers perceive key
indicators such as link capacity, queuing delay, etc., and send
the information back to the end hosts in various forms to
adjust the congestion window. This kind of method requires
the support of network devices and end hosts at the same
time. Thus, the actual deployment overhead hinders further
implementation. Our method bridges the gap between the
end hosts and in-network AQMs without changing network
devices.

VIII. CONCLUSION

We propose a server-side inference method for in-network
AQMs. Through AQM inference, end hosts can obtain a
more precise estimation of packet loss that occurs in the
network, which helps end hosts better implement CCAs and
FEC methods. For various latency-sensitive mechanisms in
RTC applications, this inference method allows them to better
adapt to the loss mechanism in the network, compensate for
the adverse consequences brought by the packet losses and
maintain stable performance.

IX. ACKNOWLEDGEMENTS

This work is sponsored by the National Natural Science
Foundation of China (No. 62221003 and 62372261). Mingwei
Xu is the corresponding author of the paper.

REFERENCES

[1] N. Cardwell, Y. Cheng, C. S. Gunn et al., “Bbr: congestion-based
congestion control,” Communications of the ACM, pp. 58–66, 2017.

[2] V. Arun and H. Balakrishnan, “Copa: Practical delay-based congestion
control for the internet,” in Proc. USENIX NSDI, 2018, pp. 329–342.

[3] G. Carlucci, L. De Cicco, S. Holmer, and S. Mascolo, “Congestion
control for web real-time communication,” IEEE/ACM Transactions on
Networking, vol. 25, no. 5, pp. 2629–2642, 2017.

[4] X. Zhu and R. Pan, “Nada: A unified congestion control scheme for
low-latency interactive video,” in 2013 20th International Packet Video
Workshop. IEEE, 2013, pp. 1–8.

[5] S. Floyd and V. Jacobson, “Random early detection gateways for
congestion avoidance,” IEEE/ACM Transactions on networking, vol. 1,
no. 4, pp. 397–413, 1993.

[6] S. Floyd, R. Gummadi, S. Shenker et al., “Adaptive red: An algorithm
for increasing the robustness of red’s active queue management,” 2001.

[7] T. Hoeiland-Joergensen, P. McKenney, D. Taht et al., “The flow queue
codel packet scheduler and active queue management algorithm,” Tech.
Rep., 2018.

[8] R. Pan, P. Natarajan, C. Piglione et al., “Pie: A lightweight control
scheme to address the bufferbloat problem,” in Proc. IEEE HPSR 2013.
IEEE, 2013, pp. 148–155.

[9] Z. Meng, Y. Guo, C. Sun et al., “Achieving consistent low latency for
wireless real-time communications with the shortest control loop,” in
Proc. ACM SIGCOMM, 2022, pp. 193–206.

[10] C. Padhye, K. J. Christensen, and W. Moreno, “A new adaptive fec loss
control algorithm for voice over ip applications,” in Proc. IEEE IPCCC,
2000, pp. 307–313.

[11] A. F. Atiya, S. G. Yoo, K. T. Chong, and H. Kim, “Packet loss rate
prediction using the sparse basis prediction model,” IEEE transactions
on neural networks, vol. 18, no. 3, pp. 950–954, 2007.

[12] H. Hu, S. Cheng, X. Zhang, and Z. Guo, “Lightfec: Network adaptive fec
with a lightweight deep-learning approach,” in Proceedings of the 29th
ACM International Conference on Multimedia, 2021, pp. 3592–3600.

[13] S. Cheng, H. Hu, X. Zhang, and Z. Guo, “Deeprs: Deep-learning based
network-adaptive fec for real-time video communications,” in Proc.
IEEE ISCAS 2020. IEEE, 2020, pp. 1–5.

[14] K. Chen, H. Wang, S. Fang et al., “Rl-afec: adaptive forward error
correction for real-time video communication based on reinforcement
learning,” in Proc. ACM MMSys, 2022, pp. 96–108.

[15] G. Carlucci, L. De Cicco, and S. Mascolo, “Controlling queuing delays
for real-time communication: the interplay of e2e and aqm algorithms,”
ACM SIGCOMM CCR, vol. 46, no. 3, pp. 1–7, 2018.

[16] A. Zhou, H. Zhang, G. Su et al., “Learning to coordinate video codec
with transport protocol for mobile video telephony,” in Proc. ACM
MobiCom, 2019, pp. 1–16.

[17] S. Holmer, M. Shemer, and M. Paniconi, “Handling packet loss in
webrtc,” in 2013 IEEE International Conference on Image Processing.
IEEE, 2013, pp. 1860–1864.

[18] Z. Meng, X. Kong, J. Chen et al., “Hairpin: Rethinking packet loss
recovery in edge-based interactive video streaming,” in Proc. USENIX
NSDI, 2024.

[19] M. Flores, A. Wenzel, and A. Kuzmanovic, “Enabling router-assisted
congestion control on the internet,” in Proc. IEEE ICNP, 2016.

[20] P. Goyal, A. Agarwal, R. Netravali, M. Alizadeh, and H. Balakrishnan,
“Abc: A simple explicit congestion controller for wireless networks,” in
Proc. USENIX NSDI, 2020, pp. 353–372.

