
DeBGP: Decentralized and Efficient BGP Hijacking
Prevention System

Jiang Li∗, Jiahao Cao∗†§, Yuan Yang∗§, Zhuotao Liu†§,
Qi Li†§, Yangyang Wang†§, Zili Meng†, Renjie Xie†, and Mingwei Xu∗†‡§¶∥

∗ Department of Computer Science and Technology, Tsinghua University, Beijing, China
† Institute for Network Sciences and Cyberspace, Tsinghua University, Beijing, China

‡ Beijing National Research Center for Information Science and Technology, Beijing, China
§ Zhongguancun Laboratory, Beijing, China
¶ Quan Cheng Laboratory, Shandong, China
∥Peng Cheng Laboratory, Shenzhen, China

{lijiang17@mails, zhuotaoliu@, caojh2021@, yangyuan thu@mail,
qli01@, wangyy-13@, xrj21@mails, xumw@}.tsinghua.edu.cn, zilim@ieee.org

Abstract—BGP is the de facto inter-domain routing protocol
that plays an important role on the Internet. However, BGP
suffers from the origin and path hijacking due to its lack
of validation for BGP update messages. Traditional security
proposals protect BGP from the threats based on a centralized
authority, i.e., RPKI, in which a single point failure may cause a
large-scale failure. In this paper, we propose a decentralized and
efficient BGP hijacking prevention system named DeBGP. It con-
verts each BGP update message into corresponding blockchain
transactions that ASes can query for validation. To cope with
the poor transaction processing capability of blockchains,
DeBGP groups ASes on the Internet into different consortiums.
Multiple local blockchains and collaborative blockchains are
crafted to handle BGP validation among consortiums. Moreover,
DeBGP enforces local validation within consortiums and
blockchain-based validation across consortiums to effectively
reduce validation delay. We implement the DeBGP prototype,
and experiments with real-world BGP data demonstrate its
effectiveness and efficiency on preventing BGP hijacking.

Index Terms—Inter-domain routing, security, decentralization,
blockchain

I. INTRODUCTION

Border Gateway Protocol (BGP) [1] is the de facto inter-
domain routing protocol on the Internet. Autonomous Systems
(ASes) exchange reachability information with BGP update
messages. However, the lack of BGP validation for update
messages intrinsically causes two types of BGP hijacking,
i.e., origin and path hijacking. Origin hijacking involves an
attacker announcing the victim’s prefix or sub-prefix as its
own to divert the victim’s traffic to itself. A notable example
of this attack is when Pakistan Telecom’s misuse of its
sub-prefix caused YouTube to be unavailable for more than
2 hours [2]. Path hijacking entails an attacker advertising a
shorter fake path to the victim to lure the victim’s traffic to
itself. A recent example of this attack is when Zayo’s spoofing
of a shorter path led to the theft of 1.9 million dollars worth
of digital assets from cryptocurrency platform KLAYswap [3].

Many solutions [4–11] have been proposed to prevent BGP
origin and path hijacking. They validate BGP update messages
based on Resource Public Key Infrastructure (RPKI) [12],

which is a centralized architecture standardized by Internet
Engineering Task Force (IETF). RPKI provides mappings be-
tween IP prefix and ASes under the authority of five Regional
Internet Registries (RIRs). According to the mappings, ASes
can perform origin validation to prevent origin hijacking [4], or
performs hop-by-hop path validation cryptographically to pre-
vent path hijacking [13]. However, a single point failure of the
centralized authority in RPKI may result in a massive break-
down of the entire architecture [14–16]. Although soBGP [17]
and IRV [18] adopt a decentralized architecture, they fail to
completely prevent the BGP hijacking. In soBGP, how to
establish trust anchors for validating routing information is
unclear [19]. IRV may fail to prevent anomalous BGP update
messages due to inaccurate validation of update messages [19].

Recently, the decentralized blockchain technology inspires
innovation in the network security domain [20, 21]. Thus, an
intuitive idea is to incorporate the blockchain technology into
BGP message validation to defend against single point fail-
ures [22]. ASes on the Internet record the mappings between
IP prefix and ASes on a blockchain for origin validation. Each
update message in BGP is converted into a corresponding
blockchain transaction that other ASes can query for path
validation. Nevertheless, blockchain is notorious for its
poor scalability. Recent studies [23, 24] show that even the
advanced blockchain systems can only process thousands
of transactions per second. However, the Internet exchanges
millions of BGP update messages per second [25], which
can generate millions of relevant blockchain transactions per
second. It is far beyond the processing capability of a global
blockchain. Furthermore, converting all BGP update messages
into blockchain transactions for validation introduces high
delay due to the tremendous number of blockchain operations.
This can remarkably increase BGP convergence time [23, 26].

In this paper, we present DeBGP that prevents BGP origin
and path hijacking in a decentralized and efficient manner.
To cope with the poor transaction processing capability of
blockchain, DeBGP groups ASes on the Internet into consor-
tiums. Each consortium maintains a local blockchain to convert

BGP update messages originating from it into transactions for
validation. Every two adjacent consortiums maintain a col-
laborative blockchain to convert BGP update messages across
them into transactions for validation. Such a design imposes
a much lower throughput requirement for each blockchain.

To further reduce the BGP validation delay due to
blockchain operations, DeBGP adopts local validation
within a consortium and blockchain-based validation across
consortiums. Each AS pulls related validation information
from the local blockchain in advance, such as the mappings
between IP prefix and ASes, and store them locally. For each
BGP update message originating from its consortium, an AS
can directly perform origin validation and hop-by-hop BGP
path validation without querying its local blockchain. As an
AS cannot directly pull related validation information on
other consortiums, BGP update messages across consortiums
are validated by querying the corresponding transactions in
collaborative blockchains.

Based on the above design, the security and performance
of DeBGP heavily depend on how we group ASes on
the Internet into consortiums. Inappropriate grouping can
cause the security degradation of DeBGP. For example, if a
consortium consists of many ASes that have a high probability
of announcing anomalous update messages, the anomalous
update messages may get the consortium’s endorsement and
propagate to ASes in other consortiums, causing the origin or
path hijacking. Moreover, inappropriate grouping may incur
high BGP message validation latency. If a consortium owns
many AS links to other consortiums, there can be a vast
number of BGP update messages propagating to different
consortiums per second. DeBGP has to frequently record
and query the corresponding endorsement transactions in the
blockchains across consortiums, which is time-consuming.

To solve the above problem, we present a security score
model for the consortium and formalize it as a maximum
security grouping (MAX-SEC) problem with performance
constraint. We prove the MAX-SEC problem is NP-hard and
design a heuristic grouping algorithm taking security and
performance aspects into consideration. Our algorithm selects
a seed AS as the initial AS for each consortium, and extends
consortiums from these initial ASes’s neighbors iteratively.
Both seed AS selection and consortium extension follow
the greedy principle that the candidate AS brings the most
security gain and the least cost.

We demonstrate that DeBGP can effectively protect BGP
from the origin and path hijacking through security analysis.
We implement the DeBGP prototype and conduct extensive
experiments with real BGP update message data on the
real Internet AS topology. The results show that a single
consortium’s failure in DeBGP only cause less than 4%
global influence in terms of the allocation of about 4 billion
IPv4 addresses and 70,000 ASes on the Internet. Compared
to the standardized and centralized BGP security proposal
named BGPsec, DeBGP reduces 21% validation cost and
31% validation time with about 16 million paths from real
AS routing tables in the global Internet. The convergence

time of DeBGP is no more than 0.3% longer than that of
BGPsec with various experimental topologies.

Our main contributions are summarized as follows.
• We propose a decentralized and efficient BGP origin and

path hijacking prevention system named DeBGP.
• We formalize the AS grouping problem in DeBGP,

prove its NP-hardness, and design a heuristic algorithm
to solve it.

• We design the intra-consortium local validation and inter-
consortium blockchain-based validation mechanisms to
effectively reduce the validation cost.

• We conduct extensive experiments with real BGP data
to prove the effectiveness and efficiency of DeBGP.

II. BACKGROUND

Border Gateway Protocol (BGP). BGP [1] is a policy-based
routing protocol to exchange reachability information among
Autonomous Systems (ASes). The update message BGP uses
contains the IP prefixes that origin AS originates and some
path attributes. The AS path along which receiver ASes can
reach the prefixes is the most important path attribute. How-
ever, BGP has no built-in mechanism to validate BGP update
messages, therefore any AS can announce arbitrary update
messages, resulting in two types of hijacking described below.

• Origin hijacking: a malicious AS falsely announces
the victim AS’s prefix or sub-prefix to attract traffic.
For example, in Fig. 1(a), AS5 forges the victim AS1’s
prefix. In this case, the traffic from AS4 to AS1 will be
directed to AS5 according to the shortest-path principle.
The traffic from AS3 to AS1 may be directed to AS5.
Fig. 1(b) shows a more powerful attack, the malicious
AS5 forges a more specific prefix of the victim AS1’s
prefix, which causes the traffic from AS2, AS3, and
AS4 to be directed to the AS5 according to the longest
prefix match principle.

• Path hijacking: There are two types of path hijacking. In
the first type, i.e., path manipulation attack, a malicious
AS usually forges a shorter path to attract traffic. As
shown in Fig. 2(a), AS5 forges a link with the victim
AS1, causing the traffic from AS4 to be directed to AS5

according to the shortest-path principle. In the second
type, i.e., unauthorized route announcement, a malicious
AS announces an update message unauthorized from the
victim AS. As shown in Fig. 2(b), although there exists a
link between the malicious AS2 and the victim AS1, AS1

does not announce an update message to AS2, but AS2

announces to AS3 that it can reach to a particular prefix
of the victim AS1. This violates the victim AS1’s intent.

As mentioned before, BGP is a policy-based routing protocol,
therefore, BGP update message propagation follows the
Gao-Rexford routing principle [27] based on the AS business
relationship. AS business relationships fall into two broad
categories: customer-provider (abbreviated as c2p or p2c) and
settlement-free peering (p2p). In the c2p (or p2c) relationship,
the provider AS and its customer AS announce update

2

To: 1.1.0.0/16
AS_PATH: 1

AS1

AS2

AS3

AS4

AS5

To: 1.1.0.0/16
AS_PATH: 2 1

To: 1.1.0.0/16
AS_PATH: 4 5

To: 1.1.0.0/16
AS_PATH: 5

Forged update Hijacked trafficNormal trafficNormal update

(a) Prefix hijacking.

AS1

AS2

AS3

AS4

AS5

To: 1.1.0.0/16
AS_PATH: 1

To: 1.1.0.0/24
AS_PATH: 3 4 5

To: 1.1.0.0/24
AS_PATH: 4 5

To: 1.1.0.0/24
AS_PATH: 5

Forged update Hijacked trafficNormal trafficNormal update

(b) Sub-prefix hijacking.

Fig. 1: Origin hijacking.

AS1

AS2

AS3

AS4

AS5

To: 1.1.0.0/16
AS_PATH: 1

To: 1.1.0.0/16
AS_PATH: 2 1

To: 1.1.0.0/16
AS_PATH: 3 2 1

To: 1.1.0.0/16
AS_PATH: 5 1

Forged update Hijacked trafficNormal trafficNormal update

(a) Path manipulation attack.

AS1

AS2

AS3

AS4

AS5

To: 1.1.0.0/16
AS_PATH: 2 1

To: 1.1.0.0/16
AS_PATH: 3 2 1

To: 1.1.0.0/16
AS_PATH: 4 3 2 1

Forged update Hijacked trafficNormal trafficNormal update

(b) Unauthorized route announce-
ment.

Fig. 2: Path hijacking.
messages destined to all the prefixes on the Internet in all. In
the p2p relationship, the two ASes announce update messages
destined to their and their customers’ prefixes to each other.
Blockchain. The participants in the blockchain system form a
decentralized network. Participants use multi-party consensus
mechanisms such as Proof of Working (PoW) to maintain a
distributed ledger recording transactions and smart contracts
in a hash chain for tamper-proof property. Transaction
data shows the interaction between the participants. Smart
contracts are programs that execute agreements negotiated by
participants automatically and securely.

III. DESIGN OVERVIEW

DeBGP aims to protect ASes from BGP origin and path
hijacking in a divide-and-conquer manner. The architecture
of DeBGP is shown in Fig. 3. The limitation of blockchain
scalability poses a significant challenge for its application in
validation of tremendous BGP messages. DeBGP groups ASes
on the Internet into consortiums to improve scalability. ASes
in the consortium maintain INRchain to record the mappings
between IP prefix and ASes, and PathKeychain to record AS
public keys for path validation. TrustRelaychain is maintained
between adjacent consortiums to record endorsements of up-
date messages across consortiums.

Based on the above blockchains, DeBGP adopts hop-by-
hop validation in consortiums and blockchain based validation
across consortiums. Intra-consortium mechanism validates
update messages in the consortium as follows. ASes perform
origin validation with local prefix to AS mappings from INR-
chain. For path validation in the consortium, ASes validate the
AS path hop by hop with public keys of corresponding ASes
from the PathKeychain. Inter-consortium mechanism validates
update messages across consortiums as follows. Update
message sender AS records the corresponding transaction
as endorsement from its consortium for the update message
across consortiums on the TrustRelaychain. Receiver ASes
validate the update message by querying the corresponding
endorsement transaction. Furthermore, consortium public
keys are also recorded on the TrustRelaychain. At last, benign
update messages are propagated in and across consortiums

AS4
1

AS5 AS6AS1 AS2 AS3
Consortium A Consortium B

{P, [AS1], AS2}, SigAS1

{P, [AS2, AS1], AS3, SigAS1},SigAS2

{P, [AS4, AS3, AS2, AS1], AS5, Sigconsortium A}, SigAS4

{P, [AS3, AS2, AS1], AS4}, Sigconsortium A

{P, [AS5, AS4, AS3, AS2, AS1], AS6, Sigconsortium A, SigAS4}, SigAS5

|P|[AS3, AS2, AS1]| AS4|

2

3

4

5

6 7

Update flow
Online record

Offline

Online query

Update
message

Blockchain
transaction

interaction

TrustRelaychain

INRchain and
PathKeychain

INRchain and
PathKeychain

Fig. 3: DeBGP†.
† Data in {} is the object to be signed.
and the anomalous ones are prevented by DeBGP.

In the Fig. 3 example, consortium A consists of AS1, AS2,
and AS3, while consortium B consists of AS4, AS5, and AS6.
AS1 originates an update message with prefix P propagating
from it to AS6. To protect BGP, DeBGP workflow is divided
into three steps: validation in consortium A, validation across
consortium A and B as well as validation in consortium B.

For validation in consortium A, AS1 signs the prefix (P),
AS path (AS1), and target AS (AS2). AS2 performs origin
validation against the update message from AS1 with the
prefix to AS mapping from INRchain in consortium A. For
path validation, AS2 verifies what AS1 signs with AS1’s
public key from PathKeychain in consortium A. Then, AS2

signs the prefix (P), AS path ([AS2,AS1]), target AS (AS3)
and preceding signature (SigAS1

). AS3 performs similar
validation as AS2 against the update message from AS2.

For validation across consortium A and B, before AS3

announces the update message to AS4, AS3 records the
corresponding endorsement transaction of the update message
on the TrustRelaychain. Then, AS3 removes AS1’s and AS2’s
signatures and signs the prefix (P), AS path ([AS3, AS2,
AS1]) and target AS (AS4) with the consortium A’s private
key. AS4 queries the corresponding endorsement transaction
for the update message from AS3 on the TrustRelaychain. AS4

accepts the update message if the corresponding endorsement
transaction exists, or else it rejects the update message.

For validation in consortium B, AS4 signs the update
message like above and sends it to AS5. AS5 verifies AS4’s
signature with AS4’s public key from PathKeychain in
consortium B and consortium A’s signature with consortium
A’s public key from the TrustRelaychain. Then, AS5 signs
the update message, and AS6 performs validation as above.

IV. GROUPING ASES ON INTERNET INTO CONSORTIUMS

Internet is a small-world network with high clustering
coefficient [28], which lays the foundation for our grouping.
We first present the consortium security score model, and
then formulate a maximum security grouping (MAX-SEC)
problem. At last, we analyze the MAX-SEC problem and
develop an algorithm for the problem.

3

TABLE I: Notation Table
Symbol Definition
S(gu) Security score of consortium gu
se(ij) Security score of edge (i,j), se(ij)=sn(i)+sn(j),∀eij =1
sn(i) Security reputation of AS i, i∈V,sn(i)>0
eij Binary indicator of existence of edge (i,j) in G,

=1 if edge (i,j) exists in G or 0 otherwise
lij Binary indicator, =1 if ASi and ASj belong to the same

consortium and 0 otherwise. lij =
∑

u∈{1,2...K}biubju
α Weight for the internal edge of consortium
β Weight for the crossing edge of consortium

G(V,E) Internet graph
K A k−way grouping of G, pairwise disjoint subsets of G
gu K consortiums of G after grouping,⋃

gu=G, ∀u∈{1,2...K},gv
⋂
gw=∅ ∀v,w∈{1,2...K}

biu Decision variable, =1 if AS i is in the consortium gu otherwise 0
C(gu) =1 if consortium gu is connected in topology or 0 otherwise
|gu| Size of consortium gu, the number of ASes in the consortium gu

Minsize Minimum size of consortium
Maxsize Maximum size of consortium
Degree(i) Degree of AS i
CondRatio Threshold of the consortium conductance, which is the ratio between

the number of crossing edges and the sum of degrees of all the ASes in it
PRatio Threshold of the ratio between the number of p2p crossing edges

and the number of all crossing edges of the consortium
rij Binary indicator of edge (i,j) business relationship type,

=1 if ASi is ASj ’s provider (or customer) or
0 if ASi and ASj are peers of each other

A. Consortium Security Score Model

The consortium security is influenced by the following
factors. First, the security reputation of ASes that make up the
consortium influences the consortium security. For example, a
consortium consisting of ASes that often announce anomalous
update messages [29, 30] would not be trustworthy by other
consortiums. We get AS security reputation from existing
AS reputation system [31]. Second, the number of ASes in a
consortium influences the consortium security. A consortium
with few ASes is prone to error. Third, the location of ASes
in a consortium matters. The announcement behavior of
border ASes influences at least two consortiums.

Considering all factors above, we define the consortium
security score as Eq. (1). The consortium security score
is expressed by the security score of AS edge, which is
determined by security reputations of both endpoint ASes.
α<β holds between weight for the internal and crossing edge
of consortium since we want the crossing edge which crosses
two consortiums to have high security score. We summarize
our symbols and their definitions in Table I.

S(gu)=
∑

i∨j∈gu

se(ij)eij [β(1−lij)+αlij] ∀i,j (1)

B. Problem Formulation

The Internet is modeled as an undirected graph G(V,E)
with node set V and edge set E. V is the set of ASes on
Internet, and E is the set of edges between ASes. We group
ASes on Internet into K consortiums. Let Φ be the minimum
security score of all consortiums. We aim to maximize
Φ to improve overall security of all consortiums, since
each consortium is the trust anchor in DeBGP. Moreover,
we consider scalability and cost constraint. The maximum
security grouping (MAX-SEC) problem is as follows.

maxΦ (2)

s.t. Φ≤S(gu) ∀u∈{1,2···K} (3)∑
u∈{1,2···K}

biu=1 ∀i∈V (4)

C(gu)=1 ∀u (5)

Minsize≤|gu|≤Maxsize ∀u (6)∑
i∈gu

Degree(i)−2
∑

i∧j∈gu
eij∑

i∈gu
Degree(i)

≤CondRatio ∀u (7)∑
i∨j∈gu

rij(1−lij)∑
i∨j∈gu

(1−lij)
≤PRatio ∀eij=1 ∀u (8)

Eq. (3) means that Φ is the minimum security score of
all consortiums. we maximize the minimum security score
instead of the average score of all consortiums due to the
power law distribution property of Internet [32]. Eq. (4) means
the grouping is not overlapping. Eq. (5) guarantees that each
consortium gu is topologically connected. Eq. (6) means that
the size of the consortium must not be less than Minsize
and greater than Maxsize. As the number of participants in a
blockchain system increases, the transaction throughput (i.e.,
transactions per second) decreases. The number of ASes in a
consortium influences the consortium security. For example,
a consortium with only 3 ASes is vulnerable to failure. If
an AS malfunctions, the other two ASes may not reach a
consensus and cause the consortium to malfunction as well.

Eq. (7) illustrates that the conductance of a consortium
should be lower than CondRatio, i.e., the number of
consortium crossing edges should be fewer. With Eq. (6)
and Eq. (7), a consortium has high security score not due
to numerous ASes and crossing edges. Eq. (8) specifies that
crossing edges of the consortium should be p2p relationship
as far as possible. The number of update messages on p2p
edges is always fewer than that on c2p (or p2c) edges. Update
messages on p2p edges indicate the two peer ASes’ and their
customers’ prefixes. Yet, the update messages on c2p (or p2c)
edges indicate all the prefixes on the Internet.

C. Problem Analysis

Theorem 1. The MAX-SEC problem is NP-hard.

We prove the theorem by a polynomial time reduction from
the Max-Cut Problem, which is NP-hard [33]. For a graph, a
maximum cut is a cut whose size is at least the size of any
other cut. That is, it is a partition of the graph’s vertices into
two complementary sets S and T, such that the number of
edges between the set S and the set T is as large as possible.
The problem of finding a maximum cut in a graph is known as
the Max-Cut Problem [34]. We give detailed proof as follows.

Proof: For each instance of the Max-Cut problem in
graph, i.e., graph G0(V0,E0), we will construct an instance
of P1 problem. Fig. 4 shows an example. Graph G(V,E) is
first constructed as G0(V0,E0). Weight of edges in E0 are
all assigned 1. Then we add two nodes r1 and r2 to V0 to
construct V . The two nodes only have edges of weight 0 with
all nodes in V0. Let α be 0, β be 1 and K be 2. For Eq. (6)
we set MinSize as 0 and MaxSize as |V |. For Eq. (7) and Eq.
(8), we set CondiRatio and PRatio as 1. The construction

4

r1 r2

1 2

3 4
1

1
1

1

5 6

7 8
1

1
1

1

1

1
G

1 2

3 4
1

1
1

1

5 6

7 8
1

1
1

1

1

1
G0

Fig. 4: An example for proof of Theorem 1
of the above instance of P1 can be done in polynomial time.

We now show that finding the max cut in G0 is equivalent
to finding the optimal solution of problem P1 in G. On the
one hand, given the max cut C(S,T) in G0, we construct P as
(S∪r1,T∪r2). Due to our construction process above, S∪r1
is connected, since there is an edge between r1 and every node
in S. Similarly, T∪r2 is connected, thus P is an available solu-
tion of P1. Furthermore, we can see that S(gu) in our variable
calculation equals the total edge weight between S ∪ r1 and
T∪r2, which equals the edge number between S and its com-
plement T , since the edge weights between r1(r2) and nodes
in T(S) are all 0. Thus, S(gu) is maximized since C(S,T)
has the maximum cut edge number, which means that P is the
optimal solution of P1. On the other hand, given the optimal
solution of P1, i.e. P (a1,a2), we construct a cut C in G0 as
(a1\(r1∪r2),a2\(r1∪r2)). We prove C is the max cut in G0

by contradiction. If we find a cut C ′ bigger than C, then we
could construct a solution better than P from C ′ by the method
above, which is a contradiction. Thus, C is the max cut in G0.

From the process above, we can see that finding the max
cut in G0 is equivalent to finding the optimal solution of
problem P1 in G. The construction can be done in polynomial
time. This ends our proof. Problem P1 is NP-hard.

According to Theorem 1, it is not easy to find the optimal
solution of the MAX-SEC problem. Thus, we propose a
heuristic algorithm to solve the problem below.

D. Heuristic AS grouping algorithm

Heuristic algorithm of Max-Cut Problem cannot be used for
the MAX-SEC problem due to two reasons. First, Max-Cut
Problem does not take connectivity into consideration, but the
MAX-SEC problem demands connectivity of all consortiums.
Second, the MAX-SEC problem demands the number of
crossing edges to be less, however, Max-Cut Problem does
not have this constraint. Therefore, we need to design a
custom algorithm.

The algorithm ranks ASes as candidate seed list in terms
of two metrics, i.e., degree and security reputation, with same
weight (line input). The algorithm prioritizes ASes with high
degree and low security reputation for two reasons. First, it
is easier for high degree ASes to expand their neighbors into
their consortium. Second, We expect ASes at the border of the
consortium to have high security reputation since they record
blockchain endorsement transactions for update messages
across consortiums. While seed ASes are probably inside the
consortium, thus it is better to select seed ASes with low
security reputation to leave ASes with high security reputation
at the border. At last, the algorithm outputs consortium set
(line output).

Algorithm 1: AS grouping algorithm
input : The number of consortiums, K; The seed

candidate list of ASes that are ranked by their
degree and security reputation, (a1,a2,···,an)

output: The consortium set g, (g1,g2,···,gK).
1 initialization s1=a1,S=(s1),N=N (s1),i=1
2 while |S|<K do
3 i← i+1
4 if ai∈N then
5 continue
6 else
7 S←S∪ai
8 N←N∪N (ai)

9 for i←1 to K do // seed set S, (s1,s2,···,sK)
10 gi.add(si)

11 while AS grouping not over do
12 g.sort(ConsortiumSecurityScore)
13 for i←1 to K do
14 candidate=FindBest(gi)
15 if Candidate meets constrains then
16 gi.add(candidate)
17 else
18 continue

19 return g

The algorithm sets the first seed s1 as the first AS in the
seed candidate list, i.e., a1, and adds s1 in seed set. Then, the
algorithm sets the neighbor set of seeds N as the neighbor
set of s1. The function N (si) returns the set of ASes that
are the neighbors of si. Empirically, the neighbors of si
consists of ASes three hops away from si (line 1). The first
loop continues until K seeds are selected (line 2). If the
next candidate AS is in the current neighbor set of seeds, the
algorithm re-selects next candidate AS (line 3-5). Otherwise,
the algorithm updates seed set and their neighbor set (line
6-8). The loop stops when seed set S construction is finished.

After selecting seeds, the algorithm expands consortiums
around these seeds. The algorithm first adds each seed to its
corresponding consortium (line 9-10). The algorithm continues
to add ASes into consortiums until no ASes are left, then the
grouping is finished (line 11). The algorithm sorts consortiums
in ascending order of security score (line 12). Low security
score consortiums have priority to first find best candidate
ASes, which conforms to the optimization goal of the MAX-
SEC problem. After sorting consortiums, the algorithm finds
the candidate AS of consortium gi through FindBest(gi)
(line 13-14). The function FindBest(gi) selects the best
candidate AS from the consortium gi’s neighbor ASes that
have not been grouped into other consortiums. In this way,
Eq.(4) and Eq.(5) hold for every consortium. The best
candidate AS brings the most security gain to the consortium
gi. It also has the most edges and c2p (or p2c) edges with
ASes in the consortium gi. This corresponds to Eq.(1), Eq.
(7) and Eq. (8), respevtively. Then the algorithm checks

5

TABLE II: INRchain Transaction
Transaction Type Format
INR Registration |INR|Entity|
INR Revocation |INR|Entity|

Origin Authorization Registration |Prefix|Maxlen|OriginAS|
Origin Authorization Revocation |Prefix|Maxlen|OriginAS|

whether the candidate AS meets constrains, i.e., Eq. (6), Eq.
(7) and Eq. (8) (line 15). Maxsize, Minsize, CondRatio
and PRatio in these equations are set empirically based on
security and cost. If the candidate AS meets constrains, the
algorithm adds it in the corresponding consortium (line 16) or
else the algorithm repeats the process for the next consortium
(line 17-18). When all ASes are added in consortiums, the
algorithm returns consortium set g (line 19).

V. DEBGP SECURITY MECHANISM WITH BLOCKCHAIN

After grouping ASes on Internet into consortiums, we
design DeBGP intra-consortium and inter-consortium security
mechanism with blockchain. Intra-consortium mechanism
validates update messages in the consortium, while inter-
consortium mechanism validates update messages across
consortiums. DeBGP is shown in Fig. 3.

A. Intra-consortium Mechanism

1) Origin Validation: To protect BGP from origin
hijacking, the consortium in DeBGP records Internet number
resource (INR, including IP prefix and ASN) ownership and
prefix to AS mappings on the blockchain, i.e., INRchain. For
an update message, ASes in the consortium check whether the
origin AS is the legitimate originator of the prefix according
to the prefix to AS mapping from the INRchain.

The INRchain manages Internet number resource and
prefix to AS mappings in the consortium through four types
of transaction, as shown in Table II. INR Registration and
Revocation transaction record the INR ownership of entities
like ISPs. Origin Authorization Registration and Revocation
transaction indicate prefix to AS mappings with the maximum
length of the prefix that can be originated. Every transaction
also records its initiator and endorsement from other ASes.

INRchain smart contract is executed by ASes in the
consortium for transaction validation as Algorithm 2. For the
INR Registration transaction, the smart contract checks the
INR ownership through multiple data sources, i.e., Whois
[35] and PeeringDB [36] (line 3-4). For the INR Revocation
transaction, the smart contract checks whether a corresponding
INR Registration transaction exists and the initiators of the
two transactions are the same (line 5-7). For the Origin
Authorization Registration transaction, the smart contract
checks whether the initiator entity of this transaction is the
same as the Entity in the INR Registration transaction of the
corresponding prefix. Then, it checks the origin authorization
using prefix to origin AS mapping in update messages from
route collectors of RIPE RIS [37] and Route Views [38]
as evidence (line 8-10). For the Origin Authorization
Revocation transaction, the smart contract checks like INR
Revocation transaction (line 11-13). If transactions pass the
validation above, they will be recorded on the INRchain.

Algorithm 2: INRchain smart contract

1 initialization ASes
executing the smart contract receive a transaction

2 switch Transaction Type do
3 case INR Registration do
4 OwnershipCheck(INR)
5 case INR Revocation do
6 RegistrationExistence(INR)
7 SameInitiatorCheck(Registration, Revocation)
8 case Origin Authorization Registration do
9 SameEntityCheck(Initiator, INR Registration)

10 MappingCheck(Prefix, Origin AS)
11 case Origin Authorization Revocation do
12 RegistrationExistence(Authorization)
13 SameInitiatorCheck(Registration, Revocation)

2) Path Validation: To protect BGP from path hijacking,
DeBGP designs a new path attribute DeBGP SIG in BGP up-
date message to record signatures. Each consortium maintains
a blockchain PathKeychain to manage AS public keys in a de-
centralized way. ASes validate the AS path consisting of ASes
in the same consortium hop by hop with corresponding AS
public keys from the PathKeychain. After validation, ASes fill
the DeBGP SIG field with its signature of the prefix, AS path,
the target AS in the same consortium and preceding signatures.

B. Inter-consortium Mechanism

We elaborate how to perform origin and path validation
for update messages across consortiums after ensuring
BGP security in the consortium. In DeBGP, two adjacent
consortiums maintain a blockchain TrustRelaychain to
record endorsement of the update message across the two
consortiums and public keys of the two consortiums.

Before ASes announce an update message to ASes
in another consortium, they first record the endorsement
of the update message from their consortium on the
TrustRelaychain. The endorsement is an UpdateEndorsement
transaction on the TrustRelaychain. The UpdateEndorsement
transaction contains the prefix, AS path and receiver AS
of the update message across consortiums. Its format is
|Prefix|ASPath|TargetAS|. Then ASes sign the prefix,
AS path and target AS as a whole with their consortium’s
public key. At last, ASes fill the DeBGP SIG field in the
update message with the signature and send the update
message to the target AS in another consortium. The target
AS verifies the signature with public key of preceding
consortium from the TrustRelaychain. Moreover, the target
AS queries the corresponding UpdateEndorsement transaction
of the update message on the TrustRelaychain.

TrustRelaychain smart contract is executed by ASes in the
consortium for UpdateEndorsement transaction validation as
Algorithm 3. The smart contract first extracts the Prefix and
ASPath fields from the UpdateEndorsement transaction (line
1). If the length of ASPath is 1, the smart contract checks
whether the last AS in the ASPath is the legitimate origin
of the Prefix based on the local prefix to AS mappings from

6

the INRchain (line 2-3). For ASPath of length greater than
1, the smart contract checks each AS in the ASPath except
ASPAth[0], i.e., transaction initiator (line 4-5). If the AS is
in the same consortium with the transaction initiator AS, it
checks whether it has announced the update message, which
contains the Prefix and AS path from ASPath[-1] to itself, to
its target AS based on its Adj-RIBs-Out table (line 6-8). The
Adj-RIBs-Out table of AS BGP router contains the routes for
advertisement to specific peers [1]. Otherwise, the AS is not
in the same consortium with the transaction initiator AS. If
the AS is the first AS that is in a different consortium from
ASPath[0], the smart contract checks whether the correspond-
ing UpdateEndorsement transaction is on the TrustRelaychain
maintained with the AS’s consortium (line 9-12). Otherwise,
the smart contract terminates (line 13-14). If the UpdateEn-
dorsement transaction passes the validation above, it will be
recorded on the TrustRelaychain maintained with the target
AS’s consortium. The consortium public key management on
the TrustRelaychain is omitted due to space limit.

Algorithm 3: TrustRelaychain smart contract

1 initialization
Prefix, ASPath=Extract(UpdateEndorsement)

2 if Len(ASPath) == 1 then
3 LocalINRchainCheck(Prefix, ASPath[-1])
4 else
5 for AS in ASPath[1:] do
6 if SameConsortium(AS, ASPath[0]) then
7 i←ASPath.index(AS)
8 AdjRIBsOutCheck(Prefix,

ASPath[i:-1], ASPath[i-1])
9 else

10 if FirstDifferentConsortium(AS,
ASPath[0]) then

11 i←ASPath.index(AS)
12 TrustRelaychainCheck(Prefix,

ASPath[i:-1], ASPath[i-1])
13 else
14 break

VI. SECURITY ANALYSIS
A. Trust Model

There are two trust models now: “root of trust” and “web
of trust”. The former has the drawback of centralization due
to a single root trust anchor. The latter does not specify the
criteria for establishing trust, like the number of trust anchors.
DeBGP uses a variant of “web of trust” model [39], i.e.,
“consortium of trust” model. In the model, every consortium
after our grouping algorithm is a trust anchor. In DeBGP,
ASes in the consortium reach consensus on regulation
of their routing behaviors. When ASes announce update
messages to ASes in different consortiums, their consortium
endorses the update messages. The endorsement is recorded
on the blockchain for query from other ASes. In this way,
trust propagates along AS path through consortiums and

tamper-proof blockchains maintained between them.

B. Security Effectiveness Analysis

Protection from origin hijacking. In DeBGP, an arbitrary
AS can prevent prefix/sub-prefix hijacking aiming at other
ASes in the same consortium. For update messages across
consortiums, sender consortium endorses them to guarantee
security. In the Fig. 1(a) example, we suppose AS4 and
the malicious AS5 are in different consortiums. AS5 tries
to hijack the victim AS1’s prefix, and the consortium of
AS5 will not endorse the corresponding anomalous update
message from AS5. AS5 can still announce the anomalous
update message to AS4 even if its consortium does not
endorse the message. AS4 will reject the anomalous update
message since it cannot find the corresponding endorsement
transaction for the update message on the TrustRelaychain
maintained between its consortium and AS5’s consortium.
The analysis is similar for sub-prefix hijacking in Fig. 1(b).
Protection from path hijacking. The path is secure in each
consortium due to hop-by-hop validation in DeBGP. For the
update message across consortiums, the sender AS signs the
path with its consortium’s private key. To prevent anomaly
of the sender AS, sender AS’s consortium endorses the
update message. The corresponding blockchain endorsement
transaction is recorded on the TrustRelaychain maintained
between the sender consortium and the receiver consortium.
The receiver AS validates the update message by querying the
corresponding transaction. In the Fig. 2(a) example, we sup-
pose AS4 and the malicious AS5 are in different consortiums.
AS5 forges the link with the victim AS1 in an anomalous
update message, and the consortium of AS5 will not endorse
the update message since AdjRIBssOutCheck() or TrustRelay-
chainCheck() in Algorithm 3 will prevent the corresponding
UpdateEndorsement transaction. AS5 can still announce the
anomalous update message to AS4 even if its consortium does
not endorse the message. AS4 will reject the anomalous update
message due to similar reason as above. The analysis is similar
for unauthorized route announcement in Fig. 2(b).

VII. EVALUATION

A. Experiment Setup

We implement DeBGP prototype with Hyperledger
Fabric [23] for blockchains and ExaBGP [40] as the agent
to interact with BGP daemons and blockchains. FRR [41] and
FRR-based BGPsec [42] are used for BGP and BGPsec
daemon, respectively. CAIDA [43] datasets are used for eval-
uation of our grouping algorithm and system decentralization.
The datasets contain real Internet AS topology with business
relationship as well as the allocation of about 4 billion
IPv4 addresses and 70 thousand ASNs. We collect about
16 million paths from real ASes’ routing tables and update
message stream of 15 minutes from Route Views [38] for
evaluation of path validation cost and router CPU utilization.
SimBGP [44] is used to evaluate the convergence time in
common experimental topologies. All our experiments are
conducted on Dell PowerEdge R740 Rack Server with Intel(R)

7

25th 50th 75th
Percentile

0

20

40

60

80
Sc
or
e

Kaffpa partition algorithm
Our grouping algorithm

(a) Security score.

25th 50th 75th
Percentile

0.00

0.25

0.50

0.75

1.00

C
on
du
ct
io
n

(b) Conductance.

25th 50th 75th
Percentile

0.00

0.25

0.50

0.75

1.00

R
at
io

(c) P2p crossing edges
ratio.

Fig. 5: Grouping evaluation

Xeon(R) Gold 6230R CPU @ 2.10 GHz and 128 GB RAM.

B. Grouping Evaluation

The consortium security score indicates how secure the
consortium is. As Fig. 5(a) shows, DeBGP outperforms
Karlsruhe Fast Flow Partitioner (Kaffpaa)
[45], one of the most popular graph partitioning tools, in the
25th, 50th, and 75th percentile of consortiums. DeBGP realizes
a 186% consortium security score improvement than Kaffpaa
on average. Particularly, DeBGP improves security scores
of low score consortiums more than high score consortiums
compared to Kaffpaa since low security score consortiums
have priority to first find best candidate ASe in DeBGP.

The consortium conductance defined in Eq. (7) reflects
the consortium’s degree of coupling with its neighbors. A
consortium with fewer AS links to its neighbors has smaller
conductance and thus lower inter-consortium interaction cost.
As Fig. 5(b) shows, DeBGP achieves similar conductance
as Kaffpaa, whose optimization objective is to minimize
the conductance. DeBGP degrades about 10% consortium
conductance than Kaffpaa on average. Both algorithms
realize relatively high conductance, since the Internet is a
well-connected network.

We use the ratio between the number of p2p crossing
edges and the number of all crossing edges of the consortium
to evaluate cost. A consortium with the high ratio always
processes fewer update messages across consortiums. As
Fig. 5(c) shows, the ratio of DeBGP is 26% higher than
Kaffpaa on average. With the increase of the percentile, the
ratio of Kaffpaa is approaching DeBGP, since the Internet is
transiting from a transit hierarchy to a peering mesh [46].

C. Performance Evaluation

1) Decentralization: The decentralization of DeBGP is
evaluated by the influence of a single point failure on the
whole system. We analyze how much IPv4 address space
and how many ASes on the Internet will be influenced if a
consortium fails. As Fig. 6(a) shows, more than 90% single
consortium failures in DeBGP cause less than 2% influence in
terms of IPv4 address space. Moreover, all single consortium
failures cause less than 4% influence. Fig. 6(b) shows that
more than 90% single consortium failures in DeBGP cause
less than 1% influence in terms of ASes. Moreover, all
single consortium failures cause less than 2% influence.
Nevertheless, BGPsec relies on the centralized RPKI under
the authority of 5 RIRs. Any RIR’s failure would cause
severe global breakdown, for example, American Registry for
Internet Numbers (ARIN) failure would cause influence on

0 1 2 3 4
Influence of single point failure (%)

0

20

40

60

80

100

C
D

F

DeBGP

(a) IPv4 address space.

0.0 0.5 1.0 1.5
Influence of single point failure (%)

0

20

40

60

80

100

C
D

F

DeBGP

(b) AS.

Fig. 6: Decentralization in terms of influence of single point
failure on system.

AS₁₁₄₀ AS₃₁₀₁₉ AS₃₄₉₆₈ AS₅₀₇₆₃ AS₅₁₀₈₈
AS

0.5

0.8

1.1

1.4

1.7

2.0

N
um

be
r o

f s
ca

la
r m

ul
tip

lic
at

io
ns

×107

BGPsec
DeBGP

(a) Number of the scalar multiplica-
tions.

AS₁₁₄₀ AS₃₁₀₁₉ AS₃₄₉₆₈ AS₅₀₇₆₃ AS₅₁₀₈₈
AS

0.4

0.6

0.8

1.0

1.2

Ti
m

e
(s

)

×104

BGPsec
DeBGP

(b) Time of cryptographic computa-
tions.

Fig. 7: Path validation cost for some ASes.

about 46% IPv4 address space on the Internet.
2) Path Validation Cost: Cryptographic computations

incur the most cost of path validation, which include
the generation and verification of signatures. The Elliptic
Curve Digital Signature Algorithm (ECDSA) with curve
P-256 is used for signing and verifying update messages
in both BGPsec [13] and DeBGP. The ECDSA signature
verification is considerably slower than generation. The most
computationally intensive operation of ECDSA, i.e., the scalar
multiplication, is required twice for signature verification but
only once for signature generation [47, 48].

Fig. 7(a) shows the number of scalar multiplications for
all ASes along the paths in some ASes’s routing tables.
DeBGP reduces 26% number of the scalar multiplications
than BGPsec in path validation. For example, to construct
a path [1140, 6939, 4788, 15932, 9587, 24378] in AS1140’s
routing table, all 6 ASes along the path perform 5 signature
generations and 15 signature verifications in BGPsec.
Cryptographic computations in BGPsec require 35 scalar
multiplications in total. In DeBGP, our AS grouping algorithm
puts AS1140, AS6939, AS4788 in one consortium and AS15932,
AS9587, AS24378 in another consortium. All 6 ASes along the
path perform 7 signature generations (additional 2 signature
generations for the TrustRelaychain endorsement transaction)
and 9 signature verifications. These cryptographic compu-
tations require 25 scalar multiplications in total. Fig. 7(b)
shows the cryptographic computation time for path validation
in our experiment setup. DeBGP reduces 37% cryptographic
computation time than BGPsec in path validation.

We use AS paths from routing tables of monitor ASes
from Route Views [38] AMS-IX Collector to evaluate
path validation cost for them. Fig. 8(a) and Fig. 8(b) show
the distribution of the number of the scalar multiplications
and the time of cryptographic computations of these monitor
ASes, respectively. DeBGP reduces 21% number and 31%

8

0.00 0.75 1.50 2.25 3.00
Number of scalar multiplications ×107

0

20

40

60

80

100
C

D
F

BGPsec
DeBGP

(a) Distribution of number.

0.0 0.5 1.0 1.5 2.0
Time (s) ×104

0

20

40

60

80

100

C
D

F

BGPsec
DeBGP

(b) Distribution of time.

Fig. 8: Distribution of path validation cost.
TABLE III: Convergence time (s)

Topology BGPsec DeBGP
B-Clique-6 138.19 138.29

Clique-6 86.26 86.35
CRYSTAL-5 86.26 86.35

Focus-16 86.52 86.71
Grid-16 136.28 136.38
Ring-15 169.14 169.64

time of cryptographic computations than BGPsec.
3) CPU Utilization: BGP processes consume the majority

of CPU cycles on the router [49], thus router CPU load is
a significant concern for operators. Fig. 9 shows the CPU
utilization of BGPsec and DeBGP. For monitor ASes from
AMS-IX Collector of Route Views [38], we feed their cor-
responding real BGP update message stream of 15 minutes to
a BGP daemon for CPU utilization measurement. On average,
DeBGP reduces 51% router CPU utilization than BGPsec.

0 10 20 30 40 50 60
CPU (%)

0

20

40

60

80

100

C
D

F

BGPsec
DeBGP

Fig. 9: CPU utilization.
4) Convergence Time: Table III shows convergence time

of BGPsec and DeBGP in different topologies [26]. Update
message processing delay of an AS is required for convergence
time evaluation of SimBGP. We get the processing delay of
BGPsec and DeBGP from emulation experiment. Table III
indicates that DeBGP increases the convergence time by
no more 0.3% than BGPsec. The transaction recording and
querying of blockchain introduces delays in update message
validation, but this causes little impact on convergence time.

VIII. RELATED WORK

Centralized BGP security architecture. RPKI [12] and
BGPsec [13] validate BGP update messages based on a cen-
tralized authority. Any single point failure of the authority may
cause a massive global breakdown. In addition, hop-by-hop
path validation in BGPsec incurs massive repeated signature
verification cost. Both of them are inspired by S-BGP [4].
Other variants including psBGP [50], SPV [5], APA [10],
Hu et al.’s cumulative authentication mechanism and FS-
BGP [11] try to reduce centralization or path validation cost,
but they all still rely on a centralized authority. psBGP [50]
uses a rating mechanism similar to that used by PGP [39] for

prefix origination and BGPsec-like way for path validation.
However, psBGP assumes the existence of a centralized
trust model for AS number management. SPV (Secure Path
Vector) [5] explores symmetric cryptographic techniques
to perform path validation. Aggregated path authentication
(APA) uses signature amortization and aggregate signatures
to reduce the path validation cost [7–9]. Hu et al. proposes to
use message authentication code (MAC) to speed up the path
validation [10]. FS-BGP [11] realizes a similar security level
as BGPsec through signing critical AS-path segments.
Decentralized BGP security architecture. soBGP [17]
avoids the reliance on the centralized authority. However, it
leaves open the issue of how to establish trust anchors for
validation of the signed objects [19]. Moreover, soBGP cannot
prevent BGP hijacking comprehensively. soBGP cannot verify
that AS path in the update message is consistent with what
the preceding ASes along the path announce, which BGPsec
can. The validation of update messages may fail in IRV [18]
since the response of AS IRV servers to queries about
their routes may be wrong [19]. Additionally, some studies
propose blockchain-based BGP security solutions [22, 51, 52],
however, they focus less on blockchain scalability challenges
and BGP path validation.
BGP anomaly detection. Some studies such as PHAS [53],
ARTEMIS [54], Argus [55], Themis [56] and Dong et
al.’s proposal [57] perform detection after BGP anomalies
occur. They process collected control plane data and data
plane probing data with various algorithms to detect BGP
anomalies. Different from the above existing studies, our
work prevents the anomalies in advance.

IX. CONCLUSION

We propose DeBGP, a decentralized and efficient BGP hi-
jacking prevention system. DeBGP converts each BGP update
message into corresponding blockchain transactions that ASes
can query for validation. To resolve the scalability issues
incurred by blockchains, we group ASes on the Internet into
different consortiums taking security and validation cost into
consideration. We present the intra-consortium mechanism to
guarantee BGP security within a consortium, and the inter-
consortium mechanism to relay trust between consortiums.
We implement the DeBGP prototype and analyze its security
effectiveness in preventing BGP hijacking. Our experiments
demonstrate the effectiveness and efficiency of DeBGP.

ACKNOWLEDGMENT

The research is supported in part by the National Natural
Science Foundation of China (NSFC) under Grant 62221003,
61832013, 62132011, 62132004 and 62202260; and in part
by the China Postdoctoral Science Foundation under Grant
2022M721824; and in part by the Shuimu Tsinghua Scholar
Program. Mingwei Xu is the corresponding author of the
paper.

REFERENCES

[1] Y. Rekhter, S. Hares, and T. Li, “A Border Gateway Protocol 4
(BGP-4),” IETF RFC 4271.

9

[2] “youtube,” https://www.ripe.net/publications/news/industry-developme
nts/youtube-hijacking-a-ripe-ncc-ris-case-study.

[3] C. Cimpanu, “Klayswap crypto users lose funds after bgp hijack - the
record by recorded future,” https://therecord.media/klayswap-crypto-u
sers-lose-funds-after-bgp-hijack/.

[4] S. Kent, C. Lynn, and K. Seo, “Secure border gateway protocol
(s-bgp),” IEEE JSAC, 2000.

[5] Y.-C. Hu, A. Perrig, and M. Sirbu, “Spv: Secure path vector routing for
securing bgp,” in Proceedings of the 2004 conference on Applications,
technologies, architectures, and protocols for computer communications,
2004, pp. 179–192.

[6] B. Raghavan, S. Panjwani, and A. Mityagin, “Analysis of the spv
secure routing protocol: Weaknesses and lessons,” ACM SIGCOMM
Computer Communication Review, vol. 37, no. 2, pp. 29–38, 2007.

[7] D. M. Nicol, S. W. Smith, and M. Zhao, “Efficient security for bgp
route announcements,” 2003.

[8] M. Zhao, S. W. Smith, and D. M. Nicol, “Aggregated path authentication
for efficient bgp security,” in Proceedings of the 12th ACM conference
on Computer and communications security, 2005, pp. 128–138.

[9] D. Boneh, C. Gentry, B. Lynn, and H. Shacham, “Aggregate and
verifiably encrypted signatures from bilinear maps,” in Advances in
Cryptology—EUROCRYPT 2003: International Conference on the
Theory and Applications of Cryptographic Techniques, Warsaw, Poland,
May 4–8, 2003 Proceedings 22. Springer, 2003, pp. 416–432.

[10] Y.-C. Hu, A. Perrig, and D. B. Johnson, “Efficient security mechanisms
for routing protocolsa.” in Ndss. Citeseer, 2003.

[11] Y. Xiang, X. Shi, J. Wu, Z. Wang, and X. Yin, “Sign what you
really care about–secure bgp as-paths efficiently,” Computer Networks,
vol. 57, no. 10, pp. 2250–2265, 2013.

[12] M. Lepinski and S. Kent, “An Infrastructure to Support Secure Internet
Routing,” IETF RFC 6480.

[13] M. Lepinski and K. Sriram, “BGPsec Protocol Specification,” RFC 8205.
[14] B. Rothenberger, D. E. Asoni, D. Barrera, and A. Perrig, “Internet kill

switches demystified,” in Proceedings of the 10th European Workshop
on Systems Security, 2017, pp. 1–6.

[15] K. Shrishak and H. Shulman, “Limiting the power of rpki authorities,”
in Proceedings of the Applied Networking Research Workshop, 2020,
pp. 12–18.

[16] D. Cooper, E. Heilman, K. Brogle, L. Reyzin, and S. Goldberg, “On
the risk of misbehaving rpki authorities,” in Proceedings of the Twelfth
ACM Workshop on Hot Topics in Networks, 2013, pp. 1–7.

[17] R. White, “Securing bgp through secure origin bgp (sobgp),” Business
Communications Review, vol. 33, no. 5, pp. 47–53, 2003.

[18] G. Goodell, W. Aiello, T. Griffin, J. Ioannidis, P. D. McDaniel, and
A. D. Rubin, “Working around bgp: an incremental approach to
improving security and accuracy in interdomain routing.” in NDSS,
vol. 23. Citeseer, 2003, p. 156.

[19] G. Huston, M. Rossi, and G. Armitage, “Securing bgp—a literature
survey,” IEEE Communications Surveys & Tutorials, vol. 13, no. 2, pp.
199–222, 2010.

[20] S. Matsumoto and R. M. Reischuk, “Ikp: turning a pki around with
decentralized automated incentives,” in Proc. IEEE S&P, 2017.

[21] E. Karaarslan and E. Adiguzel, “Blockchain based dns and pki
solutions,” IEEE Communications Standards Magazine, 2018.

[22] A. Hari and T. Lakshman, “The internet blockchain: A distributed,
tamper-resistant transaction framework for the internet,” in Proceedings
of the 15th ACM workshop on hot topics in networks, 2016, pp. 204–210.

[23] E. Androulaki, A. Barger, V. Bortnikov, C. Cachin, K. Christidis et al.,
“Hyperledger fabric: a distributed operating system for permissioned
blockchains,” in Proc. EuroSys, 2018.

[24] C. Li, P. Li, D. Zhou, Z. Yang, M. Wu, G. Yang, W. Xu, F. Long, and
A. C.-C. Yao, “A decentralized blockchain with high throughput and
fast confirmation,” in 2020 {USENIX} Annual Technical Conference
({USENIX}{ATC} 20), 2020, pp. 515–528.

[25] G. Huston, “Bgp in 2021 — bgp updates — apnic blog,”
https://blog.apnic.net/2022/01/13/bgp-updates-2021/.

[26] S. Deshpande and B. Sikdar, “On the impact of route processing
and mrai timers on bgp convergence times,” in IEEE Global
Telecommunications Conference, 2004. GLOBECOM’04., vol. 2.
IEEE, 2004, pp. 1147–1151.

[27] L. Gao, “On inferring autonomous system relationships in the internet,”
IEEE/ACM Transactions on networking, vol. 9, no. 6, pp. 733–745,
2001.

[28] X. Wang and D. Loguinov, “Understanding and modeling the
internet topology: economics and evolution perspective,” IEEE/ACM
Transactions on Networking, vol. 18, no. 1, pp. 257–270, 2009.

[29] M. Konte, R. Perdisci, and N. Feamster, “Aswatch: An as reputation sys-
tem to expose bulletproof hosting ases,” in Proc. ACM SIGCOMM, 2015.

[30] C. Testart, P. Richter, A. King, A. Dainotti, and D. Clark, “Profiling
bgp serial hijackers: capturing persistent misbehavior in the global
routing table,” in Proc. ACM IMC, 2019.

[31] “bgpranking,” https://bgpranking-ng.circl.lu/.
[32] M. Faloutsos, P. Faloutsos, and C. Faloutsos, “On power-law

relationships of the internet topology,” ACM SIGCOMM computer
communication review, vol. 29, no. 4, pp. 251–262, 1999.

[33] R. M. Karp, “Reducibility among combinatorial problems,” in
Complexity of computer computations. Springer, 1972, pp. 85–103.

[34] Wikipedia contributors, “Maximum cut - wikipedia,” https:
//en.wikipedia.org/wiki/Maximum cut.

[35] “Whois,” https://who.is/.
[36] “Peeringdb,” https://www.peeringdb.com/.
[37] “Ripe ris (routing information service),” https://www.ripe.net/analyse

/internet-measurements/routing-information-service-ris/ris-raw-data.
[38] “Routeviews,” http://www.routeviews.org/routeviews/.
[39] P. R. Zimmermann, The official PGP user’s guide. MIT press, 1995.
[40] “Exa-networks/exabgp: The bgp swiss army knife of networking,”

https://github.com/Exa-Networks/exabgp.
[41] “Frrouting,” https://frrouting.org/.
[42] T. C. Schmidt, “Implementation and evaluation of bgpsec for the

frrouting suite.”
[43] “Caida.” https://www.caida.org/.
[44] “Simbgp: Python event-driven bgp simulator,” http://www.bgpvista.c

om/simbgp.php.
[45] P. Sanders and C. Schulz, “Kahip v3. 00–karlsruhe high quality

partitioning–user guide,” arXiv preprint arXiv:1311.1714, 2013.
[46] A. Dhamdhere and C. Dovrolis, “The internet is flat: modeling the

transition from a transit hierarchy to a peering mesh,” in Proc. ACM
CoNEXT, 2010.

[47] A. Antipa, D. Brown, R. Gallant, R. Lambert, R. Struik, and S. Vanstone,
“Accelerated verification of ecdsa signatures,” in Selected Areas in
Cryptography: 12th International Workshop, SAC 2005, Kingston, ON,
Canada, August 11-12, 2005, Revised Selected Papers 12. Springer,
2006, pp. 307–318.

[48] J. Petit, “Analysis of ecdsa authentication processing in vanets,” in
2009 3rd International Conference on New Technologies, Mobility and
Security. IEEE, 2009, pp. 1–5.

[49] S. Agarwal, C.-N. Chuah, S. Bhattacharyya, and C. Diot, “Impact of
bgp dynamics on router cpu utilization,” in Proc. PAM. Springer, 2004.

[50] T. Wan, E. Kranakis, and P. C. van Oorschot, “Pretty secure bgp,
psbgp.” in NDSS. Citeseer, 2005.

[51] Q. Xing, B. Wang, and X. Wang, “Bgpcoin: Blockchain-based internet
number resource authority and bgp security solution,” Symmetry,
vol. 10, no. 9, p. 408, 2018.

[52] J. Paillisse, M. Ferriol, E. Garcia, H. Latif, C. Piris, A. Lopez,
B. Kuerbis, A. Rodriguez-Natal, V. Ermagan, F. Maino et al., “Ipchain:
Securing ip prefix allocation and delegation with blockchain,” in 2018
IEEE International Conference on Internet of Things (iThings) and
IEEE Green Computing and Communications (GreenCom) and IEEE
Cyber, Physical and Social Computing (CPSCom) and IEEE Smart
Data (SmartData). IEEE, 2018, pp. 1236–1243.

[53] M. Lad, D. Massey, D. Pei, Y. Wu, B. Zhang, and L. Zhang, “Phas: A
prefix hijack alert system.” in USENIX Security Symposium, 2006.

[54] P. Sermpezis, V. Kotronis, P. Gigis, X. Dimitropoulos, D. Cicalese,
A. King, and A. Dainotti, “Artemis: Neutralizing bgp hijacking within
a minute,” IEEE/ACM Transactions on Networking, 2018.

[55] X. Shi, Y. Xiang, Z. Wang, X. Yin, and J. Wu, “Detecting prefix
hijackings in the internet with argus,” in Proc. ACM IMC, 2012.

[56] L. Qin, D. Li, R. Li, and K. Wang, “Themis: Accelerating the detection
of route origin hijacking by distinguishing legitimate and illegitimate
{MOAS},” in 31st USENIX Security Symposium (USENIX Security
22), 2022, pp. 4509–4524.

[57] Y. Dong, Q. Li, R. O. Sinnott, Y. Jiang, and S. Xia, “Isp self-operated
bgp anomaly detection based on weakly supervised learning,” in 2021
IEEE 29th International Conference on Network Protocols (ICNP).
IEEE, 2021, pp. 1–11.

10

