
HierTopo: Towards High-Performance and Efficient
Topology Optimization for Dynamic Networks

Jing Chen1,4, Zili Meng1,4, Yaning Guo1,4, Mingwei Xu1,2,4, Hongxin Hu3
1Institute for Network Science and Cyberspace, Tsinghua University

2Department of Computer Science and Technology, Tsinghua University
3Department of Computer Science and Engineering, University at Buffalo

4Beijing National Research Center for Information Science and Technology (BNRist)
j-chen16@tsinghua.org.cn, {mzl19,gyn17}@mails.tsinghua.edu.cn, xumw@tsinghua.edu.cn, hongxinh@buffalo.edu

Abstract—Dynamic networks have enabled dynamically adapt-
ing the network topology to meet the need of real-time traffic
demands. However, due to the complexity of topology opti-
mization, existing solutions suffer from a trade-off between
performance and efficiency, which either have large optimality
gaps or excessive optimization overhead. To break through this
trade-off, our key observation is that we could offload the
optimization procedure to every network node to handle the
complexity. Thus, we propose HierTopo, a hierarchical topology
optimization method for dynamic networks that achieves both
high performance and efficiency. HierTopo firstly runs a local
policy on each network node to aggregate network information
into low-dimension features, then uses these features to make
global topology decisions. Evaluation on real-world network
traces shows that HierTopo outperforms the state-of-the-art
solutions by 11.52-38.91% with only milliseconds of decision
latency, and is also superior in generalization ability.

I. INTRODUCTION

Due to the time-varying traffic demands, recent advances in
the networking community propose to dynamically reconfigure
the network topology in real time to further improve the
network performance. Examples include reconfigurable data
centers [1, 2], wireless sensor networks [3], and low-earth
orbit (LEO) satellite networks [4, 5]. Adapting the network
topology to fast-changing demands could enable shorter path
lengths and therefore higher network performance for large
traffic demands. For example, according to Microsoft, by
dynamically adjusting the network topology, ProjecToR [1]
could improve the flow completion time by one magnitude
compared to the static network topology.

When optimizing the network topology, the performance on
the average path length and the efficiency of the optimization
are of great emphasis. On one hand, a topology that offers
a shorter path length could reduce the end-to-end latency for
traffic demands and accommodate more traffic with the same
number of links. Especially, datacenter applications may have
microsecond-scale latency requirements while pursuing a high
throughput for cost-efficiency [6]. On the other hand, due to
the time-changing demands, algorithms are also expected to
efficiently capture the sub-second temporal changes in traffic
demands [7]. The optimal topology should also timely adapt
to the varying network scale (e.g., when a network device

978-0-7381-3207-5/21/$31.00 ©2021 IEEE

Local
Global

Local
Global 0 ⋯ 4.2

⋮ ⋱ ⋮
1.1 ⋯ 0

current
topology

N x N
demand

Centralized
algorithms

local
policy local

policy

local
policy

N x 1 node features

Topology decisions

embedded
demand

global topology
adjustment

Topology decisions

(a) Centralized.

Local
Global

Local
Global 0 ⋯ 4.2

⋮ ⋱ ⋮
1.1 ⋯ 0

current
topology

N x N
demand

Centralized
algorithms

local
policy local

policy

local
policy

N x 1 node features

Topology decisions

embedded
demand

global topology
adjustment

Topology decisions

(b) Hierarchical.
Fig. 1. Comparison between centralized and hierarchical topology op-
timization. Existing centralized algorithms directly take high-dimensional
information as inputs, attempt laboriously to draw a topology decision by
synthesizing all the information. In contrast, HierTopo first embeds the traffic
demand information to network nodes and aggregates these information with
the local policy into node features, and then the global algorithm can easily
make decisions based on these features.

joins or leaves a sensor network), which poses requirements
on algorithm efficiency.

However, recent research efforts on topology optimization
for dynamic networks fail to achieve the performance and
efficiency at the same time. They usually fall into two cat-
egories: Sophisticated models achieve good performance but
consume too much computation time, while heuristic methods
sacrifice performance for fast execution (§II-B). The root
cause of the above trade-off is that existing methods try to
solve the complicated problem in a centralized way. Topology
optimization is an extremely complicated combinatorial opti-
mization problem with complex inputs (e.g., current topology
as structural information), a huge action space (i.e., a squarely
exponential space), nonlinear optimization goals (e.g., path
length) and nontrivial constraints (e.g., limitation on node
degree) (§II-A), which is already proven to be NP-hard [8].
Therefore, a centralized topology control is burdened with
making topology decisions by taking global-wide information
altogether into account (as shown in Figure 1(a)), and eventu-
ally overwhelmed by the high complexity. Therefore, existing
solutions have to trade off between performance and efficiency.

In response, our key observation is that topology optimiza-
tion could be decoupled into network information aggregation
and link decision. The aggregation of network information
on different nodes could be offloaded to every network node
and executed distributedly. The global link decision algorithm

could therefore be kept simple. Based on this observation,
we present HierTopo, a hierarchical method that efficiently
configures high-performance topologies for dynamic networks.
As illustrated by Figure 1(b), HierTopo first uses a local policy
that runs on each network node in parallel to make topological
decisions. The local policy is designed to be independent of
the network scale or a certain traffic pattern, henceforth it
can be flexibly applied to reconfigure the topology without
reoptimization. Then, HierTopo configures the topology with
a global topology adjustment algorithm leveraging the output
of the local policy. We further demonstrate the optimality of
our hierarchical framework by theoretical analysis (§IV-C).

However, achieving both high efficiency and high perfor-
mance is still challenging during the design of the hierarchical
framework (§II-C). The efficiency is hurdled by the large
action space and nontrivial constraints that are inherent to
the topology optimization problem. In response, HierTopo
reduces the action space by incremental adjustment and in-
troduces a decision variable, node feature, which is able to
express a topology decision with fixed-dimension output from
the local policy. As for the performance, we are challenged
to collect sufficient yet concise information to the local policy
and fully optimize the local policy. To resolve these challenges,
HierTopo iterates the local policy for several turns to aggre-
gate distant information, approximates the local policy with
a polynomial function, and adopts the Genetic Algorithm to
optimize the coefficients in the local policy.

We evaluate HierTopo with real-world traces. Experiments
show that HierTopo achieves high performance and high
efficiency at the same time. Compared with heuristic methods,
HierTopo improves the performance (i.e., reduces the average
shortest path length) by up to 38.91% over Ego-tree (§VI-B),
and 13.93% over greedy matching within only 4 steps of
adjustment on a 50-node topology (§VI-E). Compared with
sophisticated optimization methods, HierTopo is lightweight
for online deployment, since its decision latency is limited to
millisecond level (§VI-D). Moreover, HierTopo demonstrates
satisfactory generalization ability: Using an old local policy in
different-scale networks with up to 50 nodes brings ≤1.89%
performance degradation (§VI-C1). HierTopo also shows a
leading advantage during generalizing to other workload dis-
tributions (§VI-C2). Further evaluation shows that HierTopo
performs well on parameter sensitivity and has a small opti-
mality gap within limited-step adjustments (§VI-E).

In summary, this paper makes the following contributions:
• We illustrate the existing trade-off between performance

and efficiency of topology optimization for dynamic net-
works (§II-B). We thus present HierTopo, a hierarchical
framework to optimize the topology for dynamic networks
with high performance and high efficiency (§III).

• We design a local policy (§IV) and a global algorithm (§V),
which constitute HierTopo’s topology optimization. We
also analyze the optimality of the hierarchical framework.

• We evaluate HierTopo under real-world traffic and topology
datasets. Experiments show that HierTopo constructs high-
performance topologies efficiently and the local policy has

advantageous generalization ability (§VI).

II. BACKGROUND AND MOTIVATION

We first introduce the background of dynamic networks in
§II-A, and motivate the design of HierTopo in §II-B.

A. Dynamic networks

Dynamic networks have rapidly evolved in their infrastruc-
tures over recent years and have great potential to lead a radical
change to future networking. There are lines of research in dif-
ferent scenarios from the academic and industrial communities
on replacing static-topology networks with dynamic networks.

For example, datacenters have intensive communications,
but only 1-54% of rack pairs are involved in the communi-
cations in a time interval of a few minutes [1], so traditional
datacenters that provide the same capacity between every top-
of-rack switch suffer from congestion between rack pairs that
exchange traffic while over-provisioning links between other
racks. Motivated by the traffic imbalance, industrial giants
such as Microsoft introduced reconfigurable data center [1]
infrastructures to replace the static network topology. Sup-
ported by the development of communication technologies,
such as free space optics (FSO) [1, 9], optical circuit switches
(OCS) [10, 11], and 60GHz wireless links [12], reconfigurable
datacenters could agilely change the topology within one
millisecond [7] to meet the time-varying demand and enhance
the network performance by fully exploiting the capacity.

In wide-area networks, with recent advances in satellite
communication, researchers also propose to replace the static
Internet backbones with dynamic satellite networks to improve
the latency and capacity. By transmitting the data freely along
a straight line and flexibly building the topology, satellite
networks could adapt to the demands and shorten the end-
to-end latency against terrestrial Internet. The rise of satellite
networks attracts the attention from the industry and academia:
Many companies plan to launch tens of thousands of satellites
and build their megaconstellations, e.g., Starlink (SpaceX) [5]
and Kuiper (Amazon) [13]. Research efforts have also been
devoted to optimize the topology among satellites [4].

B. Motivation

Existing solutions to the topology optimization problem
essentially fall into two categories, but are flawed in either
performance or efficiency.

High-performance but inefficient. A major category of ex-
isting solutions is optimization-based methods. For example,
based on careful modeling, WiRo [14] casts the optimization
problem into an integer linear programming (ILP). However,
since this ILP is NP-hard [8], it takes minutes to solve the
ILP in a 128-node network even with constraint relaxation.
xWeaver [15] adopts deep learning to optimize the topology.
However, due to a lack of generalization ability, xWeaver
requires rebuilding the training dataset and retraining from
scratch every time when adopted to a new-sized network or to
an unseen traffic distribution. Even accelerated with specific
hardware, hours to days of additional time is needed (§VI-D).

Efficient but non-performant. Another category of topol-
ogy optimization methods is heuristic and usually rooted in
graph theory. For example, matching-based algorithms [1, 16]
greedily build up new links where the traffic demand is the
largest. cl-DAN [17] considers the scenario of sparse demands
and uses ego-trees to build up the network. However, due
to the non-triviality of topology optimization, such heuristic
algorithms usually result in a huge optimality gap, as the
network scales slightly larger. For example, ego-tree has a
performance gap of more than 30% in a network with 50
nodes compared to xWeaver (§VI-B).

Therefore, we need to develop a new topology optimization
method that enjoys both high performance and high efficiency.

C. Design challenges

However, to simultaneously achieve efficiency and high
performance in topology optimization is still challenging.

To achieve high efficiency, we are challenged to reduce
the action space and handle the complexity. Enumerating all
possible topologies will result in a huge action space. For
example, a 30-node network could have an action space that is
even larger than the game of Go [18]. Even if we divide it up
to every network node, the action space is still exponentially
large if the local policy is responsible for deciding whether
a network node should be directly connected to every other
node. Moreover, the constraints considering practical deploy-
ment issues create more obstacles. For example, practically
deployed dynamic networks usually have limits on the number
of neighbors due to physical constraints [17]. Manually ruling
out all invalid topologies is so time-consuming that enforcing
the constraints is also a big hurdle for efficiency. In response,
HierTopo incrementally adjusts the topology – only adds (or
removes) one link in the topology at a time, so the task is
simplified to only picking out a link position. Before each time
of adjustment, checking the validity of adding a link to the
selected position is effortless. In this way, the constraints are
easily satisfied. Furthermore, HierTopo introduces a decision
variable, denoted as node features, to neatly express the
decision of a topology adjustment with one real number for
each network node. So the final action space of the local policy
is fixed-dimensional.

To achieve high performance, our method must collect
decision-related information and fully optimize the topology.
However, by definition, the local policy only takes neighbor-
hood information, so how to obtain remote critical information
and make high-performance topology decisions is an issue.
Second, the optimization goals in networking are usually
difficult to be explicitly expressed. For example, it is unable
to express the length of the shortest path between two nodes
in a topology with polynomial expressions of the adjacency
matrix. In response, to acquire all related information, Hier-
Topo iterates the local policy until convergence, so global
information can be aggregated through several iterations. For
full optimization, HierTopo approximates the local policy
with a polynomial function that updates node features with

neighborhood features and uses the Genetic Algorithm to
optimize the coefficients in the polynomial function.

III. HIERTOPO DESIGN

In this section, we first formulate the topology optimization
problem for dynamic networks in §III-A, then we outline
HierTopo’s design framework in §III-B.

A. Problem Formulation

Let G = (V,E) be the graph of network topology, where
v ∈ V is a network node and e ∈ E an edge. N is the network
size, i.e., the number of nodes contained in G, N = |V |. N(v)
represents the set of v’s neighbor nodes. Based on [8, 17], we
briefly reproduce the formulation of the topology optimization
problem for dynamic networks in general as follows:

Input: D ∈ RN×N represents the demand matrix. In
the scenario of volumetric data communication with frequent
reconfigurations (e.g., datacenter networks and vehicle net-
works), D could be the traffic bandwidth demands between
nodes. For sparse communication such as wireless sensor
networks and satellite networks, D could also be the com-
munication frequency between two nodes.

Output: We have to output an undirected graph G, which
is the network topology we design.

Objective function: To better illustrate the design of Hi-
erTopo, we focus on the optimization of weighted shortest
path length Avg(Dsd · l(s, d,G)): average shortest path length
of all traffic flows weighted by their bandwidth demands.
Path length is the primary optimization goal in dynamic
networks. Nevertheless, HierTopo’s design in the following
sections could also be employed for other goals (e.g., link
load, congestion) or compound goals. We will explain this
more specifically and discuss other optimization goals in §VII.

Constraints:
• Connectivity: The output graph G must still be connected.
• Degree limitation: Under our simplification, the degree of

each node δi,∀i ∈ V should be kept under its limitation
∆[i]. In reconfigurable data centers with 60GHz wireless
links, the degree constraint arises from avoiding inter-
ference between 60GHz wireless antenna signals. Optical
circuit switches can only match with one other such switch,
and LEO satellites are permitted to have only 4 to 5 laser
inter-satellite links [19]. ∆ can be configured according to
specific scenarios during deployment.

B. HierTopo overview

The overview of HierTopo is presented in Figure 2. Hier-
Topo only adds one link at a time, updating the topology
incrementally. With incremental adjustment, we benefit in
terms of a smaller action space, higher topology stability, and
more efficient constraint enforcement:
• Narrowing down the action space. Originally, to configure

the whole topology, we have to decide if there should be
a link between each pair of nodes. So the action space
is 2N(N−1)/2 topologies. By incremental adjustment, we
break down the sophisticated problem into a sequential

neighborhood
features local

policy

global
topology

adjustment

Converged
node

features

original
topology

0 ⋯ 4.2
⋮ ⋱ ⋮
1.1 ⋯ 0

traffic
demand

⋯ ⋯

new
topology

Fig. 2. HierTopo overview.

decision-making process, so we only have to choose one
link from at most N(N − 1)/2 positions at a time. Later,
we further narrow down the action space by introducing
node features as our decision variables.

• Maintaining topology stability. Simultaneous changes in-
volving many links in the topology lead to high flow
migration cost and routing instability. HierTopo’s step-by-
step link adjustment can keep the switching costs acceptably
low.

• Ensuring validity. The decisions we make should strictly
follow the constraints such as degree limitations and net-
work connectivity (the connectivity could be threatened by
possible link removing). However, it is easy for us to mask
out the invalid positions at each step.
For every topology adjustment (shown in the green box in

Figure 2), HierTopo carries out 2 steps hierarchically:

Step 1: Node feature aggregation by local policy. For
each node of an existing topology G, HierTopo iteratively
calculates its feature based on information from its neighbors.
The iteration process continues for several turns to let the
node features converge. We present HierTopo’s local policy
iteration method in §IV.

Step 2: Topology adjustment by a global algorithm. Under
the instruction of the converged node features in Step 1, we
employ a global algorithm to make the topology adjustments.
If there is no more space for improvement, HierTopo termi-
nates the topology adjustment. We introduce the adjustment
algorithm and termination conditions in §V in detail.

IV. NODE FEATURE AGGREGATION BY LOCAL POLICY

Before starting to design the local policy, we first discuss
the design principle. Aimed at high performance, we inevitably
need to optimize the local policy. The optimization overhead,
however, might violate the efficiency requirements. Therefore,
as a design principle, the local policy is expected to be
independent of the network scale or workload to reinforce
the generalization ability. If HierTopo can generalize to other-
scale networks or other workload distributions, then optimizat-
ing the local policy becomes an once-for-all effort and the
re-optimization overhead is eliminated.

In this section, we first introduce a new decision variable:
node feature in §IV-A. Then, we present the design of the

local policy in §IV-B, including embedding inputs, iteratively
applying the local policy, and optimizing the local policy.
We further demonstrate the optimality of our hierarchical
framework in §IV-C.

A. Node features as decision variables

As introduced in §II-C, a primary challenge for the topology
optimization problem is that the action space is exponentially
large. By incremental adjustment, HierTopo constructs the
topology step-by-step and only need to choose a link position
in each step, with the action space growing at the speed of
N(N −1)/2. To ensure that the outputs of the local policy on
N nodes can cover the entire action space, the local policy
should output with at least (N − 1)/2 dimensions. O(N)
dimension does not reconcile with the local policy’s design
principle that it should be independent of the network scale.

To address this issue, we introduce a new decision variable
called node feature. Each node gets a real number as its
feature. Node features are initialized according to the demand
matrix and iteratively updated by the local policy (the process
is illustrated in Algorithm 1). By our definition, a greater
difference between the features of two nodes indicates a higher
traffic demand or a longer distance. Based on node features,
we can determine the link position to add a link: a new link
should be built between the pair of nodes with the largest
feature difference to serve higher demands and bridge longer
distances. Thus, by trading off the discreteness of the action
space, we fix the output dimension of the local policy while
maintaining its action expressivity.

B. Node feature aggregation

As mentioned above, after reducing the action space, we
are responsible for obtaining node features. Therefore, we
introduce how to acquire the node features by input embedding
and local policy iteration.

Input embedding. Before applying HierTopo policy, we
have to collect and embed relevant information as the inputs.
According to the problem formulation in §III-A, the operators
should feed the demand matrix between each pair of nodes
to HierTopo as the input, and also configure the degree limit
of each node. HierTopo enforces the degree limitation during
the topology adjustment phase in §V, and embeds the demand
matrix into the network topology as the initial node features
(Line 1 of Algorithm 1).

However, the demand matrix has N2 dimensions, so the
input of the local policy is also troubled by the N -related
dimension, since the O(N)-increasing state space contradicts
the local policy’s independence of the network scale N . In
response, we break down the demand matrix by column (each
column represents traffic demand to the same destination)
and process the local policy for each column in parallel
before averaging. The underlying assumption here is that every
destination of network flows is equally important.

Local policy iteration. After initializing the node features
with the demand matrix, HierTopo is aware of the traffic

Algorithm 1: Node Feature Aggregation.
Input: Traffic demand matrix D, current topology G.
Output: Node features xM as our decision variables.

1 x0 ← Embedding(D)
2 for i=1:M do
3 for each network node u do
4 xi

u ← LocalPolicy(xi−1
u , {xi−1

v |v ∈ N(u)})
5 end
6 end

demand. Aside from demand, topological information is also
required since HierTopo needs to make incremental adjust-
ments based on the current topology. However, the local policy
only interacts with the neighboring nodes, so it is difficult for
it to capture the connection relations outside the neighborhood.

To cope with this problem, we iteratively apply the local
policy so that the feature of a distant node can also be
aggregated along a path after several iterations. As shown in
Line 2-5 in Algorithm 1, each network node gathers its own
feature and the features of its neighboring nodes, applies the
local policy to update its feature and repeats the process for
M iterations. M is the maximum iteration number. Intuitively,
M is related to the degree of separation and is bounded by
N−1, which is the longest path length between two connected
nodes so the feature of any node in a connected topology can
be aggregated to the current node within N − 1 iterations.

Policy choices and optimization. After aggregating both the
traffic demand and the topological information, the remaining
task is to find the local policy. Unfortunately, we cannot deter-
mine the local policy based on existing methods. Among the
existing methods reviewed in §II-B, the sophisticated methods
(e.g., ILP and convolutional neural networks) do not have
an equivalent distributed algorithm. The heuristic methods,
though can be transformed into a distributed algorithm, have
unsatisfactory performance. It is hardly convincing that we can
get a high-performance local policy from these methods.

Unassisted by domain-specific knowledge and inspired by
the data-driven solution in the machine learning community,
we construct a general model and optimize its coefficients
by ”trial-and-error”. Operationally, we choose a polynomial
function as the local policy, which is formulated as:

τ(v) =
[
xk−1v , xk−2v , · · · , x0v

]
· α̂+[∑

j∈N(v) x
k−1
j ,

∑
j∈N(v) x

k−2
j , · · · ,

∑
j∈N(v) x

0
j

]
· α

, where k is the order of the polynomial function, and both α̂
and α are k-dimension coefficient vectors to be optimized.
In our implementation, we set the polynomial order as 3
and iterate the the local policy for N times. We show that
a polynomial function is expressive enough and analyze the
sensitivity of these hyperparameters in §VI-E1.

However, due to the nonsmooth optimization object
(§III-A), we cannot directly adopt the common optimization
methods for graph neural networks. To resolve this challenge,
we employ the Genetic Algorithm (GA) to optimize the poly-
nomial coefficients α̂ and α. Genetic Algorithm effectively

𝑛1 𝑛2 𝑛3 𝑛4

𝑉

𝑋

𝑎∗ = 𝑣1, 𝑖 𝑎∗ = 𝑣1, 𝑖 𝑎∗ = 𝑣1, 𝑣2

𝑛1 𝑛2 𝑛3 𝑛4
𝑛1 𝑛2 𝑛3 𝑛4

2nd

large
ΔX

𝑣1 𝑖 𝑣2 𝑣3
𝑉

𝑋

𝑣1 𝑖 𝑣2 𝑣3 𝑣1 𝑖 𝑣2 𝑣3

Fig. 3. Finding a function to output the optimal node features. Better viewed
in color.

searches the coefficients by stochastic gene mutation and
crossover of population members, meantime, does not require
a smooth objective function. In our GA implementation, we
use single point crossover, set the population size as 50, and
mutate 10% of genes in each generation.

C. Theoretical analysis

We have described how HierTopo offloads topology de-
cisions to each network node from the operational aspect.
Now we try to discuss whether the optimal topology can be
theoretically achieved.

We denote the feature of node i as xi (the converged
feature as Xi), and a topology adjustment decision (to add
a new link between a pair of nodes) as a = (n1, n2). Our
theoretical analysis below shows the optimality of HierTopo’s
hierarchical framework.

Theorem 1: There always exists a function that is capable
of mapping any legitimate input to node features Xs that can
lead to the best topology action a∗.

Proof: Firstly, given any topology action a = (u, v), we
can always construct a set of node features that lead to a
(e.g., by assigning the minimum and maximum feature to u
and v respectively). Thus, a mapping (denoted as φ) from
any legitimate input to node features Xs that lead to a∗

always exists. The question is whether the mapping could be
a function.

By definition, a function maps the same input to the same
output. If φ is already a function, we have found what is
requested. If not, we are going to demonstrate that we could
always find a function by adjusting the output features of φ
without affecting the final topology action. Assume that φ
outputs different node features X1 and X2 given the same
input. By our definition of φ, both X1 and X2 lead to the
optimal action a∗, but X1 and X2 are not exactly same.
Assume X1 and X2 differs on node i, X1

i 6= X2
i . Without

loss of generality, we assume X1
i > X2

i . We plot examples
for better illustration in Figure 3. The blue marks represent
the values of X1 on all the nodes respectively, and the orange
marks represent X2. In the first row of the figure, both X1

and X2 can lead to a∗ (tagged at the top of the figure), but
they contradict on an arbitary node i. We can tune them to the
second row to fix the conflict as follows:

Algorithm 2: Adjust: Topology adjustment.
Input: current network graph G, node features x, action

candidate set C
Output: network topology G∗ (after adding or removing

links from G)
1 Find (u, v) ∈ C so that |xu − xv| ≥ |xi − xj |,∀(i, j) ∈ C
2 if δu < ∆ and δv < ∆ then
3 G∗ ← G.add edge(u, v) // unsaturated u

and v
4 else
5 G′ ← G
6 if δu = ∆ then

// remove one of u’s links
7 Find u′ ∈ N(u) so that

|xu − xu′ | ≤ |xu − xi|, ∀i ∈ N(u)
8 G′ ← G′.remove edge(u, u′)
9 end

10 if δv = ∆ then
// remove one of v’s links

11 Find v′ ∈ N(v) so that
|xv − xv′ | ≤ |xv − xi|, ∀i ∈ N(v)

12 G′ ← G′.remove edge(v, v′)
13 end
14 G′ ← G′.add edge(u, v)
15 x′ ← NodeFeatureAggregation(D,G′)
16 s = |xu − xv|+ |xu − xu′ |+ |xv − xv′ |
17 s′ = |x′

u − x′
v|+ |x′

u − x′
u′ |+ |x′

v − x′
v′ |

18 if s ≥ s′ and G′is connected then
19 G∗ ← G′ // remove links for (u,v)
20 else
21 G∗ ← G // unworthy, don’t change
22 end
23 end
24 C← C/(u, v) // don’t reconsider (u,v)

(1) In a simple case, if X1 still leads to a∗ after assigning
X2

i to X1
i (or reversely, X2 still leads to a∗ after assigning

X1
i to X2

i), we can do the assignment and resolve this
conflict (See the left of Figure 3). Yet, if assigning one to
the other changes the overall topology action, there are two
other possible situations:

(2) node i is in the selected node pair, e.g., a∗ = (v1, i).
In this case (the middle of Figure 3), we can adjust both
X1

i and X2
i to a value above the maximum (or below the

minimum) of features on other nodes (aside from i). The new
value should exceed the maximum (or the minimum) by more
than the second largest feature difference among other nodes,
so that the adjusted node features still lead to a∗.

(3) node i is not in the selected node pair, but assigning
X2

i to X1
i makes the feature difference between i and another

node become the largest (the right of Figure 3). In this case,
we can first assign X1

i to X2
i , then raise the originally highest

feature in X2 above X2
i .

In either way, node features can be tuned into determined
values without changing the optimal action, proving that a
function leading to the optimal topology decisions exists.

V. TOPOLOGY ADJUSTMENT BY A GLOBAL ALGORITHM

In this section, we introduce the topology adjustment algo-
rithm of HierTopo.

As introduced in §IV, we can calculate node features x with
our local policy and choose the pair of nodes with the largest
difference of x to add an edge. However, in practice, there are
still two problems: 1) the node pair we select might be invalid.
For example, there may already exist a link between them, or
one of the nodes has met the degree limitation (§III-A); 2)
the incremental adjustment could repeat forever, so we need
to judge when to finish.

We now describe our algorithm that solves the above
problems and constructs a better topology over an existing one.
Before beginning our adjustment, we collect action candidates
into a set C containing all node pairs in the network that are
not directly linked. Then, given the traffic demand matrix, we
calculate node features based on current topology. When we
attempt to add a link between the greatest feature difference
node pair (u, v) (among the node pairs in C) and both u and
v have residual degree, we add a link between u and v and
remove (u, v) from C (Line 2-3 in Algorithm 2).

However, consider at least one of u and v is saturated (i.e.,
already connected by ∆ links). Assume u is saturated, we
find the link of the least importance (u, u′), that u′ has the
smallest feature difference with u (Line 6-7). Before trading
(u, u′) for (u, v), we need to ensure that the benefit of building
up (u, v) outweighs the cost of removing (u, u′) (or both
if v is also saturated). To hold a fair competition between
(u, v) and (u, u′), we first calculate node features x′ under a
hypothetical topology G′ where (u, v) is added and (u, u′) is
removed (Line 15). Then we compare the sum of the feature
differences of (u, v) and (u, u′) under topology G and G′

respectively. Smaller feature difference under G′ indicates
that it is worthwhile to remove (u, u′) for (u, v) (Line 17).
Otherwise we do not change the topology (Line 19). In both
cases, remove (u, v) from C (Line 22 in Algorithm 2). We
finish our adjustment when there is no candidate left in C.

In this algorithm, we use the candidate set C to mask out
existing links. Since we never remove a link if the resulting
topology becomes disconnected and never add a link to a
saturated node before removing one of its links, the constraints
in §III-A are strictly enforced.

VI. EVALUATION

In this section, we first introduce our evaluation settings
(§VI-A) and evaluate HierTopo from the following aspects:

• Performance. Our results show that HierTopo significantly
outperforms existing heuristic algorithms by up to 40%
and has similar or better performance against optimization-
based algorithms (§VI-B).

• Generalization ability. We demonstrate that HierTopo’s
local policy can generalize to different-scale networks:
even optimized at an 8-node network, HierTopo’s perfor-
mance degradation during scaling up to 50 nodes can be
maintained within 3%. We also show that HierTopo can
generalize well to different traffic distributions (§VI-C).

• Overhead. We further evaluate the optimization time and
runtime of HierTopo. Experiments show that HierTopo can

1 0 2 0 3 0 4 0 5 0
1 . 5

2
2 . 5

3
3 . 5

4
4 . 5

Av
era

ge
 pa

th
len

gth

N

 m o t i f
 e g o - t r e e
 x W e a v e r
 H i e r T o p o

Fig. 4. Overall performance. Better
viewed in color.

2 0 3 0 4 0 5 0
1

1 . 0 2

1 . 0 4

rat
io

N

 P o l i c y _ 1 0 P o l i c y _ 1 5
 P o l i c y _ 3 0

1 . 0 1 8 9

Fig. 5. Normalized performance of
different HierTopo policies.

efficiently construct a topology with tens of nodes within
tens of microseconds (§VI-D).

• Microbenchmarking. Finally, we demonstrate that HierTopo
could achieve satisfactory performance in a wide range of
hyperparameter settings and achieve a small optimality gap
within limited adjustment steps (§VI-E).

A. Experimental setup
1) Network traces: To better characterize real-world traffic,

we generate our demand matrices based on the datasets of real
world flow distribution of cache workload in Facebook [20].
Under this distribution, we generate 1000 demand matrices as
our testing dataset to eliminate the randomness. We further
use two different distributions from the real world to evaluate
the generalization ability of HierTopo in §VI-C2. The degree
limit (∆) is configured as 4 in our experiment, but it can adapt
to specific scenarios accordingly.

2) Baselines: To compare the performance of HierTopo,
we also implement several baselines, including:
• Motif : an optimization-based algorithm by searching the

optimal regular repetitive patterns [4].
• Ego-tree: a heuristic-based algorithm by generating a tree-

like topology sorted by the traffic demand [17].
• xWeaver: a deep learning model based on convolutional

neural networks by scoring the demand matrix and finding
the topology with maximum scores [15].
3) Testbed Setup: We conduct our experiments on a server

with an Intel Core i7-8700 CPU (6 physical cores, 12 virtual
cores). xWeaver is trained on a Nvidia 2080 Ti GPU.

B. Performance
We evaluate the performance of a topology by the aver-

age shortest path length in the topology weighted by traffic
bandwidth demand (denoted as average path length in
short). We first test the performance of HierTopo among the
baseline algorithms in networks with different scales (ranging
from 8 to 50 nodes). The network topology has no link initially
before we construct the whole topology via different methods.

As shown in Figure 4, the average shortest path lengths
in the topologies designed by HierTopo are kept below all
other methods. Compared to the heuristic method ego-tree,
HierTopo improves its performance by 38.91% in 50-node
networks. Motif and xWeaver, on the other hand, are better op-
timized but HierTopo also improves their performance by up
to 11.52%. The standard deviation of HierTopo is very small
whereas xWeaver suffers larger performance fluctuations.

1 0 2 0 3 0 4 0 5 0
1 . 5

2
2 . 5

3
3 . 5

4
4 . 5

Av
era

ge
 pa

th
len

gth

N

 m o t i f
 e g o - t r e e
 x W e a v e r
 H i e r T o p o

(a) data mining workload

1 0 2 0 3 0 4 0 5 0
1 . 5

2
2 . 5

3
3 . 5

4
4 . 5

Av
era

ge
 pa

th
len

gth

N

 m o t i f
 e g o - t r e e
 x W e a v e r
 H i e r T o p o

(b) Hadoop workload

Fig. 6. Traffic generalization ability. Better viewed in color.

C. Generalization ability

We highlight the generalization advantages of HierTopo
over baseline methods: HierTopo can generalize to different-
scale networks and different traffic distributions with negligi-
ble performance degradation.

1) Generalization over network scale: To illustrate the
generalization ability over different network scales, we directly
apply the local policy optimized under small networks to
larger networks. Specifically, we first optimize the local policy
with GA in 10-, 15-, and 30-node networks (denoted as
Policy_10, Policy_15 , and Policy_30 respectively).
Then we apply these policies on different-size networks with
15 to 50 nodes. We plot the ratio of the performance (average
path length) under each policy to the best performance among
all these policies (denoted as ratio in short).

From Figure 5, we observe that old policies have at most
1.89% performance degradation compared to the optimized
policy. In rare cases, a policy is outperformed by another
policy optimized under a smaller network. This might at-
tribute to the inherent randomness of the stochastic mutations
during genetic algorithm optimization. Nonetheless, applying
the local policy to an unseen-size network, the performance
differences are less than 2% for networks with up to 50 nodes.
Thus, HierTopo can generalize to networks of different sizes
without re-optimizing the local policy.

2) Generalization over workload distribution: We evaluate
HierTopo’s performance under another 2 input traffic dis-
tributions: a data mining workload [21] in Microsoft and a
Hadoop workload [20] in Facebook. Under each distribution,
we also generate 1000 traffic matrices for our evaluation. For
HierTopo and all the other baselines, instead of re-optimizing
them under new traffic distributions, we directly employ the
policy optimized under the Facebook cache workload. As
plotted in Figure 6, under unseen workloads, HierTopo still
achieves shorter and slowlier-increasing average path lengths
than other baselines. In 50-node networks, we highlight that
HierTopo enhances the performance by 16.13-34.55% under
the data mining workload and 15.04-26.09% under the Hadoop
workload, and the standard deviation of HierTopo is also
smaller. Again, we measure the performance ratio (defined
in §VI-C1) under data mining and Hadoop workloads. Figure
7 demonstrates that under both workloads, the performance
degradations of old policies are no more than 2.58%. It
indicates that HierTopo can generalize to unseen workloads
without losing its performance advantage.

2 0 3 0 4 0 5 0
1

1 . 0 2
1 . 0 4

rat
io

N

 P o l i c y _ 1 0 P o l i c y _ 1 5 P o l i c y _ 3 0

1 . 0 1 9 9

(a) data mining workload

2 0 3 0 4 0 5 0
1

1 . 0 2
1 . 0 4

rat
io

N

 P o l i c y _ 1 0 P o l i c y _ 1 5 P o l i c y _ 3 0

1 . 0 2 5 8

(b) Hadoop workload

Fig. 7. Normalized performance of policies under unseen traffic distributions.

1 2 1 6 2 0 2 4 2 8 3 2 3 6 4 0
1 1
1 3
1 5
1 7
1 9
2 1
2 3

ite
rat

ion
s

4 . 0 0 0
1 6 . 2 0
2 8 . 4 0
4 0 . 6 0
5 2 . 8 0
6 5 . 0 0

r u n t i m e (m s)

N
(a) Runtime of HierTopo

1 0 2 0 3 0 4 0 5 0
0
1
2
3
4
5
6
7
8

tra
inin

g t
im

e (
h)

N

 m o t i f
 x W e a v e r
 H i e r T o p o

(b) Training (optimization) time.

Fig. 8. Time overhead.

D. Overhead

We measure the time overhead of HierTopo. We first
measure the runtime for HierTopo to complete the topology
construction from an empty graph. The runtime is affected
by the number of local policy iterations (the times we apply
the local policy, denoted as iterations in the figure) and
the network scale N . As demonstrated in Figure 8(a), the
network size is the dominant factor. Through fitting analysis,
the runtime increases with the square of N and linearly with
the number of policy iterations. Results show that it takes less
than 65 milliseconds to construct a topology from scratch for
40-node networks by iterating the policy for 22 times.

We then measure and plot the optimization time of Hi-
erTopo in Figure 8(b) (1.7h under 8-node networks with
10 policy iterations and 50 as the GA population size). As
discussed in §VI-C, HierTopo can be transferred to other net-
work scales without reoptimization thanks to its generalization
ability. In contrast, both Motif and xWeaver need retraining/re-
optimizing whenever the size of the network changes. It takes
about 7.5 hours for xWeaver to train to convergence under 50-
node network. Meanwhile, their training time increases sharply
as the network scales up.

E. Microbenchmarks

In this section, we present the summary of experiments
on the sensitivity of hyperparameters in HierTopo (§VI-E1),
the convergence efficiency of local policy iteration (§VI-E2)
and the optimality gap during HierTopo’s incremental adjust-
ments (§VI-E3).

1) Hyperparameter sensitivity: We first evaluate the sen-
sitivity of the order of the polynomial function of our local
policy. Higher-order polynomial policies have stronger expres-
siveness, but they consume longer time to be applied and
optimized (since there are more coefficients in the function).
To find the proper polynomial order, we test HierTopo’s
performance by varying the polynomial order from 1 to 4.
As presented in Figure 9(a), the performance is well enough

1 2 3 4
2

2 . 2
2 . 4
2 . 6
2 . 8

Av
era

ge
 pa

th
len

gth

p o l y n o m i a l o r d e r

 N 2 0 N 2 5
 N 3 0 N 4 0

(a) Choosing polynomial order.

2 4 6 8 1 0 1 2 1 4 1 6
1 . 6
1 . 8

2
2 . 2
2 . 4

Av
era

ge
 pa

th
len

gth

p o l i c y i t e r a t i o n s

 N 1 0 N 1 5
 N 2 0 N 2 5

(b) HierTopo performance at differ-
ent policy iterations.

0 2 4 2 0 4 0 6 0 8 0 1 0 01 . 5 5
1 . 6

1 . 6 5
1 . 7

1 . 7 5
1 . 8

fitn
es

s

g e n e r a t i o n s

 p o p 1 0
 p o p 2 0
 p o p 5 0

(c) GA fitness curves with different population
size.

Fig. 9. Parameters sensitivity and convergence efficiency.

even at a low order of 3 or 4, so the network operators only
have to configure a simple policy on each network device.

We then evaluate the influence of the population size of the
Genetic Algorithm. As a randomized search algorithm mim-
icking the process of revolution, GA maintains a population
(i.e., a cluster of individuals with candidate solutions embed-
ded in their genes) and evolves through generations according
to the fitness function (i.e., “survival of the fittest”). We set
the fitness function inversely proportional to the average path
length in the topology. We plot the evolutionary curves of GA
optimization under a 10-node network in Figure 9(c). Results
show that a bigger population size enables convergence at
earlier generations, but the fitness converges to the same level
under different population sizes, so the performance of our
policy is not sensitive to the GA population size.

2) Convergence efficiency: As any other iterative algorithm
does, the convergence efficiency of HierTopo contributes to its
decision latency. The convergence efficiency could be reflected
by the number of local policy iterations. If we iterate the local
policy too few, the node features cannot converge and will
undermine the overall performance. If we iterate the policy
for too many times after the convergence, the performance
generally levels off. To reveal the exact converging iteration
number, we evaluate the performance of HierTopo when
applying the local policy for various iterations in Figure 9(b)
(N10, N15, N20, N25 represent the network has 10, 15, 20,
and 25 nodes respectively). As observed from the figure, as
the network size grows from 10 to 25, the converging iteration
number only increases from 5 to 7, and the increase gradually
slows down. Thus, in reality, we only have to iterate the policy
for a few times (much smaller than the network size N).

Although HierTopo converges within linear iterations in our
experiments, we admit the uncertainty rooted in the iterative
process. Therefore, we also suggest referring to the principle of
iterative algorithm once confronted with convergence issues.
For example, if the local policy iteration oscillates before
convergence, we can update by a smaller “learning rate” (i.e.,

original topology NSF Geant2 Germany
1-step optimality gap 1.00% 1.82% 1.81%

TABLE I
OPTIMALITY GAP OF HIERTOPO WITH 1-STEP TOPOLOGY ADJUSTMENT.

1 2 4 1 2 4 1 2 4
N S F G e a n t 2 G e r m a n y

2
2 . 5

3
3 . 5

4 H i e r T o p o
 g r e e d y

Hie
rTo

po

s t e p (s)
t o p o l o g y

Fig. 10. Topology adjustment within 1, 2, and 4 steps.

discounting α) to eliminate the oscillation.
3) Local policy iteration deep dive: Questioning the op-

timality of HierTopo policy, we compare our performance
of 1-step topology adjustment against the optimal results.
Three real-world networks are taken as the original topology:
the 14-node NSF network, the 24-node Geant2 network, and
the 50-node Germany network [22]. The optimal results are
exhaustively searched among all possible actions. As shown
by the results in Table I, the optimality gap of HierTopo for
one step adjustment is less than 2% in all the three networks,
primarily verifying that HierTopo can make near-optimal
decisions for each step of topology adjustment.

We evaluate the stability of HierTopo’s performance by
using HierTopo to adjust the original topology within limited
steps (1, 2, and 4 steps). The original topologies are still
NSF, Geant2, and the Germany network. Since the baseline
algorithms above are not suitable for incremental adjustment,
we implement a greedy algorithm that always tries to link the
two nodes with the highest traffic demand for comparison. The
results in Figure 10 show that HierTopo progressively and
efficiently improves the original topology and enhances the
performance by 13.93% over the naive greedy method with
only 4-step adjustments in the Germany network.

VII. DISCUSSION

In this section, we discuss the limitations of HierTopo and
highlight several potential future research directions.

Real-world deployment. In this paper, we mainly focus on the
algorithmic side of HierTopo. In the real-world deployment,
operators could deploy the HierTopo in two ways. For a
dynamic network with a centralized controller (e.g., a ground
station in the satellite network), operators could collect the
statistics from each network node and make topology adjust-
ments with HierTopo. For distributedly deployed scenarios
(e.g., vehicle network), the iteration of the local policy could
also be distributedly deployed on each node. In this paper,
we evaluate HierTopo with real-world traces. In the future,
we plan to deploy HierTopo in practice to improve the
performance of real-world applications.

Various network requirements. When deploying HierTopo
in practice, operators might confront various network re-

quirements other than the problem formulated in §III-A. For
example, network operators might want to minimize operating
expenses [23] or energy consumption [24], which need further
formulation on the optimization goal. Other requirements, such
as the capacity limitation of a reconfigurable link, could be
fulfilled by jointly considering the routing optimization and
topology optimization. We leave further optimization on other
network requirements as our future work.

Other objectives of topology optimization. In this paper,
HierTopo is targeted at optimizing the path length in dynamic
networks. On one hand, the path length is the primary concern
in the application scenarios of dynamic networks according to
their need for low latency. Path length is also set up as the
objective in prior works [4, 8, 17]. On the other hand, goals
on the transport layer (e.g., link load, congestion), could be
handled by the optimization of routing strategies [14], which
is orthogonal to our research scope. Moreover, HierTopo can
adapt to other objectives since the Genetic Algorithm makes
no assumption on the optimization goal, thus HierTopo is
agnostic to the specific objective by design.

VIII. RELATED WORK

Centralized vs. distributed methods in networking. The
classification between centralized and distributed methods is
not rare in the networking domain. For example, in the routing
domain, distributed routing algorithms (e.g., link-state routing
algorithm [25]) make all routers run the same algorithm (e.g.,
Dijkstra Algorithm) in parallel and only leverage routing
states from neighboring routers. As a result, the distributed
routing algorithm is quick and more adaptive to network
dynamics. Multiple traffic engineering works [26–28], on the
other hand, optimize the routing configurations in a centralized
way to serve sophisticated traffic engineering goals (e.g., fault
tolerance, link utilization) and take longer computation time
correspondingly. To balance between centralization and decen-
tralization, [29] hierarchically distributes route calculation to
designated nodes. [29] is hierarchical among network nodes,
in contrast, network nodes are all equal in HierTopo whose
hierarchy is algorithmic.

The trade-off between performance and efficiency. The
trade-off between performance and efficiency is a long-lasting
problem in the networking community for decades. For ex-
ample, at the transport layer, widely deployed congestion
control algorithms only require simple decision logic [30, 31]
while the performance-oriented algorithms proposed by the
academia seek to achieve better performance via sophisti-
cated optimization [32, 33]. Similar trade-offs could also be
observed in the network layer (e.g., distributed routing [25]
vs. centralized traffic engineering [26]) and application layer
(e.g., the trade-off between the performance and complexity
of adaptive bitrate algorithms [34]). HierTopo is inspired by
the research efforts above and designed to tackle the domain-
specific challenges in the topology optimization of dynamic
networks.

Other research efforts focused on dynamic networks. A
few other works focused on dynamic network topology design
mentioned as follows are not used as our baselines, because
they are very similar to one of our baselines thus could be
represented. As a counterpart of xWeaver [15] in wireless
sensor networks, DRL-TC [3] employs deep reinforcement
learning to optimize the network topology, but also requires
retraining as the network changes. Upon topology design
for LEO satellite network, both +Grid [35] and CubeSats
matching [36] build satellite topologies with naively repetitive
patterns, so their performance is bested by motif [4], a baseline
that searches for the optimal pattern to repeat throughout the
constellation. In satellite networks, more research efforts focus
on optimizing trajectories [37] and routing [19, 38], which are
orthogonal to the scope of HierTopo.

IX. CONCLUSION

This paper proposes HierTopo, a hierarchical method of
the topology optimization for dynamic networks. HierTopo
distributedly runs a polynomial local policy and aggregates
these local features to make global topology adjustments.
We show the optimality of this hierarchical framework with
theoretical analysis. Evaluations show that HierTopo effi-
ciently constructs high-performance topologies and has good
generalization ability compared to state-of-the-art solutions.

ACKNOWLEDGMENT

We sincerely thank Yunfei Li and anonymous IWQoS’21
reviewers for their valuable suggestions on this paper. The
research is supported by the National Key R&D Program
of China under Grant 2017YFB0801701 and the National
Natural Science Foundation of China under Grant 61625203
and 92038302. Mingwei Xu is the corresponding author.

REFERENCES

[1] M. Ghobadi, R. Mahajan, A. Phanishayee, N. Devanur, J. Kulkarni et al.,
“Projector: Agile reconfigurable data center interconnect,” in Proc. ACM
SIGCOMM, 2016.

[2] X. Zhou, Z. Zhang, Y. Zhu, Y. Li, S. Kumar et al., “Mirror mirror
on the ceiling: Flexible wireless links for data centers,” in Proc. ACM
SIGCOMM, 2012.

[3] X. Meng, H. Inaltekin, and B. Krongold, “Deep reinforcement learning-
based topology optimization for self-organized wireless sensor net-
works,” in Proc. IEEE GLOBECOM, 2019.

[4] D. Bhattacherjee and A. Singla, “Network topology design at 27,000
km/hour,” in Proc. ACM CoNEXT, 2019.

[5] “Fcc starlink filing,” https://www.fcc.gov/document/fcc-authorizes-
spacex-provide-broadband-satellite-services, 2018.

[6] I. Cho, A. Saeed, J. Fried, S. J. Park, M. Alizadeh, and A. Belay,
“Overload control for µs-scale rpcs with breakwater,” in Proc. USENIX
OSDI, 2020, pp. 299–314.

[7] M. K. Mukerjee, C. Canel, W. Wang, D. Kim, S. Seshan, and A. C.
Snoeren, “Adapting tcp for reconfigurable datacenter networks,” in Proc.
USENIX NSDI, 2020, pp. 651–666.

[8] K.-T. Foerster, M. Ghobadi, and S. Schmid, “Characterizing the algo-
rithmic complexity of reconfigurable data center architectures,” in Proc.
ACM ANCS, 2018.

[9] N. Hamedazimi, Z. Qazi, H. Gupta, V. Sekar, S. R. Das et al., “Firefly:
A reconfigurable wireless data center fabric using free-space optics,” in
Proc. ACM SIGCOMM, 2014.

[10] W. M. Mellette, R. McGuinness, A. Roy, A. Forencich, G. Papen, A. C.
Snoeren, and G. Porter, “Rotornet: A scalable, low-complexity, optical
datacenter network,” in Proc. ACM SIGCOMM, 2017.

[11] G. Porter, R. Strong, N. Farrington, A. Forencich, P. Chen-Sun, T. Ros-
ing, Y. Fainman, G. Papen, and A. Vahdat, “Integrating microsecond
circuit switching into the data center,” in Proc. ACM SIGCOMM, 2013.

[12] Y. Cui, S. Xiao, X. Wang, Z. Yang, C. Zhu, X. Li, L. Yang, and N. Ge,
“Diamond: Nesting the data center network with wireless rings in 3d
space,” in Proc. USENIX NSDI, 2016.

[13] A. Boyle, “Amazon’s project kuiper aims to offer satellite broadband
access - geekwire,” https://www.geekwire.com/2019/amazon-project-
kuiper-broadband-satellite, 2019.

[14] Z. Yang, Y. Cui, S. Xiao, X. Wang, M. Li et al., “Achieving efficient
routing in reconfigurable dcns,” Proc. ACM Sigmetrics, 2020.

[15] M. Wang, Y. Cui, S. Xiao, X. Wang, D. Yang et al., “Neural network
meets dcn: Traffic-driven topology adaptation with deep learning,” Proc.
ACM Sigmetrics, 2018.

[16] M. Bienkowski, D. Fuchssteiner, J. Marcinkowski, and S. Schmid, “A
competitive b-matching algorithm for reconfigurable datacenter net-
works,” in Proc. IFIP Performance, 2020.

[17] C. Avin, K. Mondal, and S. Schmid, “Demand-aware network design
with minimal congestion and route lengths,” in Proc. IEEE INFOCOM,
2019.

[18] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van
Den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam,
M. Lanctot et al., “Mastering the game of go with deep neural networks
and tree search,” Nature, vol. 529, no. 7587, pp. 484–489, 2016.

[19] M. Handley, “Delay is not an option: Low latency routing in space,” in
Proc. ACM HotNets, 2018.

[20] A. Roy, H. Zeng, J. Bagga, G. Porter, and A. C. Snoeren, “Inside the
social network’s (datacenter) network,” in Proc. ACM SIGCOMM, 2015.

[21] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye, P. Patel, B. Prab-
hakar, S. Sengupta, and M. Sridharan, “Data center tcp (dctcp),” in Proc.
ACM SIGCOMM, 2010, pp. 63–74.

[22] “Kdn training datasets.” http://www.knowledgedefinednetworking.org/,
2019.

[23] C. S. Yeo and R. Buyya, “Service level agreement based allocation of
cluster resources: Handling penalty to enhance utility,” in 2005 IEEE
International Conference on Cluster Computing. IEEE, 2005.

[24] R. C. Shah and J. M. Rabaey, “Energy aware routing for low energy
ad hoc sensor networks,” in 2002 IEEE Wireless Communications and
Networking Conference Record. WCNC 2002. IEEE, 2002.

[25] J. Moy, “OSPF Version 2,” RFC 2328, 1998.
[26] T. Benson, A. Anand, A. Akella, and M. Zhang, “Microte: Fine grained

traffic engineering for data centers,” in Proc. ACM CoNEXT, 2011.
[27] H. H. Liu, S. Kandula, R. Mahajan, M. Zhang, and D. Gelernter, “Traffic

engineering with forward fault correction,” in Proc. ACM SIGCOMM,
2014, pp. 527–538.

[28] P. Kumar, Y. Yuan, C. Yu, N. Foster, R. Kleinberg, P. Lapukhov, C. L.
Lim, and R. Soulé, “Semi-oblivious traffic engineering: The road not
taken,” in Proc. USENIX NSDI, 2018, pp. 157–170.

[29] R. E. Ali, B. Erman, E. Baştuğ, and B. Cilli, “Hierarchical deep double
q-routing,” in Proc. IEEE ICC, 2020.

[30] S. Ha, I. Rhee, and L. Xu, “Cubic: a new tcp-friendly high-speed tcp
variant,” ACM SIGOPS operating systems review, pp. 64–74, 2008.

[31] N. Cardwell, Y. Cheng, C. S. Gunn, S. H. Yeganeh, and V. Jacobson,
“Bbr: Congestion-based congestion control: Measuring bottleneck band-
width and round-trip propagation time,” ACM Queue, pp. 20–53, 2016.

[32] M. Dong, T. Meng, D. Zarchy, E. Arslan, Y. Gilad, B. Godfrey, and
M. Schapira, “Pcc vivace: Online-learning congestion control,” in Proc.
USENIX NSDI, 2018.

[33] S. Abbasloo, C.-Y. Yen, and H. J. Chao, “Classic meets modern: A
pragmatic learning-based congestion control for the internet,” in Proc.
ACM SIGCOMM, 2020.

[34] Z. Meng, Y. Guo, Y. Shen, J. Chen, C. Zhou et al., “Practically deploying
heavyweight adaptive bitrate algorithms with teacher-student learning,”
IEEE/ACM Transactions on Networking, 2021.

[35] L. Wood, “Internetworking with satellite constellations,” Ph.D. disserta-
tion, University of Surrey, 2001.

[36] B. Soret, I. Leyva-Mayorga, and P. Popovski, “Inter-plane satellite
matching in dense leo constellations,” in Proc. IEEE GLOBECOM.
IEEE, 2019, pp. 1–6.

[37] T. W. Beech, S. Cornara, M. B. Mora, and G. Lecohier, “A study of
three satellite constellation design algorithms,” in 14th international
symposium on space flight dynamics, 1999.

[38] M. Handley, “Using ground relays for low-latency wide-area routing in
megaconstellations,” in Proc. ACM HotNets, 2019.

