
Enabling High Frame-rate UHD Real-time Communication with
Frame-Skipping

Tingfeng Wang1, Zili Meng2, Mingwei Xu2, Rui Han3, Honghao Liu3
1Beijing University of Posts and Telecommunications, 2Tsinghua University, 3Tencent

wangtingfeng@bupt.edu.cn, zilim@ieee.org, xumw@tsinghua.edu.cn {raymondhan, coreyliu}@tencent.com

Abstract
With a high frame-rate and high bit-rate, ultra-high definition
(UHD) real-time communication (RTC) users could sometimes suf-
fer from severe service degradation. Due to the fluctuations of
frames incoming and decoding at the client side, a decoder queue
could be formulated before the streaming decoder at the client side.
Those fluctuations could easily overload the decoder queue and
introduce a noticeable delay for those queued frames. In this paper,
we propose a Frame-Skipping mechanism to effectively reduce the
queuing delay by actively managing the frames inside the decoder
queue. We jointly optimize the frames with skipping to maintain
the end-to-end delay while ensuring the decoding quality of video
codec. We also mathematically quantify the potential performance
with a Markovian chain. We evaluate the Frame-Skipping mecha-
nism with our trace-driven simulation with real word UHD RTC
traces. Our experiments demonstrate that Frame-Skipping can re-
duce the ratio of severe decoder queue delay by up to 23× and the
ratio of severe total delay by up to 2.6×.

CCS Concepts
• Information systems → Multimedia streaming; • Mathe-
matics of computing → Queueing theory;

Keywords
real-time communication; queue management; Frame-Skipping

ACM Reference format:
Tingfeng Wang, Zili Meng, Mingwei Xu, Rui Han, Honghao Liu. 2022.
Enabling High Frame-rate UHD Real-time Communication with Frame-
Skipping. In Proceedings of 3rd ACM Workshop on Hot Topics in Video Ana-
lytics and Intelligent Edges, New Orleans, LA, USA, January 31–February 4,
2022 (HotEdgeVideo ’21), 6 pages.
https://doi.org/10.1145/3477083.3481582

1 Introduction
With the emergent demand for high quality and interactive video
streaming under COVID-19 [5, 17], the network volume shared
by ultra-high-definition (UHD) real-time communication (RTC)
streaming is remarkable and still increasing rapidly [30]. These
UHD RTC services like UHD Remote Conferencing, virtual reality,
and cloud gaming are now attracting attention in both academia
and industry side [23, 35]. To satisfy users, UHD RTC services aim
to deliver streaming with a high bit-rate (up to 30Mbps) and high

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
HotEdgeVideo ’21, January 31–February 4, 2022, New Orleans, LA, USA
© 2022 Copyright held by the owner/author(s). Publication rights licensed to Associa-
tion for Computing Machinery.
ACM ISBN 978-1-4503-8700-2/22/01. . . $15.00
https://doi.org/10.1145/3477083.3481582

frame-rate (up to 60 frames per second (fps)) [4, 16] along with the
ultra-low latency for interactivity.

The existing streaming delivery pipeline could satisfy the tra-
ditional streaming service like 4k video streaming [20]. However,
under the high frame-rate UHD RTC service, This delivery pipeline
could be sub-optimal. For example, the streaming decoder at the
client side might not be capable of decoding video frames timely be-
cause of the network jitter and decoding time variation. In this case,
when new frames arrive before the decoding of previous frames,
new frames have to be queued before the decoder. The formula-
tion of such a decoder queue could introduce a high queuing delay
for queued frames. The high frame-rate, along with the network
jitter, will cause the bursty incoming of video frames, which can
instantly overload the queue (§2.2.1). And the high bit-rate means
more complexity of video frames, which could increase the decod-
ing time [19]. These reasons will result in a queuing delay at the
decoder queue of tens of milliseconds (ms) or even longer (§2.1).
With the increasing needs of real-time communications from the
applications (e.g., less than 20 milliseconds in virtual reality appli-
cations [7, 26]), such an enormous decoder queue delay becomes
noticeable and needs to be eliminated.

However, managing the decoder queue to achieve both low la-
tency and high image quality is non-trivial due to the following
reasons. Straightforward solutions include controlling the arrival
rate (i.e., frame-rate) or the service rate (i.e., decoding time) of the
decoder queue. However, since the encoder and decoder are located
in distance, it is challenging to dynamically change the encoding
parameters due to the control loop (including in-between network
delay, effective delay at the encoder). Therefore, it is not timely
enough to dynamically adjusting the frame-rate (to reduce the ar-
rival rate of frames) or the bit-rate (to accelerate the decoding time
of frames).

In response, motivated by research efforts in the active queue
management (AQM), instead of controlling the arrival rate or ser-
vice rate, we directly control the frames inside the decoder queue:
when the decoder queue has been built up, directly dropping frames
in the queue could effectively reduce the queuing delay for remain-
ing frames. However, simply dropping frames in the queue would
make the subsequent frames undecodable and further degrade the
image quality due to the inter-dependency [32]. Therefore, we need
to jointly optimize the frames to maintain the low decoder queue
delay, and ensure the decoding quality by reordering the encoder
buffer.

In this paper, we propose the Frame-Skipping mechanism, which
reorders the encoder buffer and carefully skip frames in the de-
coder queue without damaging decoding quality. Moreover, Frame-
Skipping controls the delayed improvement and frame loss per-
formance by controlling the skip rate, which indicates how many
frames will be skipped. To helping to deploy this brand-new de-
coder queue management to UHD RTC services, a mathematical

https://doi.org/10.1145/3477083.3481582
https://doi.org/10.1145/3477083.3481582

0 2 4 6 8 1 0 1 2 1 4 1 60
5

1 0
1 5
2 0
2 5
3 0

a v e r a g e d e c o d i n g t i m e (m s)P(q
ue

uin
g d

ela
y >

 50
ms

) (%
)

0

5 0

1 0 0

1 5 0

99
%i

le
of

qu
eu

e d
ela

y (
ms

)

Figure 1: The ratio of decoder queue delay > 50ms (blue line) and the
99th percentile decoder queue delay (red line) of frames grouped by
average decoding time.

model will be introduced to quantify the performance under differ-
ent skip rates. And a numerical illustration based on the model will
be presented to recommend skip rates.

We evaluate the Frame-Skipping mechanism on our trace-driven
simulator with real word UHD RTC traces of 6 Billion video frames
from a popular cloud gaming service. Our simulation demonstrates
that Frame-Skipping can reduce the ratio of frames with severe
decoder queue delay by up to 23× and the ratio of frames with
severe total delay by up to 2.6× (§4.1). Moreover, Frame-Skipping
only introduces a slight loss of image quality and will not gives
extra stress to the decoder and the network transportation (§4.2).

2 Background and Motivation
In this section, we illustrate the decoder queue overload scenario,
and introduce the existing solutions for eliminating queue overload
to motivate our design of Frame-Skipping.

2.1 Decoder queue overload
Due to the high frame-rate and high bit-rate in UHD RTC service,
there are more incoming video frames and more video data that
need to be transferring and decoding, Result in higher utilization
of the decoder queue. With more fluctuation due to the streaming
over the internet, an enormous decoder queue delay could occur
and degrade the user’s experience.

We investigate the severity of decoder queue delay based on
massive online traces of 6 Billion frames. We first notice that the
decoder queue delay problem will be more severe with a long aver-
age decoding time. According to Figure 1, we notice that for those
frames streaming to the client with average decoding time ≥ 12ms,
the ratio of frames with decoder queue delay > 50ms will exceed
1%. I.e., it could happen every two seconds on average under 60 fps
streaming. This severe decoder queue delay (>50ms) is conspicu-
ous compared to a dozen milliseconds delay of RTT and decoding
time [15], and could easily cause a sensible total delay to degrade
the user’s experience. Therefore, eliminating the severe decoder
queue delay becomes necessary.

Referring to queue theory, a queue overload only happened with
a higher arrival rate or lower service rate or both [6]. The arrival
rate, i.e., the speed of frames incoming from network, is affected
by the network environment. The service rate will be represented
as the average decoding time for a period under UHD RTC service.
Having a long average decoding time will more likely to have a
long decoding time for a period (low service rate), so it will be
more likely to encounter queue overload. Therefore it will be more
valuable for those clients with a long average decoding time.

2.2 Possible solutions for queue overload
To maintain a low queuing delay, we will discuss some possible
solutions.

0 5 1 0 1 5 2 0 2 5 3 00
1
2
3
4
5

av
g i

nc
om

ing
 fra

me
s 5 0 % i l e R T T 9 0 % i l e R T T

t i m e a f t e r f i r s t q u e u i n g f r a m e s (m s)
(a) bursty incoming frames.

0 5 1 0 1 5 2 0 2 5 3 00
1 0
2 0
3 0
4 0
5 0
6 0

t i m e a f t e r f i r s t q u e u i n g f r a m e s (m s)

av
g d

ec
od

ing
 ti

me
 (m

s) 5 0 % i l e R T T 9 0 % i l e R T T

(b) decoding time of those bursty incom-
ing frames.

Figure 2: Incoming frames and corresponding decoding time after
the first queuing frame with severe queuing delay (decoder queue
delay > 50ms) later.

2.2.1 Arrival rate management. One solution to maintain a low
queuing delay is to avoid queue accumulation by altering the arrival
rate on the arrival side of the queue.

Because the variation of the arrival and service rate will also
cause the queue overhead [6], pre-negotiate a lower arrival rate can
not guarantee a persistent low queuing delay under the network
jitter and decoding time variation [28].

When we are trying to alter the arrival rate in real-time, un-
der UHD RTC service, the encoder, which decides the arrival rate,
and the client are located in distance. Therefore the arrival rate
adjustment will have a long control loop due to the network trans-
portation. And this control loop can be considered as the round-trip
time (RTT) of the service. Depending on the types of UHD RTC
service, the control loop considered as RTT could range from 10ms
(edge-accelerated streaming service like cloud gaming) [4] to 50ms+
(UHD Remote Conferencing).

Our real word traces demonstrate that the decoder queue could
still be overloaded even with an instant reaction of arrival rate
adjustment. In figure 2(a), we assume that the arrival rate manage-
ment can react instantly, i.e., we can predict there will be a severe
queuing delay (decoder queue delay > 50ms) later for the first frame
start queuing. And we will send an arrival rate altering command
which will activate after a long control loop of RTT. With the 50th
percentile of traces RTT of 15ms (middle line in Figure 2(a)), there
are already three frames that have enqueued on average. It illus-
trates that the decoder queue will overload with a bursty video
frame incoming. And the arrival rate management is limited to
solve it due to its inherent long control loop.

Moreover if we are trying to use some predictive methods to
foresee the bursty incoming to react before it happens, There still
will be some limitations. Firstly, the output action for arrival rate
adjustment is based on real-time variables measurement [9]. The
delay of measurement to generating output action, along with
a dozen milliseconds of long control loop could still cause some
frames enqueued before arrival rate adjustment activate. Secondly,
trying to predict the bursty incoming before it happens will face
the error predict problem [1], and minimize predict error is still
challenging [10, 13].

Besides, the time of waiting for those bursty incoming frames
dequeuing is noticeable. According to Figure 2(b), these three bursty
incoming frames under 15ms RTT need to spend 34ms to dequeue
(decode) all of them on average. So subsequent incoming frames
could suffer from dozens of milliseconds of queuing delay. And this
problem will even be worse under the 90th percentile RTT of 32ms
(right line in Figure 2(b)).

2.2.2 Speeding up decoding time. Another solution to maintain a
low queuing delay is to speed up the service rate (decoding time).

(a) original reference frames sequence. (b) reference frames sequence after re-
ordering.

Figure 3: Reference frames reordering. Blue arrows indicate the ref-
erence frames used to predict the frames being coded.

But the decoding time represents the frame complexity [19], sim-
ply boosting decoding time by reducing the frame complexity will
degrade the image quality. And trying to boost the executing time
inside the codec model is challenging for an application that unau-
thorized to modify system procedures like CPU scheduling.

In order to eliminate the decode queue delay instantly and effi-
ciently, we propose the Frame-Skipping mechanism to achieve all
these objects.

3 Design
In this section, we first introduce the Frame-Skipping mechanism
in §3.1, and then theoretically analyze the mechanism with a Mar-
kovian model in §3.2.

3.1 Frame-Skipping Mechanism
To introduce the Frame-Skipping mechanism, we first briefly in-
troduce the enabler of dropping frames at the decoder queue, and
answer two key questions in our design, i.e., which frames to skip
and how many frames to skip.
Background: Reordering decoder buffer. The inter-frame pre-
diction of video codec standard makes video frames encoding and
decoding based on the prediction of the previous frame. Now with
the recent development of scalable Video Coding (SVC), some
frames within the streaming are now discardable [31]. Therefore,
we can leverage the SVC extension or NVIDIA video codec Invali-
dateRefFrames API [8] to reordering the encoder reference frames
sequence from Figure 3(a) to Figure 3(b).

After reordering the encoder reference frames sequence, some
frames won’t be used to predict the subsequent frames to ensure
the decoding quality after discarding them. So when we extract the
Group of Picture (GoP) capacity amount of neighbouring frames in
the decoder queue, there must be a base layer frame (black frames
0, 2, Etc. in Figure 3(b)). Because the base layer frame is the only
frame used to predict the following GoP frames, only decoding the
base layer frame and dropping others within GoP will not damage
the decoding quality.
Which frames to skip?After having the ability to dropping frames
in decoder queue , we propose our active queue management (AQM)
called Frame-Skipping to efficiently eliminate the decoder queue
delay.

In Frame-Skipping, we will choose to drop earlier frames at de-
queuing rather than dropping the newest arrival frames at enqueu-
ing like those widely used tail-dropping AQM (RED [25], PIE [27],
Etc.). That is because our goal is maintaining low queuing latency
instead of mere low queue length, dropping earlier and displaying
recent frames can deliver a lower latency streaming.

More specifically, when the decoder queue is overloaded, we
will extract the GoP amount of neighbouring frames in the head
of the decoder queue, then decode only one and skip (drop) others
for those neighbouring frames. Intuitively, extracting more frames
at the same time means eliminating decoder queue delay more

Figure 4: The transition diagram under skip rate 𝑞 ∈ [0, 0.5] with
the M/M/1 queuing system

efficiently, but it also means more frames will be dropped (more
waste of network bandwidth). There will be a trade-off between
them.

How many frames to skip? To balance this trade-off, in Frame-
Skipping, we offer a parameter called skip rate 𝑞, which represents
the expectation of dropping frames proportion. So the amount of
extracting frames will be �̃� = 1/(1 − 𝑞).

We set the skip rate 𝑞 in Frame-Skipping to 𝑞 ∈ (0, 0.5]. That’s
because according to our evaluation, under skip rate 𝑞 = 0.5 (ex-
tracting �̃� = 2 frames at the same time), the frames loss frame
rate can exceeds 2% or even 10% in some scenario (§4.1.2). Wasting
this large amount of network bandwidth in UHD streaming for
exchanging delayed improvement will be unacceptable.

Moreover, if the administrator not willing to suffer high frame
loss rate, it’s still feasible to set a skip rate 𝑞 < 0.5. When skip
rate 𝑞 ∈ (0, 0.5) with extracting frames amount �̃� = 1/(1 − 𝑞) ∈
(1, 2), We will set GoP capacity = 2 and take turns to extracting ⌈�̃�⌉
frames with probability of (�̃�− ⌊�̃�⌋) and extracting ⌊�̃�⌋ frames with
probability of [1 − (�̃� − ⌊�̃�⌋)] to achieve the expectation extracting
frames amount �̃�. Because

⌊�̃�⌋ · [1−(�̃�− ⌊�̃�⌋)]+ ⌈�̃�⌉ · (�̃�− ⌊�̃�⌋) = ⌊�̃�⌋+(⌈�̃�⌉− ⌊�̃�⌋) · (�̃�− ⌊�̃�⌋) = �̃� (1)

In conclusion, we propose an AQM called Frame-Skipping to
eliminate the decoder queue delay efficiently. We chose to drop
frames at dequeuing to deliver lower latency streaming, and offer
a parameter skip rate 𝑞 to balance the trade-off between delayed
improvement and frame loss.

To quantify the delayed improvement and frame loss perfor-
mance with different skip rates 𝑞 in Frame-Skipping, we introduce
a mathematical model with numerical illustration in the following.

3.2 Theoretical Analysis
To abstract the decoder queue model, we will assume that the de-
coder queue will be an M/M/1 Queuing System as an approximation
which is generally used [22, 33]. I.e., the arrival and departure pro-
cess will be a Poisson process with the rate 𝜆 and 𝜇, and there is
only a single server [6]. So we have the state space of 0̃ (no frame
in decoding) and 𝑛 (𝑛 ≥ 0, n frames waiting in decoder queue) with
probability of 𝑃𝑛 .

With skip rate 𝑞 ∈ (0, 0.5] along with GoP capacity = 2, �̃� =

1/(1 − 𝑞) ∈ (1, 2]. the transition diagram will be shown in Figure 4.
According to the transition diagram, we can calculate the balance
equations [29] will be:

State Rate of process leaves = Rate of it enters
0̃ 𝜆𝑃0̃ = 𝜇𝑃0
0 (𝜆 + 𝜇)𝑃0 = 𝜆𝑃0̃ + 𝜇𝑃1 + 𝜇 (�̃� − ⌊�̃�⌋)𝑃2

𝑛, 𝑛 ≥ 1 (𝜆 + 𝜇)𝑃𝑛 = 𝜆𝑃𝑛−1 + 𝜇 [1 − (�̃� − ⌊�̃�⌋)]𝑃𝑛+1
+𝜇 (�̃� − ⌊�̃�⌋)𝑃𝑛+2

Now the set of recurrence equations

(𝜆 + 𝜇)𝑃𝑛 = 𝜆𝑃𝑛−1 + 𝜇 [1 − (�̃� − ⌊�̃�⌋)]𝑃𝑛+1 + 𝜇 (�̃� − ⌊�̃�⌋)𝑃𝑛+2 (2)

0 5 1 0 1 5 2 0 2 5 3 0 3 5 4 0 4 5 5 00

1

2

3

4

Ex
pe

cta
tio

n o
f q

ue
ue

 le
ng

th E x p e c t a t i o n o f q u e u e l e n g t h
(l e f t a x i s)

 R a t i o o f q u e u e l e n g t h > = 4
(% r i g h t a x i s)

 R a t i i o o f f r a m e l o s s
(% r i g h t a x i s)

S k i p r a t e (%)
0

1 0

2 0

3 0

4 0

Ra
tio

 of
 qu

eu
e l

en
gth

 >=
 4

(%
)

0

1 0

2 0

3 0

4 0

Ra
tio

 of
 fra

me
 lo

ss
 (%

)

Figure 5: The expectation of queue length, ratio of queue length ≥
4 and ratio of frame loss under different skip rate

has a solution of the form 𝑃𝑛 = 𝛼𝑛𝐶 = 𝛼𝑛𝑃0 [29], combining the
form to equation 2, and considering the probability must be positive,
the solution would be

𝛼 =

√
1 + 4(�̃� − ⌊�̃�⌋)𝜆/𝜇 − 1

2(�̃� − ⌊�̃�⌋) , �̃� =
1

1 − 𝑞
(3)

Along with the 𝑃0̃ = (𝜇/𝜆)𝑃0 from balance equations and the theory
𝑃0 + 𝑃0̃ +

∑∞
𝑛=1 𝑃𝑛 = 1 [29] we can calculate the result:

𝑃0 =
𝜆(1 − 𝛼)

𝜆 + 𝜇 (1 − 𝛼) (4)

and, thus

𝑃𝑛 =
𝛼𝑛𝜆(1 − 𝛼)
𝜆 + 𝜇 (1 − 𝛼) , 𝑛 ≥ 1 (5)

So, the expectation of decoder queue length will be:

𝐿𝑄 =

∞∑
𝑛=1

𝑛𝑃𝑛

=
𝜆(1 − 𝛼)

𝜆 + 𝜇 (1 − 𝛼)

∞∑
𝑛=1

𝑛𝛼𝑛 =
𝜆𝛼

(1 − 𝛼) [𝜆 + 𝜇 (1 − 𝛼)]

(6)

where 𝛼 is the equation in (3).
The expectation of the frame loss rate and tail delay are also

the targets we interest in. According to Figure 4, extracting two
frames and skipping one means one frame loss. So the probability
of frame loss can be considered as probability of making skip action,
i.e. 𝑅𝐿𝑜𝑠𝑠 =

∑∞
𝑛=2 (�̃� − ⌊�̃�⌋)𝑃𝑛 .

For the tail delay of the decoder queue, according to Figure 1,
the decoder queue delay becomes noticeable when the average
decoding time ≥ 12ms. So if the decoder queue length ≥ 4, the
expected time of waiting for them being decoded will be ≥ 48ms.
So we will set the tail delay ratio 𝑅𝑇𝑎𝑖𝑙 =

∑∞
𝑛=4 𝑃𝑛 .

3.3 Numerical example
To quantify the performance and offer some recommended skip
rate 𝑞, we will present a numerical illustration. We set the arrival
rate in 60 frames per second, i.e. 𝜆 = 60, and set the service rate in
decoder time = 12ms (having noticeable decoder queue delay ratio
in Figure 1), i.e., service rate 𝜇 = (1/0.012) ≈ 80.

We evaluate the delayed improvement and frame loss perfor-
mance under skip rate𝑞, 𝑞 ∈ [0, 0.5]. According to Figure 5, with the
skip rate 𝑞 increasing, the expectation of queue length and the ratio
of tail delay (queue length ≥ 4) is decreasing. However, the frame
loss status becomes worse when the skip rate increase. Therefore,
there will be a trade-off between the delayed improvement and the
frame loss.

For the skip rate chose under this trade-off, we recommend
𝑞 = 0.25 and 𝑞 = 0.5. With 𝑞 = 0.25, the expectation of queue length
reduces to 1, the ratio of tail delay reduced to 10%, and the frame
loss rate will not exceed 9%. With 𝑞 = 0.5, we can get a significant
delayed improvement, which is attractive for those delay-sensitive

a l l f l o w w e a k0
2 0
4 0
6 0
8 0

1 0 0

Q-
99

th
(m

s)

a l l f l o w w e a k0 . 0 0

0 . 0 1

0 . 0 2

0 . 0 3

0 . 0 4

P(Q
 >

50
ms

)

 d e f a u l t p a u s e _ 2 p a u s e _ 1 s k i p _ 0 . 2 5 s k i p _ 0 . 5

a l l f l o w w e a k0
1
2
3
4
5
6

Q-
AV

G
(m

s)

Figure 6: Simulation results of decoder queue delay (the 99%ile, the
ratio of frames with decoder queue delay > 50ms, and the average

a l l f l o w w e a k0
2 0
4 0
6 0
8 0

1 0 0
1 2 0
1 4 0

To
tal

-99
th

(m
s)

a l l f l o w w e a k0 . 0 0

0 . 0 1

0 . 0 2

0 . 0 3

0 . 0 4

P(T
ota

l >
 10

0m
s)

a l l f l o w w e a k0
5

1 0
1 5
2 0
2 5
3 0
3 5

To
tal

-A
VG

 (m
s)

 d e f a u l t p a u s e _ 2 p a u s e _ 1 s k i p _ 0 . 2 5 s k i p _ 0 . 5

Figure 7: Simulation results of total delay (the 99%ile, the ratio of
frames with total delay > 100ms, and the average

RTC services like cloud gaming. We leave the further investigation
of skip rate with users’ experiences as our future work.

4 Evaluation
In this section, we evaluate the Frame-Skipping mechanism’s per-
formance by implementing it with a frame-level trace-driven RTC
simulator, and investigate some potential obstacles in deploying
Frame-Skipping.

4.1 Delayed improvement
To compare the delayed improvement to the different decoder queue
management, we design a simulator that can faithfully replay the
online traces on the client-side and react to the decoder queue
adjustment.
4.1.1 Simulation Setup. Our simulator will be running with fol-
lowing set up.
Baselines: To evaluate the delayed improvement of the Frame-
Skipping, we also evaluate the following baselines:
• Default. The default queue management in our online traces
service is similar to WebRTC [12]. When the decoder queue size
exceeds the set threshold, the client will request a new key frame
and try to flush the decoder queue.

• Pause-encoder. The encoder will be paused until the decoder
queue length below our set threshold. Under this management,
we will set the decoder queue length threshold with one (pause_1)
and two (pause_2). So if the queue length exceeds the set thresh-
old, we will send a pause command until the length below the
threshold.

Traces: To investigate the Frame-Skipping performance under
clients with long decoding time, the simulation will run separately
with all flow traces and weak decoder traces (traces with average
decoding time ≥ 12ms).
Indicators: We evaluate Frame-Skipping performance with de-
layed improvement and frame loss. The lower delay means better
interactivity of RTC, Furthermore, the delayed improvement per-
formance will be demonstrated by the decoder queue delay and the
total delay (from user input to graphic display).

The negative effect of Frame-skipping will be demonstrated by
frame loss, which would hurt smoothness and network resource
utilization. However, we are not going to dig into how frame-rate
degradation (60fps to 30fps under skip rate 𝑞 = 0.5) will affect
the user’s experience, because, even under gaming scenario, no
significant difference for quality rating, as well as performance
ratings, was found between 60 fps and 25 fps [34].

5 0
6 0
7 0
8 0
9 0

1 0 0

Fra
me

s a
mo

un
t (%

)

a l l f l o w

 d e f a u l t p a u s e _ 2 p a u s e _ 1 s k i p _ 0 . 2 5 s k i p _ 0 . 5

5 0
6 0
7 0
8 0
9 0

1 0 0

Fra
me

s a
mo

un
t (%

)

w e a k
Figure 8: Simulation results of frame loss (haven’t been displayed)
ratio

4.1.2 Evaluation result. The Frame-skipping is aiming to reducing
the delay to help the interactivity service. For decoder queue delay,
we present the 99th percentile, the ratio of frames with decoder
queue delay > 50ms (severely queued) and the average. In Figure 6,
compared with the default queue management, the Frame-Skipping
with skip rate 𝑞 = 0.5 can squeeze the 99%ile decoder queue delay
from 22ms to 1ms with all flow traces and from 88ms to 13ms with
weak decoder traces. For the ratio of frames with severe decoder
queue delay (decoder queue delay > 50ms), Frame-Skipping can
reduce the ratio by 23× with all flow traces and 53× with weak
decode traces. These results indicate that the Frame-Skipping could
efficiently reduce the decoder queue delay.

Moreover, the Frame-Skipping can also reduce total delay by
eliminating the decoder queue delay. According to Figure 7, the
Frame-Skipping with skip rate 𝑞 = 0.5 can squeeze the 99%ile total
delay from 89ms to 62ms with all flow traces and from 139ms to
90ms with weak decoder traces. For the ratio of severe total delay
(total delay > 100ms), Frame-Skipping can reduce the ratio by 2.6×
with all flow traces and 4.4× with weak decode traces. Therefore,
the Frame-Skipping could help service providers to offer a better
UHD RTC service.

For the frame loss situation, According to Figure 8, we can notice
that better delayed improvement performance also means more
frame loss. Because the better delayed improvement is resulted by
pausing/skipping more frames.

Compare to the pause-encoder baseline, the delayed improve-
ment performance of the Frame-Skipping is still better than the
pause-encoder management (Figure 6). It illustrates that due to
the limitation of processing bursty queue fluctuations (§2.2), the
efficiency of eliminating decoder queue delay of arrival rate man-
agement is still not good enough compared to Frame-Skipping.

For simulation results, we also observe that all queue manage-
ment can have a better delayed improvement performance under
the weak decoder traces. With the significant delayed improve-
ment of Frame-Skipping under weak decoder traces, it would be
more valuable to enable Frame-Skipping for those clients with long
decoding time.

4.2 Micro benchmark
We evaluate some parameters of frames encoded by reordering
encoder buffer to investigate some potential obstacles in deploying
Frame-Skipping.
Frame size. Under our evaluation, the frame size difference is
small. Only 2% of the frames will have a more than a half difference
of frame size compared to the default encoding frames. So it will
not put more pressure on the network transporting. Besides, there
could be a large frame size difference under the same encoding
configuration [11].
Decoding time. For our test, the average decoding time between
the frames encoded by reordering encoder buffer and the original
frames is almost the same (decoding time difference less than 3%).
So there will not be extra stress on the decoder.

Image quality. We measure the image quality with PSNR [14],
which is widely used for image quality metrics. According to our
evaluation, frames encoded by reordering encoder buffer will have
an image quality degrade with 0.8dB PSNR score loss on average
compared to the original encoding frames, i.e., 2% of image PSNR
score loss.

5 Discussion
In this section, we will discuss the feasibility in the future and the
character of Frame-Skipping.
Feasibility in the future. Frame-Skipping leverages SVC exten-
sion or NVIDIA codec API to reorder the encoder buffer to eliminate
decoder queue delay efficiently. So we want to know if it is still fea-
sible to reorder the encoder buffer with codec standard upgrading
in the future. The scalable Video Coding (SVC) extension is now
supported in H.264 and H.265 standards [2], and also be supported
for the brand-new H.266 standard [36]. On the other hand, no mat-
ter what kind of codec standard will be used in the future, we can
still directly invalidate the recent image in the encoder buffer to
reorder encoder buffer by using encoder’s API.
Advanced queue management. Many researches were also fo-
cusing on improving the streaming service experience by deploying
queue management. For example, the controller will alter the send-
ing rate of network packets to maintain a low internet queuing
delay [3]. But the decoder queue is working on the video frames
level, and a queued frame could introduce a 16ms delay under 60fps
streaming. So it will be far more remarkable compared to the queued
network packets.

Moreover, those queue managements focusing on frame level [11,
24] are located on the server’s encoder side. So the long control
loop will limit the eliminating efficiency of decoder queue delay as
we discuss before (§4.1). However, our Frame-Skipping mechanism
on the client side can instantly and efficiently eliminate the bursty
queue fluctuation.
Frame-skipping scenarios. In this paper, we leverage the SVC
and encoder’s API to skip video frames before decoding without
damaging image quality. Besides, some use cases also benefit from
video discarding, such as video analytics. However, the objects of
discarding frames in Frame-Skipping and video analytics are totally
different. Frame-Skipping is aiming to offer ultra-low latency Real-
time Communication by eliminating the queuing delay. On the other
hand, video analytics is filtering out/discarding frames to solve the
challenges of high compute and network resource demands of video
streaming and analysis models [18, 21]. The disparity of optimizing
objects makes the frames discarding scheduling under different
scenarios different.

6 Conclusion
In this paper, we propose a Frame-Skipping mechanism to effi-
ciently eliminate the decoder queue delay by extracting neighbour-
ing frames in the head of the queue with skipping frames. We also
introduce a mathematical model to quantify the Frame-Skipping
performance and offer some recommended skip rates. Then, we
demonstrate the Frame-Skipping can efficiently reduce the decoder
queue delay and total delay by evaluating it on our trace-driven
simulator.

Acknowledgement
This paper is supported by the National Key R&D Program of China
under Grant 2019YFB1802504 and the National Natural Science
Foundation of China under Grant 61625203. Mingwei Xu is the
corresponding author.

References
[1] Giuseppe Bonaccorso. 2017. Machine learning algorithms. Packt Publishing Ltd.
[2] Jill M Boyce, Yan Ye, Jianle Chen, and Adarsh K Ramasubramonian. 2015.

Overview of SHVC: Scalable extensions of the high efficiency video coding
standard. IEEE Transactions on Circuits and Systems for Video Technology 26, 1
(2015), 20–34.

[3] Gaetano Carlucci, Luca De Cicco, Stefan Holmer, and Saverio Mascolo. 2017.
Congestion control for web real-time communication. IEEE/ACM Transactions
on Networking 25, 5 (2017), 2629–2642.

[4] Marc Carrascosa and Boris Bellalta. 2020. Cloud-gaming: Analysis of Google
Stadia traffic. arXiv preprint arXiv:2009.09786 (2020).

[5] Zhilong Chen, Hancheng Cao, Yuting Deng, Xuan Gao, Jinghua Piao, Fengli Xu,
Yu Zhang, and Yong Li. 2020. Learning from Home: AMixed-Methods Analysis of
Live Streaming Based Remote Education Experience in Chinese Colleges During
the COVID-19 Pandemic. arXiv preprint arXiv:2010.01662 (2020).

[6] Jacob Willem Cohen. 2012. The single server queue. Elsevier.
[7] Lorenzo Corneo, Maximilian Eder, Nitinder Mohan, Aleksandr Zavodovski, and

Suzan BayhanZ. 2021. Surrounded by the Clouds. In The Web Conference.
[8] Nvidia Corporation. 2020. NVIDIA VIDEO CODEC SDK - ENCODER Program-

ming Guide. https://docs.nvidia.com/video-technologies/video-codec-sdk/pdf/
NVENC_VideoEncoder_API_ProgGuide.pdf.

[9] John C Doyle, Bruce A Francis, and Allen R Tannenbaum. 2013. Feedback control
theory. Courier Corporation.

[10] Adam N Elmachtoub and Paul Grigas. 2021. Smart “predict, then optimize”.
Management Science (2021).

[11] Sadjad Fouladi, John Emmons, Emre Orbay, Catherine Wu, Riad S Wahby, and
Keith Winstein. 2018. Salsify: Low-latency network video through tighter in-
tegration between a video codec and a transport protocol. In 15th {USENIX}
Symposium on Networked Systems Design and Implementation ({NSDI} 18). 267–
282.

[12] Google LLC. 2018. webrtc. https://chromium.googlesource.com/external/webrtc
[13] Jakob Hohwy. 2017. Priors in perception: Top-down modulation, Bayesian per-

ceptual learning rate, and prediction error minimization. Consciousness and
Cognition 47 (2017), 75–85.

[14] Alain Hore and Djemel Ziou. 2010. Image quality metrics: PSNR vs. SSIM. In
2010 20th international conference on pattern recognition. IEEE, 2366–2369.

[15] Chun-Ying Huang, Cheng-Hsin Hsu, Yu-Chun Chang, and Kuan-Ta Chen. 2013.
GamingAnywhere: An open cloud gaming system. In Proceedings of the 4th ACM
multimedia systems conference. 36–47.

[16] Gazi Karam Illahi, Thomas Van Gemert, Matti Siekkinen, Enrico Masala, Antti
Oulasvirta, and Antti Ylä-Jääski. 2020. Cloud gaming with foveated video en-
coding. ACM Transactions on Multimedia Computing, Communications, and
Applications (TOMM) 16, 1 (2020), 1–24.

[17] Megan M Jack, Domenico A Gattozzi, Paul J Camarata, and Kushal J Shah. 2021.
Live-streaming surgery for medical student education-educational solutions in
neurosurgery during the COVID-19 pandemic. Journal of surgical education 78, 1
(2021), 99–103.

[18] Junchen Jiang, Ganesh Ananthanarayanan, Peter Bodik, Siddhartha Sen, and Ion
Stoica. 2018. Chameleon: scalable adaptation of video analytics. In Proceedings of
the 2018 Conference of the ACM Special Interest Group on Data Communication.
253–266.

[19] Nikolaos Kontorinis, Yiannis Andreopoulos, and Mihaela Van Der Schaar. 2009.
Statistical framework for video decoding complexity modeling and prediction.
IEEE transactions on circuits and systems for video technology 19, 7 (2009), 1000–
1013.

[20] Advait Lad, Shivani Butala, and Pramod Bide. 2019. A comparative analysis
of over-the-top platforms: Amazon Prime Video and Netflix. In International
Conference on Communication and Intelligent Systems. Springer, Singapore, 283–
299.

[21] Yuanqi Li, Arthi Padmanabhan, Pengzhan Zhao, Yufei Wang, Guoqing Harry
Xu, and Ravi Netravali. 2020. Reducto: On-camera filtering for resource-efficient
real-time video analytics. In Proceedings of the Annual conference of the ACM
Special Interest Group on Data Communication on the applications, technologies,
architectures, and protocols for computer communication. 359–376.

[22] Xiaofei Liao, Hai Jin, Yunhao Liu, Lionel M Ni, and Dafu Deng. 2006. Anysee:
Peer-to-peer live streaming. In Proceedings IEEE INFOCOM 2006. 25TH IEEE
International Conference on Computer Communications. Citeseer, 1–10.

[23] Zhiwen Liao and Ling Zhang. 2020. Scheduling Dynamic Multicast Requests in
Advance Reservation Environment for Enterprise Video Conferencing Systems.
IEEE Access 8 (2020), 76913–76928.

[24] Yixiang Mao, Liyang Sun, Yong Liu, and Yao Wang. 2020. Low-latency FoV-
adaptive Coding and Streaming for Interactive 360° Video Streaming. In Proceed-
ings of the 28th ACM International Conference on Multimedia. 3696–3704.

[25] Vishal Misra, Wei-Bo Gong, and Don Towsley. 2000. Fluid-based analysis of
a network of AQM routers supporting TCP flows with an application to RED.
In Proceedings of the conference on Applications, Technologies, Architectures, and
Protocols for Computer Communication. 151–160.

[26] Nitinder Mohan, Lorenzo Corneo, Aleksandr Zavodovski, Suzan Bayhan, Walter
Wong, and Jussi Kangasharju. 2020. Pruning Edge Research with Latency Shears.
In Proc. ACM HotNets.

[27] Rong Pan, Preethi Natarajan, Chiara Piglione, Mythili Suryanarayana Prabhu,
Vijay Subramanian, Fred Baker, and Bill VerSteeg. 2013. PIE: A lightweight
control scheme to address the bufferbloat problem. In 2013 IEEE 14th international

conference on high performance switching and routing (HPSR). IEEE, 148–155.
[28] Johan Pouwelse, Koen Langendoen, R Lagendijk, and Henk Sips. 2001. Power-

aware video decoding. In 22nd Picture Coding Symposium, Seoul, Korea. Citeseer,
303–306.

[29] Sheldon M Ross. 2014. Introduction to probability models. Academic press.
[30] Sandvine. 2020. The Global Internet Phenomena Report COVID-19 Spotlight.

https://www.sandvine.com/covid-internet-spotlight-report.
[31] Heiko Schwarz, Detlev Marpe, and Thomas Wiegand. 2007. Overview of the

scalable video coding extension of the H. 264/AVC standard. IEEE Transactions
on circuits and systems for video technology 17, 9 (2007), 1103–1120.

[32] Thomas Wiegand, Gary J Sullivan, Gisle Bjontegaard, and Ajay Luthra. 2003.
Overview of the H. 264/AVC video coding standard. IEEE Transactions on circuits
and systems for video technology 13, 7 (2003), 560–576.

[33] AdamWierman and Takayuki Osogami. 2003. A unified framework for modeling
TCP-Vegas, TCP-SACK, and TCP-Reno. In 11th IEEE/ACM International Sym-
posium on Modeling, Analysis and Simulation of Computer Telecommunications
Systems, 2003. MASCOTS 2003. IEEE, 269–278.

[34] Saman Zadtootaghaj, Steven Schmidt, and Sebastian Möller. 2018. Modeling
gaming QoE: Towards the impact of frame rate and bit rate on cloud gaming. In
2018 Tenth International Conference on Quality of Multimedia Experience (QoMEX).
IEEE, 1–6.

[35] Anfu Zhou, Huanhuan Zhang, Guangyuan Su, Leilei Wu, Ruoxuan Ma, Zhen
Meng, Xinyu Zhang, Xiufeng Xie, Huadong Ma, and Xiaojiang Chen. 2019. Learn-
ing to coordinate video codec with transport protocol for mobile video telephony.
In The 25th Annual International Conference on Mobile Computing and Networking.
1–16.

[36] Bin Zhu, Shan Liu, Yuan Liu, Yi Luo, Jing Ye, HaiyanXu, YingHuang, Hualong Jiao,
Xiaozhong Xu, Xianguo Zhang, et al. 2020. A software decoder implementation
for H. 266/VVC video coding standard. arXiv preprint arXiv:2012.02832 (2020).

https://docs.nvidia.com/video-technologies/video-codec-sdk/pdf/NVENC_VideoEncoder_API_ProgGuide.pdf
https://docs.nvidia.com/video-technologies/video-codec-sdk/pdf/NVENC_VideoEncoder_API_ProgGuide.pdf
https://chromium.googlesource.com/external/webrtc
https://www.sandvine.com/covid-internet-spotlight-report

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Decoder queue overload
	2.2 Possible solutions for queue overload

	3 Design
	3.1 Frame-Skipping Mechanism
	3.2 Theoretical Analysis
	3.3 Numerical example

	4 Evaluation
	4.1 Delayed improvement
	4.2 Micro benchmark

	5 Discussion
	6 Conclusion
	References

