
Enabling High Quality Real-Time Communications with Adaptive Frame-Rate
Zili Meng1,2, Tingfeng Wang1,2,3, Yixin Shen1, Bo Wang1,4, Mingwei Xu1,4,

Rui Han2, Honghao Liu2, Venkat Arun5, Hongxin Hu6, Xue Wei2
1Tsinghua University, 2Tencent Inc., 3Beijing University of Posts and Telecommunications,

4Zhongguancun Laboratory, 5Massachusetts Institute of Technology, 6University at Buffalo, SUNY

Abstract
Emerging high-quality real-time communication (RTC) appli-
cations stream ultra-high-definition (UHD) videos with a high
frame rate (HFR). They use edge computing, which enables high
bandwidth and low latency streaming. Our measurements, from
the cloud gaming platform of one of the largest gaming compa-
nies, show that, in this setting, the queue at the client-side decoder
is often the cause of high latency that hurts the user’s experience.
We, therefore, propose an Adaptive Frame Rate (AFR) controller
that helps achieve ultra-low latency by adaptively coordinating
the frame rate with fluctuating network conditions and decoder
capacity. AFR’s design addresses two key challenges: (1) queue
measurements do not provide timely feedback for the control
loop; and (2) multiple factors control the decoder queue, and
different actions must be taken depending on why the queue
accumulates. Both trace-driven simulations and large-scale de-
ployments in the wild demonstrate that AFR can reduce the tail
queuing delay by up to 7.4× and the stuttering events measured
by end-to-end delay by 34% on average. AFR has been deployed
in production in our cloud gaming service for over one year.

1 Introduction
Emerging network technologies like 5G have gotten both
academia and industry excited about high-quality real-time
communication (RTC) applications with ultra-high definition
(UHD), high frame rate (HFR), and reduced delays. Examples
include cloud gaming [41, 82], virtual reality [37, 88, 63] and 4K
video conferencing [40, 49]. Some high-quality RTC services
have already been deployed in production (e.g., cloud gaming
from Google [3], Microsoft [1], Nvidia [5]). For example, the
market share of cloud gaming reached one billion dollars in
2020, with an expected growth rate of 30% [19].

To achieve a satisfactory user experience, those applications
need to stream with high resolution, high frame rate, and a low
delay (§2). For example, cloud gaming services deliver content
with a resolution of ≥1080p [3] and frame-rate of 60fps [61],
while requiring a tail end-to-end delay of less than 100ms [43].
Streaming like this significantly improves users’ experience and
enables new applications.

This paper argues that, in addition to modulating bitrate
to match network capacity, a high-quality RTC system must
regulate the queuing at the decoder queue. For traditional
standard quality RTC, the time required to decode a frame is
much shorter than the interarrival time of frames. Thus, the
decoder queue is not a bottleneck and a traditional RTC service
only needs to adjust the bitrate to match the network bandwidth.
However, in high-quality RTC, the high frame rate reduces the

decoder
queue decodernetwork

Low
resolution
Departure
rate: high

Traditional
RTC

decoder
queue

decodernetwork

High
frame-rate

Arrival rate:
high

Low
resolution
Departure
rate: low

High-quality
RTC

When network condition or
decoder capability fluctuates …

Still empty

Overloaded

Low
frame-rate

Arrival rate:
low

Figure 1: Comparison of the decoder queue between traditional
and high-quality RTC applications. Due to the high frame rate and
resolution, when network condition or decoder capability fluctuates,
high-quality RTC applications may overload decoder queues, leading
to high delay at the tail.

time between the arrival of frames at the client, while the high
resolution increases the decoding delay for each frame. At the
decoder queue, the frame arrival rate frequently exceeds the
departure rate, leading to a long queue, as shown in Figure 1.
The video delivery is required to not only adapt the bit-rate to the
network bandwidth but also coordinate with the decoder queue
capacity. From measurements of our production cloud gaming
service, Tencent Start [4], we find that video delivery without
coordinating the queue capacity could introduce a non-negligible
queuing delay at the client-side decoder queue. Moreover, such a
queuing delay accounts for a large proportion of delayed frames
in satisfying the much tighter delay requirement of high-quality
RTC, especially when the network delay has been reduced with
recent infrastructure developments (e.g., edge computing [57]).
According to our measurements, among all frames with a total
round-trip delay of >100ms, 57% of them have been delayed
at the decoder queue for >50ms (§3.1). Our survey finds that the
future demands of UHD and HFR video will further exacerbate
the problem, even with the evolution of decoding hardware (§3.1).
Therefore, for high-quality RTC, to reduce the end-to-end delay,
it is essential to reduce the queuing delay at the decoder.

Not all interventions are effective at regulating the queuing at
the decoder queue (§3.2). For instance, decoding delay is not af-
fected much by bitrate. It is affected by resolution, but adjusting
the resolution requires the client to request a new key frame. This
consumes bandwidth and incurs several extra frame intervals of
delay. Discarding a frame at the client also requires a new key
frame, which incurs the same cost. Hence, we introduce an adap-
tive frame-rate (AFR) controller, which controls the frame rate
at the encoder. Reducing frame rate gives the decoder more time
to process frames. Hence, it is effective at reducing the queue
length. Further, edge streaming services offer short RTTs, which
means the control loop to adjust the encoder’s frame rate is short.

Note, there have been previous efforts to adapt the frame-rate

(e.g., CU-SeeMe [38] decades ago). However, the development
of decoding hardware had made it redundant in the recent decade,
and traditional RTC in the recent decade is mostly bottlenecked
in the network. In this paper, we show how high-quality RTC,
with UHD resolution, HFR, and stringent delay requirements,
has changed this. We further improve upon these proposals in
two ways. First, existing control mechanisms are based on delay
or queue length [60, 34, 77], which are slow to react since they
need to wait for the queue to build up. AFR instead relies on
the arrival and service processes in addition to the queue length
to adjust the frame rate. Second, not all increases in decode
queuing delay need to reduce the frame rate. For instance, when
queuing delay increases due to a transient burst of arriving
packets. Hence, AFR uses two control loops that adjust the
frame rate at different time scales.

We implement the AFR controller on both simulators and
the production of the cloud gaming service from Tencent
Start [4]. Trace-driven simulations and deployments in the wild
demonstrate that AFR could effectively reduce the tail queuing
delay by up to 7.4×, and consequently reduce the ratio of frame
stutters measured by total delay by up to 2.2× (§6.1 and §6.5)
with negligible overhead. AFR has been deployed on Tencent
Start since February 2021, serving millions of sessions. We will
release the collected traces and the simulation code.

We make the following contributions:
• We carry out a month-long measurement campaign to

motivate the significance of controlling queuing delay at
the decoder queue, and identify the unique challenges from
high-quality RTC with stringent delay requirements (§3).

• We design a hierarchical frame-rate controller, AFR, to
control the decoder queue towards an ultra-short delay under
different scenarios for high-quality RTC (§4).

• We evaluate AFR with both trace-driven simulations and
large-scale deployments in production in the wild (§5). Our
evaluation shows that both queuing delay and total end-to-end
delay could be significantly improved (§6). AFR has been
used in deployment for over one year.

2 Background: High-Quality RTC
High-quality RTC applications are attracting attention from the
industry and academia. A series of high-quality RTC products
have been released recently, including cloud gaming [3, 1, 5],
virtual reality (VR) [12, 11, 6], and 4K videoconferencing [8].
For example, by generating high-quality content and streaming
to the user via Internet, users can enjoy better video quality with
low-cost devices. Specifically, the high-quality RTC has the fol-
lowing features standing out from traditional RTC applications:
• High frame-rate. Traditional RTC usually delivers content

with a low frame rate (LFR) of 24fps [9]. However,
high-quality RTC requires a frame rate of up to 60fps, some
of which even require a frame-rate of 240fps [73].

• High resolution. Most existing RTC applications are delivered
at SD resolutions by default (e.g., 360p for Google Meet [7]).
In contrast, high-quality RTC applications require a resolution

Video
Encoder

Network
Sender

Network
Receiver

Video
Decoder

Video Flow
(
𝟏

𝟐 𝒏𝒆𝒕)

𝒒𝒖𝒆𝒖𝒆

Network

Stream
Server

User
Client

𝒄𝒂𝒑𝒕𝒖𝒓𝒆

𝒆𝒏𝒄𝒐𝒅𝒆

𝒅𝒆𝒄𝒐𝒅𝒆

Actions
(
𝟏

𝟐 𝒏𝒆𝒕)
𝒂𝒑𝒑

𝒅𝒊𝒔𝒑𝒍𝒂𝒚

𝒑𝒆𝒓𝒊𝒑𝒉

Figure 2: A general delivery pipeline of RTC services. We highlight
the major contributing components in the tail end-to-end delay of
high-quality RTC according to our measurements in red.

of 1080p to 4K or higher [62].
• Stringent delay requirement. Furthermore, high-quality RTC

applications also have stringent latency requirements. For
example, videoconferencing requires a round-trip interaction
delay of 150ms [9] and gaming for 100ms [43].

Existing delivery pipeline. To better understand the bottleneck
of high-quality RTC, we present the key components of the
existing RTC delivery pipeline in Figure 2. First, the video
encoder captures the contents generated from video sources
(e.g., gaming applications [23, 57]) and encodes them into video
frames. Then, encoded frames are sent over the network from
the streaming server to user clients. After that, on the client
side, upon receiving new frames from the network, the decoder
will decode those frames. Finally, decoded video frames will
be displayed on users’ displays.

Optimization goal: low tail delay. With the intelligence
from each community, the delay of each component has been
intensively optimized in recent research efforts. To reduce
the network delay, existing providers either deploy stream
servers at the edge [57, 74], introduce low-latency congestion
controllers [16, 25], or suggest users use wired connections. For
example, recent measurements unveil that cloud gaming services
could deliver the RTC streams with an average round-trip
network delay of 20ms [57, 26]. Similarly, streaming encoders
are optimized for low latency to satisfy the stringent delay
requirements in high-quality RTC services [58, 69, 34].

Meanwhile, optimizing the tail performance is also critical for
user’s experience for high-quality RTC [56]. The increase in tail
delay will result in frame stuttering or freezing, degrading the
user’s experience. Quality of experience assessment frameworks
in video streaming usually individually calculate the stuttering
time as a penalty to the user’s experience [33, 80]. Considering
the high frame rate of high-quality RTC, further tails of 99th
or 99.9th percentiles need to be focused on. For example, at
the frame rate of 60fps, even the 99.9th percentile delay could
happen every 16 seconds. Especially for applications such as
cloud gaming, such a delay might lead to the loss of the game
(e.g., stalls when the gamer is discovered by the opponent in a
shooting game) [67, 43]. Therefore, it is essential to control
the tail delay and reduce frame stutters for high-quality RTC.

3 Motivations and Challenges
In this section, we first explain the formulation of drastic queuing
delay in high-quality RTC (§3.1). We then present our thinking
over the design choice of adjusting frame rate (§3.2). We

' 0 8 ' 1 0 ' 1 2 ' 1 4 ' 1 6 ' 1 8 ' 2 0 ' 2 20 %2 %4 %6 %8 %1 0 %1 2 %1 4 %

Fra
ctio

n o
f U

se
rs

Y e a r o f R e l e a s e

G P UC P U

(a) Release date distribution

0 . 2 k 0 . 4 k 0 . 8 k 1 . 6 k 3 . 2 k 6 . 4 k 1 2 . 8 k 2 5 . 6 k
0 %
5 %

1 0 %
1 5 %
2 0 %
2 5 %

N v i d i a G T X 1 6 6 0 T i (2 0 1 9)

I n t e l U H D 7 7 0 (2 0 2 1)

Fra
ctio

n o
f U

se
rs

G F X B e n c h S c o r e (G P U)

I n t e l I r i s X e M A X (2 0 2 0)

0 . 2 k 0 . 4 k 0 . 6 k 0 . 8 k 1 . 0 k 1 . 2 k 1 . 4 k 1 . 6 k
G e e k B e n c h S c o r e (C P U)

(b) Benchmark score distribution

Figure 3: Release year and benchmark score distribution of user de-
vices in production. We use the single-core score in GeekBench [15]
for the CPU benchmark and Aztec Ruins Normal Tier score in
GFXBench [13] for the GPU benchmark.

5 0 %2 5 %
7 5 %

5 0 m s 1 0 0 m s 1 5 0 m s 2 0 0 m s4 0 m s
8 0 m s

1 2 0 m s
1 6 0 m s
2 0 0 m s

U n d e r t h e c o n d i t i o n o f T i s l a r g e r t h a n . . .

Th
e p

rob
ab

ility
 of

N i

s la
rge

r th
an

 ...

(a) Network delay.

5 0 %

2 5 %

5 0 m s 1 0 0 m s 1 5 0 m s 2 0 0 m s1 0 m s
2 0 m s
3 0 m s
4 0 m s
5 0 m s
6 0 m s

U n d e r t h e c o n d i t i o n o f T i s l a r g e r t h a n . . .

Th
e p

rob
ab

ility
 of

Q

is l
arg

er
tha

n .
..

0 %
2 5 %
5 0 %
7 5 %
1 0 0 %

(b) Queuing delay.

Figure 4: While network delay should usually be blamed when the
total delay is above 200ms, queuing delay plays a dominant role
among all frames with a total delay of more than 100ms. The color
indicates the conditional probability P(X>Xth|T >Tth) for X∈{N,Q}.
Stars denote Xth=50ms, Tth=100ms.

further analyze the unique challenges of effectively achieving
an ultra-short queue (§3.3).

3.1 Motivation: Drastic Queuing Delay
Observation: decoder queuing delay is a critical contributor
to the total delay at the tail. We profile the delay of each frame
at each stage in the delivery pipeline in Figure 2. We measure
the Tencent Start cloud gaming service for a month in 2021,
containing tens of thousands of users, with thousands of different
CPU and GPU models. We present release dates and benchmark
scores of CPU and GPU in Figure 3 and list top models in
Appendix B.1. Unless other specified, all measurements in this
paper are analyzed from this dataset.

According to our measurements, among all components in
the pipeline, the network, queuing (at the decoder queue), and
decoding delay are >10ms at the 99th percentile. We highlight
them in red in Figure 2. The tail of the application and encoding
delay is light since they are processed on commercial servers,
which are stable compared to networks and heterogeneous clients.
Therefore, we focus on the network, queuing, and decoding
delay in the following discussion. We leave the measurement
results to Appendix B.2.

We investigate how these three components contribute to
the increase of total delay at the tail. For each frame, we
denote N, Q, D, and T as the network, queuing, decoding,
and total end-to-end delay. We then calculate the conditional
probability of P(X >Xth|T >Tth) for each X ∈{Q,D,C} from
our measurements, where Xth and Tth are thresholds for statistics.
A high conditional probability suggests that the component is
more likely the cause of T >Tth. We calculate the conditional
probability with different thresholds, and present the results for

Figure 5: Illustration of the 99th percentile of the utilization ρ of the
decoder queue. For high-quality RTC applications (in the top-right
corner), the decoder queue is heavily loaded at the tail (shaded red),
resulting in an increase of queuing delay at the tail.

network delay and queuing delay in Figure 4.
As we can see, when analyzing the root causes of frames

with T>200ms for traditional RTC services, network delay has
a high probability (shaded red) to be blamed. However, when
analyzing the frames with T>100ms, queuing delay dominates
the increase of total delay. Our measurements show that among
all frames with an end-to-end total delay of more than 100ms,
queuing delay increase happens more frequently than all other
component delays: 57% of them have a queuing delay of more
than 50ms (stars in Figure 4). Considering the stringent delay
requirement of ∼100ms for high-quality RTC, the increase in
queuing delay plays a dominant role.

Root cause: The UHD resolution and HFR jointly contribute
to the increase in queuing delay. Compared to LFR streaming,
HFR increases the arrival rate of the decoder queue by reducing
the interarrival time between frames. Also, UHD decreases
the departure rate compared to SD streaming by increasing the
decoding delay of each frame.

Specifically, we illustrate how the frame rate and resolution
could affect the load of the decoder queue by presenting the
99%ile queue utilization in Figure 5. We scale the distribution of
interarrival time and decoding delay from our measurements to
other frame rates and resolutions. As we can see, for traditional
RTC services (the down-left corner), due to their low frame
rates and resolutions, the decoder queue still has a utilization of
ρ ≪ 1 at the tail. However, for high-quality RTC applications
(the up-right corner), the decoder queue would be heavily loaded,
leading to a drastic queuing delay.

The issue is the inconsistency of the decoder’s performance on
average and at tail. In fact, many of the hardware decoders that
we measured claim to support UHD and HFR videos (e.g., Nvidia
GTX series in Table 4). However, according to our measurement,
supporting UHD and HFR does not really mean consistently
supporting. For example, the decoding delay can fluctuate due to
numerous reasons including overheating at the client [64], CPU
scheduling (§5.1), and the prediction errors [48], all of which are
difficult to control for an application. From our measurement
with devices in production, the decoding delay is 18ms at the
99th percentile even with hardware acceleration (Appendix B.2).
Note that at the frame rate of 60fps, the interarrival time between
frames is 16.7ms, resulting in a heavily loaded decoder queue at
the tail.

We further analyze the necessity and sufficiency between the

0 5 1 0 1 5 2 00
2 0
4 0
6 0
8 0

1 0 0
Q u e u e l e n g t h b e g i n s t o i n c r e a s e

Tim
e (

ms
)

F r a m e I D

L e f t y - a x i s :
 Q u e u i n g D e l a y
 D e c o d i n g D e l a y
 I n t e r a r r i v a l T i m e

R i g h t y - a x i s :
 Q u e u e L e n g t h

D e c o d i n g d e l a y b e g i n s t o i n c r e a s e

0
1
2
3
4
5

Qu
eu

e L
en

gth

Figure 6: A trace for the accumulation of decoder queue. Note that this
is an illustrative example – the distribution of all traces can be found
in Appendix B.4.

'6 '9 '12 '15 '18 '21

60
90

120
180
240
360

'6 '9 '12 '15 '18 '21
360p

720p
1080p

2160p

4320p

y=269*20.20x

Fr
am

e
ra

te
 (f

ps
)

Year

Monitor Dell HP Lenovo Samsung Acer
App YouTube Twitch COD Overwatch F1

y=16.5*20.20x

Re
so

lu
tio

n

Year
(a) The maximum supported resolution and frame
rate for the top 5 monitor vendors, two streaming
platforms (YouTube and Twitch) and three games
(Call-of-duty, Overwatch, and F1) [10].

'6 '9 '12 '15 '18 '2150
100
200
500

1000
2000
5000 y=16.3*20.44x

y=2.13*20.60x

Hardware
Hardware (reg.)
Demand (est.)

Sp
ee

d
(M

px
/s

)

Year
(b) Decoding speed of
existing hardware and
required decoding speed
from demands.

Figure 7: Decoding hardware cannot keep pace with the rapid increase
of demands of videos with high resolution and frame rate. Note that
the required decoding speed from demands is the frame rate times the
square of resolution times the aspect ratio.

increase of other components and total delay in Appendix B.3
and figure out that the minor fluctuation of decoding delay leads
to the increase of queueing delay. From the queuing theory, when
the queue is heavily loaded, the queuing delay will drastically
increase [32]. This is because while the decoding delay is con-
tinuously fluctuating, the queuing delay is accumulating all the
fluctuations of precedent frames. Especially in heavy traffic, a
minor fluctuation of the decoding delay could result in a magni-
tude increase in queuing delay. We refer the readers to [32] for
more theoretical analysis. Illustratively, we present a trace from
our production service in Figure 6. In the trace, the interarrival
time is 16ms, and the decoding delay is 18ms, while the queuing
delay is 54ms on average. The continual increase of the decoding
delay, although not much by magnitude (18ms) and not long
by duration (20 frames, approximately 0.3s), leads to a drastic
queuing delay. If such a trace happens with a probability of
1%, we will have a 99th percentile decoding delay of 18ms, and
a 99th percentile queuing delay of 55ms. In this case, the tail
queuing delay is much higher than the decoding delay, which
also contributes to more than half of the end-to-end stutters as
analyzed in §3.1.

Trend: hardware decoders cannot keep pace with the
increasing demands of UHD and HFR video. User demands
for video have increased sharply, as shown in Figure 7(a). For
example, the highest supported resolution and frame rate of
YouTube have increased from 360p@30fps (7Mpx/s) in 2005
to 8K@60fps in 2015 (2Gpx/s), doubling every 14 months
on average. Emerging services at 16K [85, 62] or 240fps [73]
further indicate the future demands of UHD and HFR streaming.

However, the decoding speed of the hardware is not increasing
as fast. We summarize the decoding speed of state-of-the-art

video decoders from recent academic papers [53, 30, 90, 91, 89,
85]. As shown in Figure 7(b), the decoding speed of the state-
of-the-art decoding hardware doubles only approximately every
27 months (blue dotted line). Meanwhile, we also calculate the
required decoding speed from the existing demands of videos
by multiplying the estimated resolution and frame rate from
Figure 7(a) and plot the estimation in red in Figure 7(b). The re-
quired decoding speed from demands, doubling every 20 months,
(red dashed line) increases much faster than the development of
decoding hardware (blue dotted line), indicating the continuous
incapability of decoding hardware for UHD and HFR videos.

In addition to the state-of-the-art hardware, there are still
a considerable number of low-end and mid-end devices in
our users. User devices, even in the same generation, could
also be very heterogeneous. For example, in Figure 3, notice
that the performance of Intel Iris Xe is 2× better than Intel
UHD 770 even though the latter is more recent. Thus, there
is heterogeneity in user devices even in the same generation.
Moreover, new video codecs (e.g., H.265), although with a
higher compression ratio, even slow down the decoding speed
by up to 60% [24, 55, 21]. In this case, the mismatch between
the decoder and UHD and HFR videos will further exacerbate,
making the queuing delay at the tail a lasting issue.

3.2 Choice: Controlling Proper Parameters

We motivate the need to adjust the frame rate. For an encoder,
there are three parameters that could be independently set,
including the frame rate, bit rate, and resolution. The encoder
will automatically optimize other parameters (e.g., quantization
parameters) based on current contents to achieve the target frame
rate, bit rate, and resolution. We refer readers to [17] for more
details on video codec.

We first analyze how these parameters could affect the delay
of different components. When the bit-rate increases, the network
delay will increase due to the congestion. When the resolution
increases, since the decoder needs to decode frames with larger
pixels, it needs a longer time to decode. The queuing delay
depends on the enqueue rate (i.e., frame-rate) and the dequeue
rate (i.e., decoding delay). In contrast, for example, if the bit-rate
decreases, yet the resolution is kept the same, the decoding
delay for each frame will hardly decrease due to the hardware
design of the codec, which we further measure in Appendix B.4.
Thus, relying on the total delay (e.g., Salsify [34]) would lead
to ambiguity in taking effective actions to reduce the delay.

Therefore, we need to individually control respective
parameters to reduce different delays. In response, we adjust
the frame rate to control the queuing delay for high-quality
RTC. When the fluctuations of the decoder and network result
in an increase of queuing delay, it is essential to adjust the
encoding parameters to reduce the queuing delay. In this case,
after collecting measurements from the client and network, the
encoder at the server could accordingly adjust the frame rate
for the following frames. We could dynamically specify certain
timestamps where new frames are encoded.

0 5 1 0 1 50
2 0
4 0
6 0
8 0

1 0 0

Tim
e (

ms
)

F r a m e I D
0
1
2
3
4
5

Qu
eu

e L
en

gth

(a) Stalled decoder services.

0 5 1 0 1 5
0

2 0
4 0
6 0
8 0

Tim
e (

ms
)

F r a m e I D
0
1
2
3
4

Qu
eu

e L
en

gth

(b) Bursty network arrivals.

Figure 8: Two traces of transient fluctuations of the decoder queue
from online traces. Legends are the same as Figure 6.

We further discuss several potential solutions and concerns of
adapting frame rates in Appendix A. In summary, adjusting the
resolution or dropping frames is impractical due to the significant
overhead of bandwidth. Statically choosing the frame rate based
on the client model is also insufficient due to the fluctuation of
decoding delay in the runtime. Moreover, since applications have
limited control over users’ systems, it is also impractical to control
the user’s system (e.g., pinning the application to a CPU core) for
a large-scale production-level service [14]. In terms of frame-rate
adaption, note that there are previous efforts in the adaption of
frame-rate (e.g., CU-SeeMe [38] decades ago). However, as we
discussed in §3.1, with the increase in resolution and frame-rate,
and the stringent delay requirements, we need to reemphasize the
significance of adapting frame rate now. We also show that it is
timely enough to control the frame rate over the Internet.
3.3 Challenges
Achieving an ultra-short queue. To achieve an ultra-short queu-
ing delay for the decoder queue, it is challenging to pick the
appropriate indicator to inform the controller when it needs to
take action. Existing signals (queue length [60] or queuing de-
lay [77, 34]) fail to achieve an ultra-short queuing delay. Since
the accumulation of the decoder queue is the consequence of the
fluctuation of the arrival or departure process, both the queue
length and queuing delay can only be observed when the queue
has already been built up. For the example in Figure 6, while
the decoding delay starts to increase at the 3rd frame, a non-zero
queue length can only be observed by the 9th frame. We also eval-
uate baselines based on queue length and queuing delay in §5.2.

In response, we want to capture the earliest signal to perceive
the potential queuing delay. Therefore, instead of measuring
the queuing delay, we want to estimate the potential increase
of queuing delay predictively. For example, inspired by recent
advances in congestion control [36, 50], a straightforward way
is to measure the dequeue rate of the decoder queue to estimate
the potential increase of the queuing delay.

However, in terms of tails, the arrival process is also
fluctuating, which could also lead to an increase in queuing
delays. For example, the network delay might increase by ten
times at the 99th percentile than the median [25]. In response,
to precisely avoid queue accumulation, we extend the designs
of [36, 50]: AFR comprehensively measures the arrival and
departure process and controls the queuing delay based on
queuing theory. We introduce the design in §4.2, and evaluate
the necessity of measuring the arrival process in §5.2.

Handling various events. Furthermore, the reason behind

Algorithm 1: Hierarchical AFR control.

Input: Enqueue process {An}, dequeue process
{Sn}, queue states Q. (An denotes the interarrival times,
and Sn denotes the decoding delays of frames {n}.)

Output: Target frame rate f .
1 f0= StationaryController({An},{Sn})
2 α= TransientController(Q)
3 f =α f1

the formulation of the decoder queue in high-quality RTC is
complex. As we introduced in §3.1, the stationary degradation
of decoding capacity could lead to the accumulation of the
decoder queue, e.g., the traces in Figure 6. Besides, the decoder
queue could also be accumulated due to transient contingencies.
For example, from our experiences in production, the decoder
might contingently experience a sudden decoding lag of ∼100
milliseconds (e.g., the 3rd frame in Figure 8(a)). The sudden
interference in wireless channels might also lead to the bursty
arrival of several frames (e.g., the 4th to 8th frames in Figure 8(b)).
In both cases, the decoder queue will be accumulated. Since
these transient fluctuations happen suddenly, it is challenging for
the controller to react by measuring enqueue and dequeue rates.

Thus, AFR differentiates the causes of queue accumulation
and reacts respectively to fluctuations at different time scales.
We design a stationary controller to avoid queue accumulation
in heavy traffic (§4.2), and a transient controller to reduce the
queuing delay in contingencies (§4.3).

4 Design – Adaptive Frame-Rate (AFR)
We first analyze the overall workflow of AFR in §4.1, and then
present the two controllers of AFR (§4.2, §4.3).

4.1 Workflow Overview
The workflow of AFR is presented in Algorithm 1. Specifically,
the stationary controller (§4.2) maintains the queue around an
ultra-short target based on dynamics of enqueue and dequeue
processes. By measuring the statistics of both processes, AFR
calculates the expectation of the queuing delay based on queuing
theory. The frame rate can therefore be optimized towards a given
queuing delay target (line 1). The transient controller observes the
queue states Q (queue length and queuing delay) and calculates
the discounting factor α ⩽ 1 (line 2) to further decrease the
frame rate when the queue formulates. The final frame-rate is
the stationary frame-rate f0 discounted by α (line 3). In this case,
AFR can react to various scenarios of queue accumulation.

4.2 Stationary Controller
As introduced above, we measure the arrival and service
processes and control the expected queuing delay of the queue.
Specifically, we use the Kingman formula as an approximation of
the expectation of queuing delay. Kingman formula is a widely
adopted approximation formula of queuing delay [45] for G/G/1
queues. Compared to other approximation methods, in this paper,
we adopt the Kingman formula to estimate the queuing delay
since its estimation is from both arrival and departure processes

without relying on queue states, which could provide the earliest
signal for the potential queuing delay. According to the Kingman
formula, the expectation of queuing delay τqueue follows:

E
(
τqueue

)
≈
(

ρ

1−ρ

)(
c2

a+c2
s

2

)
µs (1)

where
ca=σa/µa, cs=σs/µs, ρ=µa/µs (2)

(µa, σa) and (µs, σs) are the mean and standard deviation of the
arrival and service processes:

µa=E{An},σa=
√

var(An),µs=E{Sn},σs=
√

var(Sn) (3)

From Eq. 1, the queuing delay is related to the following factors:
• Queue utilization ρ. The queuing delay will increase when

the queue is overloaded (ρ→1). The current frame rate and
decoding delay determine the queue utilization.

• Arrival and service fluctuations ca and cs. When the arrival
or the service processes fluctuate, the queuing delay will also
increase.

• Service time µs. Finally, the queuing delay scales with the
average decoding delay.

Therefore, we control the expected queuing delay by controlling
the right-hand side (RHS) of Eq. 1. We set E{τqueue} to a
pre-defined queuing delay target W0. Consequently, the target
frame-rate f0 could be calculated as:

f0=ρ/µs=1
/(

µs ·
(

1+ µs
W0

· c2
a+c2

s
2

))
(4)

Discussion: Approximation method. The AFR mechanism
supports any approximation formula by design. There are other
research efforts to control the queue. For example, recent efforts
in congestion control [36, 50] directly set the target utilization
(e.g., setting ρ = 0.95) and calculate the enqueue rate. In this
paper, we adopt Kingman formula to capture both the arrival
and departure processes, as discussed in §3.3. We also evaluate
the performance of other baselines in §6.1.

Measurements of queuing dynamics. According to Eq. 4, we
need to measure the mean and variance of the arrival and service
processes. Similar to the RTT measurements in TCP [44], we
adopt the exponentially weighted moving average (EWMA) and
exponentially weighted moving variance (EWMV) to estimate
the µs,σs,µa,σa in Eq. 1 and 2.

µ̂n=ξµxn+
(
1−ξµ

)
µ̂n−1

σ̂n=
√

ξσ (xn−µ̂n)
2+(1−ξσ)σ̂2

n−1

(5)

where xn denotes interarrival time An or service time Sn. µ̂n and
σ̂n are the EWMA and EWMV. ξµ and ξσ are the discounting
factors for the measurement of mean and standard deviation,
trading off between precision and sensitivity.

However, due to bursty arrival or stalled services (§4.1),
both the arrival and service processes could have significantly
deviated value. For example, the 3rd frame in Figure 8(a)
has a decoding time of 82ms while other frames are below

previous next0

𝑟 = 𝜏 − 𝐴𝑣𝑔 𝜏ିଵ:ିଵ𝐴𝑣𝑔 𝜏ଵ:ଵ − 𝜏
(a) Illustration

- 2 0 0 - 1 5 0 - 1 0 0 - 5 0 0 5 0 1 0 0 1 5 0 2 0 0
- 1 . 0
- 0 . 8
- 0 . 6
- 0 . 4
- 0 . 2
0 . 0

Re
fle

ctio
n R

ati
o

D e c o d i n g t i m e d i f f e r e n c e (m s)

o u t l i e r t h r e s h o l d

(b) Measurements in production

Figure 9: Reflection in outlier removal. Figure 9(b) presents the
frequency of frames with r∈ [1

C ,C]. Measurement details in §5.2.

4ms. Such outliers will significantly deviate the estimation of
stationary statistics for a long period. In fact, as we discussed
in §4.1, these contingent events are designed to be handled
by the transient controller. Therefore, we need to filter those
outliers out to precisely estimate the stationary status of arrival
and service processes. Due to the highly skewed distribution of
decoding delay, existing outlier removal mechanisms based on
standard deviation (e.g., the three-σ rule [65, 68]) suffer from
differentiating stationary state transitions from outliers.

To capture the transitions of the status of decoders while elim-
inating the influence of the contingent outliers, we introduce an
outlier removal mechanism based on priori knowledge from mea-
surements in production. The key intuition is that decoding delay
differences (Sn − Sn−1) are related to the probability of being
outliers. For example, an increase of 20ms on decoding delay
is probably the transition between stationary states (Figure 6).
However, a sudden increase of 80ms on decoding delay is likely
to indicate that decoding delay is an outlier, which is usually the
scenario of contingent stalls in Figure 8(a). This is because com-
mercial decoders are usually able to decode frames at the frame
rate of 24fps on average. According to our measurements, when
the decoding delay difference is above 50ms, the possibility of be-
ing an outlier for that frame is 95%. Thus, we remove frames with
a decoding delay difference of >50ms in the stationary controller,
and leave the control of those frames to the transient controller.

We further characterize our observation based on measure-
ments in production. As shown in Figure 9(a), we quantify
the outlier with reflection ratio r, which illustrates the recovery
of decoding delay before and after the potential outlier. The
numerator is the difference between the current decoding delay
(τ0) and the average decoding delay of the previous 10 frames
(τ−10:−1), and the denominator is the difference between τ0 and
future decoding delay. For outliers of contingent stalled service
(e.g., the 3rd frame in Figure 8(a)), their reflection ratios would
approach -1. This is because previous frames and subsequent
frames have similar decoding delays, while the outlier has a
much higher decoding delay (τ0≫τ−10:−1≈τ1:10).

We then plot the relationship between the difference of de-
coding delay (τ0−τ−1) and the average reflection ratio (r) of all
frames with the same difference from our measurements in Fig-
ure 9(b). When the decoding time difference is larger than 50ms
(marked with a red arrow), the average reflection ratio is less than
-0.95, indicating that most frames in this scenario are outliers.
Therefore, the stationary controller in AFR does not calculate the

K1

K2-1

K1+1

…

K2

dequeue

enqueue

(a) Queue. (b) Bursty network arrival. (c) Stalled decoder service.

Figure 10: Differences between bursty network arrivals and stalled
decoder services. The y-axis is the accumulated enqueue/dequeue
frames. For example, the enqueue curve in Figure 10(b) increases
from 1 to 2 at 1ms, indicating that frame #2 enqueues at 1ms.

frames with a decoding delay difference larger than 50ms.

Convergence time analysis. To help operators to better under-
stand the behavior of the stationary controller, we investigate the
convergence of the stationary controller during state transitions
of the service process. We want to answer the following question:
During the transition from stationary state (µ1,σ1) to (µ2,σ2),
how long will the stationary controller take to converge to the
new frame-rate and drain the potential accumulation of the queue
due to the transition?

We outline the main conclusion here and leave the detailed
analysis in Appendix E. When the control loop (round-trip delay)
of AFR is τ frames, the convergence time T0 is bounded w.r.t.
τ and W0, and is acceptable for most scenarios. For example,
when the average control loop of AFR is the interarrival time
of one frame (τ=1), and W0=2ms, the stationary controller
could converge to the new stationary state within 2 frames. We
illustrate the convergence time of the stationary controllers with
more settings in Appendix E.

4.3 Transient Controller
The transient controller is designed to handle the contingent
queue accumulations (§4.1). Therefore, we need to first
understand how we should react to these queue contingencies.

Understanding queue contingencies. As shown in Figure 8(a)
and 8(b), both stalled decoder services and bursty network arrivals
will cause a sudden increase in queue length. We illustrate the
enqueue and dequeue events of two contingencies in Figure 10.
In Figure 10(b), 5 frames arrive at the client together within 4ms,
resulting in a queue length of 4 when the 5th frame arrives and
observes, as illustrated with the LQ (blue arrow). In Figure 10(c),
the decoder takes 80ms to decode the 0th frame, when queued
frames cannot be dequeued to the decoder. Therefore, upon the
arrival of the 5th frame, it also observes a queue length of 4.

However, the bursty network arrivals and stalled decoder
services should be handled separately. In the scenario of
bursty network arrivals, the bottleneck of total delay is still
in the network due to its long network delay. As long as the
decoder is functional, even if multiple frames arrive at the queue
simultaneously, they could be processed efficiently (Figure 8(b)).
In this case, the queue will be drained in a short time, and we
do not need to reduce the frame rate. In contrast, the stalled
decoder service will drastically increase the queuing delay of
subsequent frames and needs adaption (Figure 8(a)). Thus, we

upper
reservoir

lower
reservoir

ଵ ଶ

1

Queuing delay (ms)

𝛼

(a) α-τQ mapping.

0 2 0 4 0 6 0 8 0 1 0 0 1 2 00
4
8

1 2
1 6
2 0 b u r s t y a r r i v a l s

Q u e u i n g d e l a y (m s)

Qu
eu

e l
en

gth

1 0 - 8

1 0 - 6

1 0 - 4

1 0 - 2

1 0 0F r e q .Q 1 = 1 4 m s

(b) LQ-τQ frequencies.

Figure 11: Illustrations and measurements of the transient controller. A
series of linearly distributed dark blue clusters in Figure 11(b) indicate
that LQ and τQ are linearly correlated.

need to differentiate between the two scenarios.
Since both scenarios result in an increase in queue length,

they cannot be effectively differentiated with queue length only.
Our insight is that we can differentiate them with the sojourn
time of the first frame in the queue. As shown in Figure 10(a),
at the arrival of frame K2, the sojourn time τQ of the first frame
K1 and queue length LQ observed by K2 are:

τQ=t(K2)
enq −t(K1)

enq , LQ=K2−K1 (6)

where t(i)enq is the enqueue timestamp of frame #i, and frame #K1
is the frame at the head of the queue. For bursty network arrivals,
since frames arrive at the decoder queue simultaneously, when
the last frame of the burst arrives, the first frame has only been
queued for a short time. For example, τQ in Figure 10(b) is 4ms
(marked red). In contrast, for stalled decoder service, the head
frame has been blocked for a long time, leading to a high τQ of
66ms in Figure 10(c). Therefore, we use τQ to adjust the frame
rate in the transient controller.

Feedback control. For the transient controller, the design space
is to find out a mapping between the discounting factor α and
the queuing delay τQ. Since the transient controller is designed
to reduce the frame rate based on the results of the stationary
controller, the possible range of α satisfies:

fmin/ fmax=αmin⩽α⩽1 (7)

where fmin and fmax are the lower and upper bounds for frame
rate required by the application. Since longer τQ indicates a
more severe load of the queue, the discounting factor should
decrease with the increase of τQ. Besides, the α-τQ mapping
should also have the following properties:

First, avoid overreactions. As we discussed above, for
bursty network arrivals, τQ will also slightly increase due to the
volumetric arrived frames. However, since such a transient queue
accumulation will be cleared quickly as long as the decoder is
functional (Figure 10(b)), we should not decrease the frame rate.
Therefore, we need to introduce an upper reservoir (as shown
in Figure 11(a)) to avoid overreactions. In the upper reservoir,
when a non-zero but small τQ is observed (0 ⩽ τQ ⩽ Q1), the
transient controller will not decrease the frame rate. The reservoir
threshold Q1 should be set based on measurements. We measure
the observed LQ and τQ from frames and present the results in
Figure 11(b). Peaks near the left axis (marked by red dashed

arrows) represent frames with a long LQ yet with a short τQ,
which are due to the bursty network arrivals. Therefore, we set
Q1 to filter out those bursty arrival-related peaks (e.g., Q1=14ms
in our deployment, the red line in Figure 11(b)).

Second, respond timely. Due to the stringent delay require-
ments of high-quality RTC applications, a long queuing delay
will drastically degrade the users’ experiences. Therefore, we
need to control the slope of the mapping in Figure 11(a) to
effectively reduce the queuing delay. Since α is lower bounded,
we could control the slope of the mapping by introducing a
lower reservoir, as shown in Figure 11(a). We set Q2 as the
maximum tolerable queuing delay:

Q2=max(Q1,Deadline−τnetwork−τdecode) (8)

where τnetwork is the round-trip network delay, and τdecode is the
decoding delay µs. Deadline is the requirement for the total
delay of the application. Based on users’ experiences in the
human-machine interaction and our operational experiences, we
set Deadline to 100ms in our deployments [43].

5 Implementation
We implement the AFR with a frame-level trace-driven simulator,
and deploy the AFR onto a production high-quality RTC service
in the wild. In this section, we present the design of our simulator
(§5.1), introduce the simulation setup (§5.2) and the deployment
setup (§5.3).
5.1 Simulator Design
To faithfully compare and replay the traces for different queue
control algorithms, we design a simple simulation environment
that models the dynamics of RTC. The simulator maintains the
decoder queue and replays the traces collected from online ser-
vices, where the traces contain the decoding delay, network delay,
original queuing delay, and also the arrival timestamp for each
frame. Specifically, frames arrive at the decoder queue according
to timestamps in traces, wait in the decoder queue for dequeuing,
and are decoded according to decoding delays in traces. To
avoid frequently sending frame-rate adjustment requests to the
servers, frame rates are quantized at the level of 5fps, which
is also followed by our online deployment. We implement the
potential interference from CPU time-slicing: since the fetching
of frames to decoders depends on the CPU, there are possible
cases where fetching the frame from the queue to the decoder
needs waiting to be scheduled by the CPU by up to several
milliseconds [20]. Therefore, we further profile such a delay
in the traces and introduce the scheduling waiting time in our
simulator. We also implement the response time of the encoder
between the new frame-rate actions and new frames generated
with the updated frame rate, according to our measurements in
§6.4. Please refer to Appendix C for implementation details.
5.2 Simulation Setup
Traces. We measure the frame-level statistics of our cloud
gaming service (introduced in §3.1) on two types of clients
(Windows and MacOS) and access networks (Ethernet and
WiFi). We profile each step of received frames in one of our

Category Session Frame Playtime
(1) Windows+Ethernet 29.7k 6.35 B 34.2k hours
(2) Windows+WiFi 6.4k 1.12 B 6.2k hours
(3) MacOS+Ethernet 0.4k 40.9 M 0.2k hours
(4) MacOS+WiFi 2.1k 216 M 1.1k hours

Total 38.1k 7.73 B 41.7k hours

Table 1: Distribution of our traces on the client type.

production clusters for 24 days in December 2020. This results
in a dataset with 7.73 billion frames and 41.7k hours of playtime
(Table 1), which is the largest frame-level dataset for interactive
streaming to the best of our knowledge.

Parameter settings. There are several parameters in AFR
to be determined. Except for the parameters related to the
transient controller (§4.3), we set W0 in the stationary controller
to 2ms and the discounting factors in EWMA ξarrv=0.033 and
ξserv=0.25. We discuss the sensitivity of those settings and their
influence on the performance in §6.3.

Metrics. In the evaluation, we mostly measure the delays (includ-
ing the queueing delay and the end-to-end total delay). As we
discussed in §2, the delay in interactive streaming is orthogonal
to other video quality metrics (e.g., PSNR [2] or SSIM [76]).
The delay, which represents interactivity, is the main optimiza-
tion goal in this paper. We demonstrate that AFR has negligible
degradation on the video quality in §6.4.

Baselines. To evaluate the performance of AFR, we implement
existing frame control mechanisms as follows:
• DropTail is the frame control mechanism in WebRTC [60].

When frames overflow the queue, the client will first clear
the queue, then request a new key frame, and finally drop
all frames until the next key frame arrives. We set the queue
capacity to 16 frames.

• QLen-S observes the current queue length, skips frames
from the content generator before the encoder if the queue
length is ⩾1, and resumes if the queue length is <1.

• QWait-S. We migrate the frame control mechanisms from
existing academic efforts in our simulator [34, 77], and
replace the signal from total delay to queuing delay to better
reduce the queuing delay. Since these baselines are not
designed for stringent delay requirements of 100ms, we also
finetune their parameters with our traces. QWait-S skips
frames before the encoder if the queuing delay is ⩾32ms, and
resumes if the queuing delay is <4ms.

Besides, to evaluate the effectiveness of different components
in AFR, we also different variants of AFR:
• AFR-QLen. We demonstrate the insufficiency of controlling

the frame rate with queue states with a feedback algorithm
based on current queue length: it observes the current queue
length at the arrival of each frame, and maps the queue length
of{0, 1+} to frame-rate{60, 24}fps.

• AFR-QWait. A feedback algorithm maps current queuing
delay of{(0, 4), (4, 8), (8, 12), (12, ∞)}ms to frame-rate of
{60, 48, 36, 24}fps. The parameters have also been finetuned
with our traces.

• AFR-TX. To demonstrate the effectiveness of measuring
both the arrival and service process, we further implement
a dequeue rate-based algorithm. AFR-TX measures the
dequeue rate and sets the target frame-rate with ρ = 0.8,
where ρ has been tuned with our traces. The dequeue rate
is the reciprocal of decoding delay.

• AFR-Kingman. Moreover, we individually evaluate the sta-
tionary controller of AFR to further illustrate the effectiveness
of the transient controller.

• AFR. Finally, we put all optimizations in this paper (both the
stationary and transient controller) together.

We present how we tune the parameters, and evaluate the
trade-offs between frame rate and queuing delay in §6.3.

5.3 Deployment setup
We finally deploy AFR onto our cloud gaming service. The
gaming service X employs the H.264 codec to increase
the coverage of hardware decoding and adaption towards
heterogeneous clients1, and customizes the codec performance
for the optimization of gaming. Tencent Start currently
supports 13 production-level games, including action-adventure,
first-person shooter, and real-time strategy games. To optimize
the network delay, the service is accelerated with multi-access
edge computing similar to [74, 57, 86]: Users are split into tens
of operation regions with a geographical diameter of hundreds
of kilometers. Cloud gaming servers are deployed on clusters in
each operation region, resulting in an average round-trip network
delay of 15ms (Appendix B.2).

The frame-rate adaption algorithms are implemented on the
client side. The AFR controller continuously measures the statis-
tics of the decoder queue, and sends requests to edge servers to ad-
just the frame rate when necessary. The edge server then forwards
the frame-rate adjustment requests to both the video encoder and
the gaming application. New frames will be generated following
the new inter-frame interval. We evaluate the response timeliness
and overhead of video encoder and gaming application in §6.4.

6 Evaluation
We evaluate the AFR controller in the following aspects:
• Delay improvements. We present the performance improve-

ments: The ratio of frames with long queuing delay and
total delay of AFR has been improved by 2.1×-26× and
13%-2.2× against existing baselines (§6.1).

• Frame-rate maintenance. We then demonstrate that AFR
introduces negligible impacts on the metrics related to
frame-rate (§6.2).

• Parameter sensitivity. Our evaluation shows that parameters
in AFR have a wide range of settings to gain performance
improvements against finetuned baselines (§6.3).

• Microbenchmarking. We further demonstrate that the
timeliness, overhead, and image quality of frame-rate
adjustments are satisfactory for online deployment (§6.4).

1Hardware decoding has a shorter decoding delay than software decoding
and supports higher frame rates. H.264 has a higher coverage of hardware
decoding support compared to other advanced codecs [54].

(1) (2) (3) (4)0
10
20
30
40
50 (b)

Q-
99

%
(m

s)

DropTail QLen-S QWait-S AFR-QLen
AFR-QWait AFR-TX AFR-Kingman AFR

(a)

(1) (2) (3) (4)

P(Q
 >

50
ms

)

Figure 12: Simulation results of queuing delay (the 99%ile and the
ratio of frames with >50ms queuing delay).

(1) (2) (3) (4)0
50

100
150
200

To
tal

-99
%

(m
s)

(1) (2) (3) (4)

P (
To

tal
 >

10
0m

s)(a) (b)

Figure 13: Simulation results of total delay (the 99%ile and the ratio
of frames with >100ms total delay).

(1) (2) (3) (4)0 %
4 %
8 %

1 2 %
1 6 %
2 0 %
2 4 %

Ra
tio

 of
 se

ssi
on

s
1 . 9 x

(a) Sessions with stutter ratio >5%.
(1) (2) (3) (4)0 %

4 %
8 %

1 2 %

Ra
tio

 of
 se

ssi
on

s

2 . 2 x

(b) Sessions with stutter ratio >10%.

Figure 14: Ratio of sessions with different stuttered frames.

• Deployment in the wild. Finally, we report the A/B test
results and the deployment progress of AFR on our cloud
gaming service online (§6.5).

6.1 Delay Improvements

We compare the queuing delay and the total delay of each frame
with AFR and baseline algorithms in four sets of traces (Table 1).
We measure the queuing delay in two dimensions: we present
the 99th percentile queuing delay and the ratio of frames with a
queuing delay >50ms in Figure 12. We first analyze the results
of AFR against three existing mechanisms (DropTail, QLen-S,
and QWait-S). AFR could reduce the 99%ile queuing delay by
1.9× to 7.4×, and the ratio of severely queued frames by 2.1×
to 26× on different sets of traces against three baselines. In
this case, the 99%ile queuing delay could be squeezed to 6.9ms.
This indicates that AFR could effectively achieve an ultra-short
queuing delay. AFR also demonstrates satisfactory performance
improvements on the total end-to-end delay, which is directly
related to users’ experiences. AFR improves the 99%ile total
delay by 27% to 36%, and the ratio of severely delayed frames
(total delay >100ms) by 1.6× to 2.2× in all traces. We also
measure the session stutter ratio, i.e. the ratio of frames with
a total delay of >100ms in a session, for each session. We
then measure the ratio of sessions with a session stutter ratio of
>5% and >10%, which indicates how many users suffer from
unsatisfactory experiences and present the results in Figure 14.
For the major population of our service (Cat. (1), Table 1), AFR
reduces the stuttered sessions by 17% and 21% compared to
the best of the three baselines. For other categories, the ratio of

(1) (2) (3) (4)
8

1 2
1 6
2 0
2 4
2 8
3 2

Int
era

rriv
al

(m
s) 2 5 % ~ 7 5 %

1 0 % ~ 9 0 %
M e d i a n L i n e
D r o p T a i l Q L e n - S
Q W a i t - S A F R - Q L e n
A F R - Q w a i t A F R - T X
A F R - K i n g m a n A F R

(a) Interarrival time between frames.

(1) (2) (3) (4)0
4
8

1 2
1 6
2 0

Sm
oo

thn
es

s (
ms

)

(b) Smoothness.
(1) (2) (3) (4)

1 0 1
1 0 2
1 0 3
1 0 4

Ad
jus

tm
en

t
int

erv
al

(fra
me

)
(c) Adjustment interval.

Figure 15: Frame-rate maintenance. Better viewed in color.

stutter sessions has also been reduced by 5% to 37%. AFR could
significantly improve experiences for high-quality RTC.

We further understand the performance improvements with
the comparisons among different variants of AFR. Compared
to DropTail, baselines based on queue states (AFR-QLen,
AFR-QWait) could effectively reduce the queuing delay,
indicating the necessity of actively controlling the queuing delay
(§3.1). Compared to QLen-S and QWait-S, controlling the
frame rate achieves better performance than skipping frames
from the encoder. This is because skipping frames would
drastically degrade the tail frame rate, for which the parameters
of baselines are tuned (§6.3). AFR-TX could further reduce the
queuing delay than the queue state-based baselines, indicating
that observing the service process could know the potential
degradation in advance and effectively take actions, validating
our analysis in §3.3. AFR-Kingman further improves the
performance by 10% against AFR-TX, demonstrating that the
fluctuating arrival of the high-quality RTC could also affect the
estimation of the decoder queue. AFR finally reduces the tail
queuing delay by 2-4% against AFR-Kingman, indicating the
necessity of the transient controller to handle contingencies.

Besides, we also find that AFR has larger performance
improvements when the network is better. The performance
improvements on two sets of Ethernet traces (55% and 37%
for Cat. (1) and (3)) are larger than the on WiFi traces (35%
and 27% for Cat. (2) and Cat. (4)). Considering the ongoing
deployment of next-generation access networks with better
network conditions (e.g., 5G and WiFi 6), the necessity of
controlling the decoder queue would be more significant.

6.2 Frame-rate Maintenance
Besides, we also measure the effect of AFR on the frame rate. We
first measure the interarrival time between frames at the arrival
of each frame on the client. For example, a frame rate of 60fps
should result in an interarrival time of around 16.7ms. We tune
the parameters of each algorithm to keep the 99th percentile of
their interarrival time at the same level (details in §6.3). Therefore,
for 10-90th percentiles, as shown in Figure 15(a), most algorithms
except for DropTail are comparable. Compared to the existing
deployed mechanism DropTail, AFR even improves the tail
user-perceived frame rate due to its better management of frame

Figure 16: The trade-off between the tail interarrival time and queuing
delay. We tune the parameters for baselines and AFR to illustrate the
capability of each algorithm in the trade-off.

drops. AFR slightly decreases the median frame rate by 3%-9%,
which brings the negligible quality of experience (QoE) degra-
dation to users considering the improvements on delay [71, 81].

We further measure the smoothness of frame-rate, which
might also have potential effects on users’ experiences [33]. We
measure the differences of interarrival time as an indicator of the
smoothness of frame rate and present the results in Figure 15(b).
Except for DropTail, all baselines and AFR have similar
interarrival differences and are better than DropTail. This is
mainly because that frame drops in DropTail will introduce
a sudden increase of interarrival differences. Moreover, we
also measure the frame adjustment interval and present the
distributions in Figure 15(c). The median adjustment interval of
AFR is hundreds to thousands of frames, which is much longer
than the response time of frame-rate adjustment (§6.4).

6.3 Parameter Sensitivity
We then evaluate the sensitivity of parameters in AFR and
other baselines. We tune parameters of all baselines in §5.2:
thresholds for skipping frames for QLen-S and QWait-S,
mappings for AFR-QLen and AFR-QWait, ρ for AFR-TX,
and W0 for AFR-Kingman and AFR. We present the ratio of
frames with queuing delay >50ms (P(Q>50ms)) and the 99th
percentile of interarrival time on Cat. (1) traces in Figure 16.
The down-left corner indicates the algorithm has a satisfactory
trade-off between the queuing delay and the frame rate.

As we can see, AFR outperforms all other baselines in a
wide range of settings, achieving a better trade-off between
the queuing delay and frame rate. QLen-based algorithms are
challenged in achieving ultra-short queuing delay: with the
extremest parameters (skipping/decreasing frame-rate as long
as queue length is non-zero), QLen-S and AFR-QLen could
only achieve a P(Q>50ms) of 2.2‰ and 1.7‰, much higher
than other baselines. This follows our analysis in §3.3 that queue
length is too coarse-grained as a signal to control the queue with
an ultra-short target. Meanwhile, skip-based algorithms could
achieve lower queuing delay compared to frame-rate-based
algorithms, yet with higher interarrival time. The parameters of
all algorithms are tuned according to Figure 16 by aligning the
99th percentile interarrival time.

We also evaluate how different percentiles of queuing delay
and total delay are affected by the setting of W0 in Appendix D.3.
The performance of AFR reacts sensitively to the setting of
W0, indicating that operators could effectively balance the total
delay and frame rate by adjusting W0. We further evaluate

- 3 0 - 2 0 - 1 0 0 1 0 2 0 3 00
3
6
9

1 2

Re
sp

on
se

 fra
me

F r a m e - r a t e d i f f e r e n c e (f p s)

9 0 % i l e
7 0 % i l e
5 0 % i l e

(a) Adjustment timeliness.

6 0 5 5 5 0 4 5 4 0 3 5 3 0 2 5
1 5
2 0
2 5
3 0
3 5
4 0

F r a m e - r a t e (f p s)

Int
era

rriv
al

tim
e (

ms
)

2 5 % ~ 7 5 %
1 0 % ~ 9 0 %
T a r g e t

(b) Frame-rate stability.

Figure 17: Effectiveness of frame-rate adjustment.

0 5 1 0 1 5 2 00 %
2 0 %
4 0 %
6 0 %
8 0 %

1 0 0 %

CD
F

C P U U t i l i z a t i o n (%)

S t a b l e
S w i t c h

(a) CPU utilization.

0 5 . 2 5 . 4 5 . 6 5 . 8 6 . 00 %
2 0 %
4 0 %
6 0 %
8 0 %

1 0 0 %
CD

F

P r i v a t e B y t e s (G B)

S t a b l e
S w i t c h

(b) Memory utilization.

Figure 18: Frame-rate adjustment overhead.

the sensitivity of the discounting factors ξ of the EWMA and
EWMV in the transient controller (§4.3) in Appendix D.3,
demonstrating how operators should set these parameters to
balance between the precision and sensitivity.

6.4 Microbenchmarking
We also benchmark AFR in a testbed of our cloud gaming service.

Effectiveness of frame-rate adjustment. We first measure the
responsiveness and precision of frame-rate adjustment at the
video encoder. We enumerate all frame-rate switching within{25,
30, ···, 60}fps, and measure how many frames the encoder needs
to take to steadily output video streams at the new frame rate.
The response time measured by the unit of frame (i.e. response
frame) is presented in Figure 17(a). For each group of settings,
we repeat the experiments 100 times to eliminate the randomness.
When decreasing the frame rate, the 90%ile response frames is
less than 3 frames, indicating the encoder and gaming application
could decrease the frame-rate timely. This could effectively
alleviate the overload of the decoder queue. When significantly
increasing the frame rate, the frame rate might be slightly delayed
to change. This is because the frame rate at the client side follows
the bucket effect. Either encoder or the gaming application
decreases the frame rate will lead to a decrease of the final frame
rate, while the increase of frame rate needs an increase from both
components. Even so, the tail response frame is <10 frames,
which is much less than the adjustment interval (Figure 15(c)).

We then measure the fluctuation of the frame rate of the output
of the streaming encoder. We set the frame rate to several levels
as above, and measure the interarrival time between each frame.
For each frame rate, we measure the interarrival time for 30,000
frames and present the distribution in Figure 17(b). The interar-
rival time between frames largely falls around the target frame
rate. Therefore, unlike the fluctuating bit-rates in video stream-
ing [42], frame-rate could be precisely controlled by the encoder.

Frame-rate adjustment overhead. We further measure the
potential processing overhead of frame-rate adjustment at the
edge server. To magnify the overhead, we change the frame rate

5 1 0 1 5 2 0 2 5 3 0
2 8
3 2
3 6
4 0
4 4

5 1 0 1 5 2 0 2 5 3 0
0 . 8 8
0 . 9 2
0 . 9 6
1 . 0 0

5 1 0 1 5 2 0 2 5 3 05 0
6 0
7 0
8 0
9 0

1 0 0

PS
NR

 (d
B)

B i t r a t e (M b p s)

S w i t c h (R) S t a b l e (R) S w i t c h (S) S t a b l e (S)

SS
IM

B i t r a t e (M b p s)

VM
AF

B i t r a t e (M b p s)
Figure 19: The image quality differences of AFR and the original
video tested in a running scene (R) and stable scene (S). The error bar
represents the standard deviation.

from 60fps to 30fps and back to 60fps every 6 frames, which
is much shorter than the usual adjustment interval. We then
measure the CPU and memory utilization of the cloud gaming
application and encoder by sampling the CPU processing time
and application private bytes with the typeperf [66] every 1
second. We measure for 30 minutes to eliminate the randomness.
We compare the scenario with a stable frame-rate of 60fps
(stable) and a frequently switching frame-rate (switch) in
Figure 18. For CPU utilization, both scenarios have a similar
distribution from 0% to 20%. switch is a little better than
stable since producing a lower frame rate takes fewer CPU
resources for the gaming application. As for memory utilization,
the major memory consumption is from the gaming application.
Frame-rate switching slightly increases the utilization of private
bytes since frequently resetting the encoder requires allocation
of memory. Nonetheless, the increase of memory utilization is
less than 1.8% even at the 99%ile, which is negligible and could
be even lower in the case of normal frame-rate adjustments.

Image quality degradation. We also investigate the potential
image quality degradation caused by AFR. We record two raw
videos from games, one in a running scene (R) and another in
a standing scene (S). For each video, we switch the frame rate
every 100 frames 15 times and measure the video quality for the
following 400 frames. We investigate three video quality metrics,
peak-signal-to-noise-ratio (PSNR) [2], structural similarity
index (SSIM) [76], and video multimethod assessment fusion
(VMAF) [51], and present the results in Figure 19. stable

and switch denote the scenarios where the frame-rate remains
unchanged or frequently switched. Results demonstrate that
frequently switching the frame rate will not affect the video
quality: the video quality of two videos on three metrics are
comparable in all cases.

6.5 Deployment in the Wild
Finally, we evaluate the performance of AFR by deploying it
onto Windows clients of our cloud gaming service, Tencent Start,
in one of its production clusters. Before the deployment of AFR,
our cloud gaming service follows the frame control strategy
in WebRTC (i.e., DropTail). To make a clean and controlled
comparison, we only present the results from online A/B tests
in our production clusters, when all other implementations and
settings are kept the same. The A/B test is conducted from
January 8, 2021, to January 14, 2021, resulting in 5369 Ethernet
sessions and 1467 WiFi sessions. The parameter settings of AFR
remain the same as the simulation (§5.2). We randomly enable

Cat. (1) Q99 Q>50ms T99 T>100ms Session
DropTail 54ms 1.11% 101ms 1.03% 7.30%

AFR 22ms 0.51% 80ms 0.68% 5.82%
Cat. (2) Q99 Q>50ms T99 T>100ms Session
DropTail 64ms 1.83% 174ms 3.00% 24.00%

AFR 37ms 0.54% 160ms 2.11% 21.17%

Table 2: Performance of deployment in the wild. Metrics are the
99%ile of queuing delay (Q99), the ratio of frames with Q>50ms,
the 99%ile of total delay (T99), and the ratio of the stuttered frame
(T>100ms). Session is the ratio of sessions with stutter ratio >5%.
Cat. (1) and (2) are Ethernet and WiFi on Windows clients.

(or disable) AFR with a probability of 50% for each session, and
present the results in Table 2. Similar to the simulation results, the
ratio of stuttered frames measured by total delay (P(T>100ms))
in both categories has been improved by 34% and 30%, which
significantly improves users’ experiences in interactive streaming.
The stuttered sessions (with the same metric as Figure 14(a))
have also been reduced by 17% on average, indicating these
users could be alleviated from stuttering streaming experiences.
Therefore, the online deployment also demonstrates significant
benefits of AFR for high-quality RTC users. AFR has already
been deployed onto all production clusters of Tencent Start for
over one year, serving thousands of users each day.

7 Discussions
In this section, we discuss the potential limitations of AFR.
Application scenarios. In this paper, we mainly evaluate the per-
formance of AFR on traces or production clusters of our cloud
gaming service. However, as we introduce in §1 and §2, the over-
load of decoder queue generally exists in many high-quality RTC
scenarios, such as VR streaming or 4K live streaming, as long as
they stream high frame-rate and high bit-rate video onto commer-
cial clients. We evaluate AFR with cloud gaming due to access
to the real-world traces and production services X. We leave the
deployment of AFR over other scenarios as our future work.
Coexistence of multiple control loops. There are other control
loops that work simultaneously in the RTC system. For example,
the underlying congestion controller will also control the bit-rate
of the video based on network conditions [25]. The video codec
will also adjust the quantization parameter based on the scenes
to encode [17]. As we discussed in §3.2, these parameters
are affected by different causes (network congestion, decoder
degradation, scene variation), which are orthogonal to each other.
Therefore, the adaption of the frame rate is orthogonal to the
other controllers in the RTC system. In §6.5, we evaluate the per-
formance of AFR with all these controllers in our real production
in the wild. We leave the coordination of different controllers on
the joint optimization over the user’s experience for the future.

8 Related Work
There has been little prior work on the decoder queue for
high-quality RTC. We survey the following three aspects.
Frame controls in RTC. As we discussed, besides the Drop-

Tail mechanism in WebRTC, there are a series of research
efforts in the active control of RTC frames. For example, some

work [38, 77, 34] maintains a certain number of in-flight frames
based on total delay [77] or frame-level acknowledgement mech-
anisms [34]. AFR differentiates from them in two aspects. First,
the end-to-end control introduces ambiguity in taking effective ac-
tions, as discussed in §3.2. AFR takes effective actions to reduce
the queuing delay. Second, existing control strategies are based
on queue lengths or queuing delay. In contrast, measuring the
arrival and service processes in AFR could help high-quality RTC
to achieve lower queuing delays. Furthermore, researchers also
proposed to co-design the codec and network [35, 34, 79, 75] or
even redesign new decoding ASICs [90]. These cannot be acceler-
ated with commercial hardware and are hard to deploy in practice.
Adaptive Bit-rate Control. There have already been a series
of research efforts on the optimization of low-latency streaming.
Different congestion control [78, 83, 25] or rate adaption
algorithms [87, 84] have been proposed to enable the low-latency
transport for real-time communications. However, as we
discussed above, changing the bit rate without changing the
frame rate will not alleviate the load of the decoder queue. Since
bit-rate and frame-rate are independent in video streaming,
bit-rate adaption is orthogonal to frame-rate adaption and could
be integrated with AFR to control the network delay and queuing
delay together.
Cloud gaming. As a recently emerging application, cloud gam-
ing also attracts the attention of researchers. Researches include
the optimization of the renderer [23, 52, 27] and streaming
codec [72], which are independent of the optimization at the trans-
port level. There are also investigations on the user experience
of cloud gaming [81, 71, 28], which could be integrated with our
work by better customizing the optimization goal. Recent efforts
also try to investigate the performance of production-level cloud
gaming services from the client side [26], which are limited in
scale and completeness. To the best of our knowledge, we are
also the first piece of work to investigate the performance of
production-level cloud gaming services from the server side,
with the scale of tens of thousands of hours of playtime.

9 Conclusion
In this paper, we propose AFR to reduce the queuing delay of the
decoder queue for high-quality RTC by dynamically adjusting the
frame rate. AFR introduces a stationary controller and a transient
controller to respectively mitigate the stationary heavy traffic and
contingent arrivals and services. We further evaluate the perfor-
mance of AFR with trace-driven simulations and deployments
in the production clusters. Experiments demonstrate that AFR
could significantly reduce the stuttering ratio and tail total delay.

This work does not raise any ethical issues.
Acknowledgements. We sincerely thank our shepherd Ky-
oungSoo Park, anonymous reviewers, and labmates in the
Routing Group from Tsinghua University for their valuable
feedback. This work is sponsored by the National Natural
Science Foundation of China (No. 62002196, 61832013, and
62221003) and the Tsinghua-Tencent Collaborative Grant. Bo
Wang and Mingwei Xu are the corresponding authors.

References
[1] Cloud gaming (beta) with xbox game pass — xbox.

https://www.xbox.com/en-US/xbox-game-pass/

cloud-gaming, 2020.

[2] Peak signal-to-noise ratio - wikipedia. https://en.wik

ipedia.org/wiki/Peak_signal-to-noise_ratio,
2020.

[3] Stadia - one place for all the ways we play.
https://stadia.google.com/, 2020.

[4] Start - tencent cloud gaming. https://start.qq.com/,
2020.

[5] Your games. your devices. play anywhere — nvidia geforce
now. https://www.nvidia.com/en-us/geforce-n

ow/, 2020.

[6] Facebook 360 video. https://facebook360.fb.com/,
2021.

[7] Google meet and default video resolution - google meet
community. https://support.google.com/meet/

thread/58039897/google-meet-and-default-vid

eo-resolution, 2021.

[8] Huawei video conferencing platform — huawei enterprise.
https://e.huawei.com/en/solutions/enterpri

se-collaboration/videoconferencing-platform,
2021.

[9] Meeting and phone statistics – zoom help center.
https://support.zoom.us/hc/en-us/articles

/202920719-Meeting-and-phone-statistics,
2021.

[10] Trtx 2080 ti vs rtx 3080 ti game performance benchmarks
(i7-8700k vs core i9-10900k) - gpucheck united states /
usa. https://www.gpucheck.com/compare/nvidi

a-geforce-rtx-2080-ti-vs-nvidia-geforce-rtx

-3080-ti/, 2021.

[11] Vr-interactive – we are interactive. https:

//vr-interactive.at/, 2021.

[12] Youtube vr - home - youtube vr. https:

//vr.youtube.com/, 2021.

[13] Gfxbench - unified graphics benchmark based on
dxbenchmark (directx) and glbenchmark (opengl es).
https://gfxbench.com/result.jsp, 2022.

[14] multithreading - pin processor cpu isolation on windows
- stack overflow. https://stackoverflow.com/ques

tions/15324586/pin-processor-cpu-isolation

-on-windows, 2022.

[15] Processor benchmarks - geekbench browser. https://

browser.geekbench.com/processor-benchmarks/,
2022.

[16] Venkat Arun and Hari Balakrishnan. Copa: Practical
delay-based congestion control for the internet. In Proc.
USENIX NSDI, 2018.

[17] Salahuddin Azad, Wei Song, and Dian Tjondronegoro.
Bitrate modeling of scalable videos using quantization
parameter, frame rate and spatial resolution. In Proc. IEEE
ICASSP, pages 2334–2337, 2010.

[18] Richard Bellman and Robert Kalaba. On adaptive control
processes. IRE Transactions on Automatic Control,
4(2):1–9, 1959.

[19] Ankita Bhutani and Preeti Wadhwani. Cloud gaming
market share forecast 2025 — industry size report.
https://www.gminsights.com/industry-analysi

s/cloud-gaming-market, 2020.

[20] Karl Bridge and Michael Satran. Multitasking - win32 apps
— microsoft docs. https://docs.microsoft.com/e

n-us/windows/win32/procthread/multitasking,
2018.

[21] James Bruce, Marta Mrak, and Rajitha Weer-
akkody. Testing av1 and vvc - bbc r&d.
https://www.bbc.co.uk/rd/blog/2019-05-a

v1-codec-streaming-processing-hevc-vvc, 2019.

[22] Alan Bryman and Duncan Cramer. Quantitative data
analysis with IBM SPSS 17, 18 & 19: A guide for social
scientists. Routledge, 2012.

[23] James Bulman and Peter Garraghan. A cloud gaming
framework for dynamic graphical rendering towards
achieving distributed game engines. In Proc. USENIX
HotCloud, 2020.

[24] Ronald S. Bultje. The world’s fastest vp9 decoder: ffvp9.
https://blogs.gnome.org/rbultje/2014/02/22/

the-worlds-fastest-vp9-decoder-ffvp9/, 2014.

[25] Gaetano Carlucci, Luca De Cicco, Stefan Holmer, and Save-
rio Mascolo. Congestion control for web real-time commu-
nication. IEEE/ACM Transactions on Networking, 2017.

[26] Marc Carrascosa and Boris Bellalta. Cloud-gaming:
Analysis of google stadia traffic. arXiv:2009.09786, 2020.

[27] Hao Chen, Xu Zhang, Yiling Xu, Ju Ren, Jingtao Fan,
Zhan Ma, and Wenjun Zhang. T-gaming: A cost-efficient
cloud gaming system at scale. IEEE Transactions on
Parallel and Distributed Systems, 2019.

https://www.xbox.com/en-US/xbox-game-pass/cloud-gaming
https://www.xbox.com/en-US/xbox-game-pass/cloud-gaming
https://www.xbox.com/en-US/xbox-game-pass/cloud-gaming
https://en.wikipedia.org/wiki/Peak_signal-to-noise_ratio
https://en.wikipedia.org/wiki/Peak_signal-to-noise_ratio
https://stadia.google.com/
https://stadia.google.com/
https://start.qq.com/
https://www.nvidia.com/en-us/geforce-now/
https://www.nvidia.com/en-us/geforce-now/
https://facebook360.fb.com/
https://support.google.com/meet/thread/58039897/google-meet-and-default-video-resolution
https://support.google.com/meet/thread/58039897/google-meet-and-default-video-resolution
https://support.google.com/meet/thread/58039897/google-meet-and-default-video-resolution
https://e.huawei.com/en/solutions/enterprise-collaboration/videoconferencing-platform
https://e.huawei.com/en/solutions/enterprise-collaboration/videoconferencing-platform
https://support.zoom.us/hc/en-us/articles/202920719-Meeting-and-phone-statistics
https://support.zoom.us/hc/en-us/articles/202920719-Meeting-and-phone-statistics
https://support.zoom.us/hc/en-us/articles/202920719-Meeting-and-phone-statistics
https://www.gpucheck.com/compare/nvidia-geforce-rtx-2080-ti-vs-nvidia-geforce-rtx-3080-ti/
https://www.gpucheck.com/compare/nvidia-geforce-rtx-2080-ti-vs-nvidia-geforce-rtx-3080-ti/
https://www.gpucheck.com/compare/nvidia-geforce-rtx-2080-ti-vs-nvidia-geforce-rtx-3080-ti/
https://vr-interactive.at/
https://vr-interactive.at/
https://vr.youtube.com/
https://vr.youtube.com/
https://gfxbench.com/result.jsp
https://gfxbench.com/result.jsp
https://stackoverflow.com/questions/15324586/pin-processor-cpu-isolation-on-windows
https://stackoverflow.com/questions/15324586/pin-processor-cpu-isolation-on-windows
https://stackoverflow.com/questions/15324586/pin-processor-cpu-isolation-on-windows
https://browser.geekbench.com/processor-benchmarks/
https://browser.geekbench.com/processor-benchmarks/
https://www.gminsights.com/industry-analysis/cloud-gaming-market
https://www.gminsights.com/industry-analysis/cloud-gaming-market
https://www.gminsights.com/industry-analysis/cloud-gaming-market
https://docs.microsoft.com/en-us/windows/win32/procthread/multitasking
https://docs.microsoft.com/en-us/windows/win32/procthread/multitasking
https://www.bbc.co.uk/rd/blog/2019-05-av1-codec-streaming-processing-hevc-vvc
https://www.bbc.co.uk/rd/blog/2019-05-av1-codec-streaming-processing-hevc-vvc
https://www.bbc.co.uk/rd/blog/2019-05-av1-codec-streaming-processing-hevc-vvc
https://blogs.gnome.org/rbultje/2014/02/22/the-worlds-fastest-vp9-decoder-ffvp9/
https://blogs.gnome.org/rbultje/2014/02/22/the-worlds-fastest-vp9-decoder-ffvp9/

[28] Kuan-Ta Chen, Yu-Chun Chang, Hwai-Jung Hsu, De-Yu
Chen, Chun-Ying Huang, and Cheng-Hsin Hsu. On
the quality of service of cloud gaming systems. IEEE
Transactions on Multimedia, 2013.

[29] Yushin Cho, William A Pearlman, and Amir Said. Low
complexity resolution progressive image coding algorithm:
progres (progressive resolution decompression). In Proc.
IEEE ICIP, 2005.

[30] Tzu-Der Chuang, Pei-Kuei Tsung, Pin-Chih Lin, Lo-Mei
Chang, Tsung-Chuan Ma, Yi-Hau Chen, and Liang-Gee
Chen. A 59.5 mw scalable/multi-view video decoder chip
for quad/3d full hdtv and video streaming applications. In
Proc. IEEE ISSCC, pages 330–331, 2010.

[31] Harald Cramér. Mathematical methods of statistics, 1946.
Department of Mathematical SU, 1946.

[32] Robert G. Gallager Dimitri P. Bertsekas. Section 3.3: The
m/m/1 queuing system. In Data Networks (2nd Edition),
1992.

[33] Florin Dobrian, Vyas Sekar, Asad Awan, Ion Stoica,
Dilip Joseph, Aditya Ganjam, Jibin Zhan, and Hui
Zhang. Understanding the impact of video quality on user
engagement. In Proc. ACM SIGCOMM, 2011.

[34] Sadjad Fouladi, John Emmons, Emre Orbay, Catherine Wu,
Riad S Wahby, and Keith Winstein. Salsify: Low-latency
network video through tighter integration between a video
codec and a transport protocol. In Proc. USENIX NSDI,
2018.

[35] Sadjad Fouladi, Riad S Wahby, Brennan Shacklett,
Karthikeyan Vasuki Balasubramaniam, William Zeng,
Rahul Bhalerao, Anirudh Sivaraman, George Porter, and
Keith Winstein. Encoding, fast and slow: Low-latency
video processing using thousands of tiny threads. In Proc.
USENIX NSDI, 2017.

[36] Prateesh Goyal, Anup Agarwal, Ravi Netravali, Moham-
mad Alizadeh, and Hari Balakrishnan. Abc: A simple
explicit congestion controller for wireless networks. In
Proc. USENIX NSDI, 2020.

[37] Yu Guan, Chengyuan Zheng, Xinggong Zhang, Zongming
Guo, and Junchen Jiang. Pano: Optimizing 360 video
streaming with a better understanding of quality perception.
In Proc. ACM SIGCOMM. 2019.

[38] Jefferson Han and Brian Smith. Cu-seeme vr immersive
desktop teleconferencing. In Proc. ACM Multimedia, pages
199–207, 1997.

[39] Refael Hassin and Moshe Haviv. To queue or not to queue:
Equilibrium behavior in queueing systems, volume 59.
Springer Science & Business Media, 2003.

[40] Petr Holub, Jiř́ı Matela, Martin Pulec, and Martin Šrom.
Ultragrid: low-latency high-quality video transmissions on
commodity hardware. In Proc. ACM Multimedia, 2012.

[41] Chun-Ying Huang, Cheng-Hsin Hsu, Yu-Chun Chang, and
Kuan-Ta Chen. Gaminganywhere: an open cloud gaming
system. In Proc. ACM MMSys, 2013.

[42] Te-Yuan Huang, Ramesh Johari, Nick McKeown, Matthew
Trunnell, and Mark Watson. A buffer-based approach to
rate adaptation: Evidence from a large video streaming
service. In Proc. ACM SIGCOMM, 2014.

[43] Zenja Ivkovic, Ian Stavness, Carl Gutwin, and Steven
Sutcliffe. Quantifying and mitigating the negative effects
of local latencies on aiming in 3d shooter games. In Proc.
ACM CHI, pages 135–144, 2015.

[44] Van Jacobson. Congestion avoidance and control. In Proc.
ACM SIGCOMM, 1988.

[45] JFC Kingman and MF Atiyah. The single server queue
in heavy traffic. Oper. Manage., Critical Perspect. Bus.
Manage, 2003.

[46] Marwan Krunz and Herman Hughes. A traffic for mpeg-
coded vbr streams. In Proc. ACM SIGMETRICS, 1995.

[47] Ana Kuzmanic and Vlasta Zanchi. Hand shape classi-
fication using dtw and lcss as similarity measures for
vision-based gesture recognition system. In EUROCON
2007-The International Conference on” Computer as a
Tool”, pages 264–269. IEEE, 2007.

[48] Yun Gu Lee and Byung Cheol Song. An intra-frame rate
control algorithm for ultralow delay h. 264/advanced video
coding (avc). IEEE Transactions on Circuits and Systems
for Video Technology, pages 747–752, 2009.

[49] Tong Li, Kai Zheng, Ke Xu, Rahul Arvind Jadhav,
Tao Xiong, Keith Winstein, and Kun Tan. Tack:
Improving wireless transport performance by taming
acknowledgments. In Proc. ACM SIGCOMM, 2020.

[50] Yuliang Li, Rui Miao, Hongqiang Harry Liu, Yan Zhuang,
Fei Feng, Lingbo Tang, Zheng Cao, Ming Zhang, Frank
Kelly, Mohammad Alizadeh, et al. Hpcc: High precision
congestion control. In Proc. ACM SIGCOMM, 2019.

[51] Zhi Li, Anne Aaron, Ioannis Katsavounidis, Anush Moor-
thy, and Megha Manohara. Toward a practical perceptual
video quality metric — netflix techblog. https://netf

lixtechblog.com/toward-a-practical-percept

ual-video-quality-metric-653f208b9652, 2016.

[52] Xiaofei Liao, Li Lin, Guang Tan, Hai Jin, Xiaobin Yang,
Wei Zhang, and Bo Li. Liverender: A cloud gaming system
based on compressed graphics streaming. IEEE/ACM
Transactions on Networking, 2016.

https://netflixtechblog.com/toward-a-practical-perceptual-video-quality-metric-653f208b9652
https://netflixtechblog.com/toward-a-practical-perceptual-video-quality-metric-653f208b9652
https://netflixtechblog.com/toward-a-practical-perceptual-video-quality-metric-653f208b9652

[53] CC Lin, JI Guo, HC Chang, YC Yang, JW Chen, MC Tsai,
and JS Wang. A 160kgate 4.5 kb skram h. 264 video
decoder for hdtv applications. In Proc. IEEE ISSCC, pages
1596–1605, 2006.

[54] Candice Liu. Hardware decoding vs software
decoding in 4k h264/h265 video. https:

//www.macxdvd.com/mac-video-converter-pro/h

ardware-decoding-4k-ultra-hd-video.htm, 2020.

[55] Andrea Lottarini, Alex Ramirez, Joel Coburn, Martha A
Kim, Parthasarathy Ranganathan, Daniel Stodolsky, and
Mark Wachsler. vbench: Benchmarking video transcoding
in the cloud. In Proc. ASPLOS, pages 797–809, 2018.

[56] Zili Meng, Yaning Guo, Chen Sun, Bo Wang, Justine
Sherry, Hongqiang Harry Liu, and Mingwei Xu. Achieving
Consistent Low Latency for Wireless Real Time Commu-
nications with the Shortest Control Loop. In Proc. ACM
SIGCOMM, 2022.

[57] China Mobile and ZTE. Powered by sa: 5g mec-based
cloud game innovation practice. GSMA 5G Case Studies (
https://www.gsma.com/futurenetworks/wp-conte

nt/uploads/2020/03/Powered-by-SA-5G-MEC-Bas

ed-Cloud-Game-Innovation-Practice-.pdf), 2020.

[58] Omar Mossad, Khaled Diab, Ihab Amer, and Mohamed
Hefeeda. Deepgame: Efficient video encoding for cloud
gaming. In Proc. ACM Multimedia, 2021.

[59] Vit Niennattrakul and Chotirat Ann Ratanamahatana. On
clustering multimedia time series data using k-means and
dynamic time warping. In 2007 International Conference
on Multimedia and Ubiquitous Engineering (MUE’07),
pages 733–738. IEEE, 2007.

[60] Ilya Nikolaevskiy. Refactor framebuffer to store decoded
frames history separately (i82be0eb3) · gerrit code review.
https://webrtc-review.googlesource.com/c/s

rc/+/116686, 2019.

[61] OPG609. List of 60fps games playable on ps5.
https://www.reddit.com/r/PS5/comments/kiuh2t

/list_of_60fps_games_playable_on_ps5/, 2020.

[62] Adrian Pennington. So you say you’re plan-
ning a 16k live stream... - nab amplify.
https://amplify.nabshow.com/articles/so-you

-say-youre-planning-a-16k-live-stream/, 2022.

[63] Stefano Petrangeli, Viswanathan Swaminathan, Moham-
mad Hosseini, and Filip De Turck. An http/2-based
adaptive streaming framework for 360 virtual reality videos.
In Proc. ACM Multimedia, 2017.

[64] Alok Prakash, Hussam Amrouch, Muhammad Shafique,
Tulika Mitra, and Jörg Henkel. Improving mobile gaming

performance through cooperative cpu-gpu thermal man-
agement. In Proc. ACM/EDAC/IEEE Design Automation
Conference (DAC), pages 1–6, 2016.

[65] Friedrich Pukelsheim. The three sigma rule. The American
Statistician, 1994.

[66] Elizabeth Ross, John Parente, Mike Jacobs, David Kuehn,
John Baldwin, Corey Plett, Brock Mammen, and Liza
Poggemeyer. typeperf — microsoft docs. https:

//docs.microsoft.com/en-us/windows-server/ad

ministration/windows-commands/typeperf, 2017.

[67] Saeed Shafiee Sabet, Steven Schmidt, Saman Zadtootaghaj,
Babak Naderi, Carsten Griwodz, and Sebastian Möller.
A latency compensation technique based on game
characteristics to mitigate the influence of delay on cloud
gaming quality of experience. In Proceedings of the 11th
ACM Multimedia Systems Conference, pages 15–25, 2020.

[68] Matt Sargent, Jerry Chu, Dr. Vern Paxson, and Mark
Allman. Computing TCP’s Retransmission Timer. IETF
RFC 6298.

[69] Heiko Schwarz, Detlev Marpe, and Thomas Wiegand.
Overview of the scalable video coding extension of the
h. 264/avc standard. IEEE Transactions on circuits and
systems for video technology, 2007.

[70] Arun Kumar Sharma. Text book of correlations and
regression. Discovery Publishing House, 2005.

[71] Ivan Slivar, Lea Skorin-Kapov, and Mirko Suznjevic.
Cloud gaming qoe models for deriving video encoding
adaptation strategies. In Proc. ACM MMSys, 2016.

[72] Ivan Slivar, Mirko Suznjevic, and Lea Skorin-Kapov. The
impact of video encoding parameters and game type on qoe
for cloud gaming: A case study using the steam platform.
In Proc. IEEE International Conference on Quality of
Multimedia Experience (QoMEX), 2015.

[73] James Stringer. Pushing it to the limit – parsec at 240
frames per second with approximately 4-8 milliseconds of
... — parsec. https://parsec.app/blog/parsec-g

ame-streaming-total-latency-at-240-frames-p

er-second-c0818cc0daa5, 2022.

[74] Zhaowei Tan, Yuanjie Li, Qianru Li, Zhehui Zhang, Zhehan
Li, and Songwu Lu. Supporting mobile vr in lte networks:
How close are we? Proc. ACM SIGMETRICS, 2018.

[75] Tingfeng Wang, Zili Meng, Mingwei Xu, Rui Han, and
Honghao Liu. Enabling high frame-rate uhd real-time
communication with frame-skipping. In Proc. ACM
Workshop on Hot Topics in Video Analytics and Intelligent
Edges, 2021.

https://www.macxdvd.com/mac-video-converter-pro/hardware-decoding-4k-ultra-hd-video.htm
https://www.macxdvd.com/mac-video-converter-pro/hardware-decoding-4k-ultra-hd-video.htm
https://www.macxdvd.com/mac-video-converter-pro/hardware-decoding-4k-ultra-hd-video.htm
https://www.gsma.com/futurenetworks/wp-content/uploads/2020/03/Powered-by-SA-5G-MEC-Based-Cloud-Game-Innovation-Practice-.pdf
https://www.gsma.com/futurenetworks/wp-content/uploads/2020/03/Powered-by-SA-5G-MEC-Based-Cloud-Game-Innovation-Practice-.pdf
https://www.gsma.com/futurenetworks/wp-content/uploads/2020/03/Powered-by-SA-5G-MEC-Based-Cloud-Game-Innovation-Practice-.pdf
https://www.gsma.com/futurenetworks/wp-content/uploads/2020/03/Powered-by-SA-5G-MEC-Based-Cloud-Game-Innovation-Practice-.pdf
https://webrtc-review.googlesource.com/c/src/+/116686
https://webrtc-review.googlesource.com/c/src/+/116686
https://www.reddit.com/r/PS5/comments/kiuh2t/list_of_60fps_games_playable_on_ps5/
https://www.reddit.com/r/PS5/comments/kiuh2t/list_of_60fps_games_playable_on_ps5/
https://www.reddit.com/r/PS5/comments/kiuh2t/list_of_60fps_games_playable_on_ps5/
https://amplify.nabshow.com/articles/so-you-say-youre-planning-a-16k-live-stream/
https://amplify.nabshow.com/articles/so-you-say-youre-planning-a-16k-live-stream/
https://amplify.nabshow.com/articles/so-you-say-youre-planning-a-16k-live-stream/
https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/typeperf
https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/typeperf
https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/typeperf
https://parsec.app/blog/parsec-game-streaming-total-latency-at-240-frames-per-second-c0818cc0daa5
https://parsec.app/blog/parsec-game-streaming-total-latency-at-240-frames-per-second-c0818cc0daa5
https://parsec.app/blog/parsec-game-streaming-total-latency-at-240-frames-per-second-c0818cc0daa5

[76] Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P
Simoncelli. Image quality assessment: from error visibility
to structural similarity. IEEE Transactions on Image
Processing, 2004.

[77] Keith Winstein and Hari Balakrishnan. Mosh: An
interactive remote shell for mobile clients. In Proc.
USENIX ATC, 2012.

[78] Keith Winstein, Anirudh Sivaraman, and Hari Balakrishnan.
Stochastic forecasts achieve high throughput and low delay
over cellular networks. In Proc. USENIX NSDI, 2013.

[79] Jiyan Wu, Chau Yuen, Ngai-Man Cheung, Junliang Chen,
and Chang Wen Chen. Enabling adaptive high-frame-rate
video streaming in mobile cloud gaming applications.
IEEE Transactions on Circuits and Systems for Video
Technology, 2015.

[80] Gang Yi, Dan Yang, Abdelhak Bentaleb, Weihua Li, Yi Li,
Kai Zheng, Jiangchuan Liu, Wei Tsang Ooi, and Yong Cui.
The acm multimedia 2019 live video streaming grand chal-
lenge. In Proc. ACM Multimedia, pages 2622–2626, 2019.

[81] Saman Zadtootaghaj, Steven Schmidt, and Sebastian
Möller. Modeling gaming qoe: Towards the impact
of frame rate and bit rate on cloud gaming. In Proc.
IEEE International Conference on Quality of Multimedia
Experience (QoMEX), 2018.

[82] Saman Zadtootaghaj, Steven Schmidt, Saeed Shafiee
Sabet, Sebastian Möller, and Carsten Griwodz. Quality
estimation models for gaming video streaming services
using perceptual video quality dimensions. In Proc. ACM
Multimedia Systems Conference (MMSys), 2020.

[83] Yasir Zaki, Thomas Pötsch, Jay Chen, Lakshminarayanan
Subramanian, and Carmelita Görg. Adaptive congestion
control for unpredictable cellular networks. In Proc. ACM
SIGCOMM, 2015.

[84] Huanhuan Zhang, Anfu Zhou, Jiamin Lu, Ruoxuan Ma,
Yuhan Hu, Cong Li, Xinyu Zhang, Huadong Ma, and Xiao-
jiang Chen. Onrl: improving mobile video telephony via on-
line reinforcement learning. In Proc. ACM MobiCom, 2020.

[85] Wenxiao Zhang, Feng Qian, Bo Han, and Pan Hui. Deep-
vista: 16k panoramic cinema on your mobile device. In Pro-
ceedings of the Web Conference, pages 2232–2244, 2021.

[86] Xu Zhang, Hao Chen, Yangchao Zhao, Zhan Ma, Yiling
Xu, Haojun Huang, Hao Yin, and Dapeng Oliver Wu.
Improving cloud gaming experience through mobile edge
computing. IEEE Wireless Communications, 2019.

[87] Anfu Zhou, Huanhuan Zhang, Guangyuan Su, Leilei Wu,
Ruoxuan Ma, Zhen Meng, Xinyu Zhang, Xiufeng Xie,
Huadong Ma, and Xiaojiang Chen. Learning to coordinate

video codec with transport protocol for mobile video
telephony. In Proc. ACM MobiCom, 2019.

[88] Chao Zhou, Mengbai Xiao, and Yao Liu. Clustile: Toward
minimizing bandwidth in 360-degree video streaming. In
Proc. IEEE INFOCOM, 2018.

[89] Dajiang Zhou, Shihao Wang, Heming Sun, Jianbin Zhou,
Jiayi Zhu, Yijin Zhao, Jinjia Zhou, Shuping Zhang, Shinji
Kimura, Takeshi Yoshimura, et al. An 8k h. 265/hevc video
decoder chip with a new system pipeline design. IEEE
Journal of Solid-State Circuits, 52(1):113–126, 2017.

[90] Dajiang Zhou, Jinjia Zhou, Xun He, Jiayi Zhu, Ji Kong,
Peilin Liu, and Satoshi Goto. A 530 mpixels/s 4096x2160@
60fps h. 264/avc high profile video decoder chip. IEEE
Journal of Solid-State Circuits, 46(4):777–788, 2011.

[91] Dajiang Zhou, Jinjia Zhou, Jiayi Zhu, Peilin Liu, and
Satoshi Goto. A 2gpixel/s h. 264/avc hp/mvc video decoder
chip for super hi-vision and 3dtv/ftv applications. In Proc.
IEEE International Solid-State Circuits Conference, pages
224–226, 2012.

Appendices
A Potential Solutions and Concerns
In this section, we discuss why other potential solutions are
insufficient to address the problem in this paper, and discuss
other concerns of adapting the frame rate during runtime.

A.1 Potential Solutions
Discarding frames or adjusting resolutions. For most widely
adopted codecs, dropping one frame or changing the resolution
will make the following frames fail to recover the raw pixels of
the block because they are differentially encoded by the motion
vector to the previous one2. This is to utilize the redundant
information between frames to reduce the bitrate of the stream.
Since key frames do not rely on previous frames, they are usually
much larger than other predictive frames (sometimes 10×) [46].
Therefore, given the same bottleneck bandwidth, sending a frame
with 10× larger size will take approximately 10× time (tens to
hundreds of milliseconds), which drastically increases the delay
for the users. Moreover, frequently requesting key frames will
degrade the goodput of the streaming and potentially increase
the congestion in the network. Therefore, directly dropping
delayed frames at the client or frequently changing the resolution
will introduce stalls for the subsequent frames and degrade the
users’ experiences of high-quality RTC.

Adjusting the bit-rate. Without changing the resolution and
frame rate, adjusting the bit rate has a very limited effect in reduc-
ing the decoding delay. Generally speaking, resolution, bit rate,
and frame rate could be independently set. The display resolution
describes the number of distinct pixels in each dimension that

2Recent advances on scalable video coding could partially break the
inter-frame dependency, yet degrades video quality with the same bit-rate [69].

can be displayed, and the frame rate represents the number of
pictures within one second of video. And the bit rate represents
the amount of data used for storing the coded bit-stream. So the
higher resolution we set, the more pixels a single picture will have,
which could mean a higher definition of the video. And setting
a higher frame rate means there will be more pictures per video
second to make the video smoother. If we set a higher target bit-
rate while keeping other parameters unchanged, the encoder can
use more data to represent the pictures to achieve lower possible
image distortion with a lower quantization parameter [17].

In this case, with the unchanged frame rate and resolution,
the decoding procedure is also unaffected. For example, in
H.264/AVC, a sequence of macroblocks can be composed
of a slice, a picture, therefore, is a collection of one or more
slices. Slices are completely independent of each other, and
the macroblocks inside a video frame can be reconstructed
in parallel. The video decoding has been parallelized using
slice-level or block-level parallelism. The resolution will affect
how many pixels there are in one frame, and the frame rate
determines the tolerable decoding delay for each frame. The
parallelized decoder is not significantly affected by the precision
of each pixel. We further measure the decoding performance
with different bitrates in production in Appendix B.4.

Preset the frame rate and resolution based on client types. An
alternative to AFR is that the application checks whether the hard-
ware could reliably decode the video at a certain resolution and
frame rate at initialization. This, however, would lead to underuti-
lization on the client side. The decoding capability of hardware
is fluctuating over time due to various reasons. For example, we
measure the distribution of decoding delay of each user session
in Appendix B.5. One-fourth of users will have at least 1‰ time
of a long decoding delay of >18ms, which could result in severe
queuing delay, as we illustrated in Figure 6. In this case, if we set
the resolution and frame rate based on this tail metric, users will
have a much lower resolution and frame rate during most of the
time. Therefore, we need to control the frame rate in the runtime
to dynamically adapt to the network and decoder dynamics.

Allocating the application with dedicated resources. Another
seemingly feasible solution is to bind the application to a certain
CPU core or GPU core to avoid the potential fluctuations caused
by scheduling. However, we do not have such privileged control
on client devices. As a user space application, the controllability
over the user’s system is limited. Even if an expert user pins the
application to a certain core, for commercial systems such as Win-
dows, pinning does not indicate isolating the core for that applica-
tion only [14]. The system can only ensure the pinned application
to run on that core, but could also schedule other processes if still
available. Moreover, since our application is not CPU-intensive
most of the time, there would usually be idle resources on the
same core where the user binds the application to. Therefore,
there could still be the same issue of latency increases at tail.

CPU Release date Score Portion
Intel® CoreTM i5-4590 Q2 2014 868 1.66%

Intel® CoreTM i5-7200U Q4 2016 481 1.61%
Intel® CoreTM i5-9400F Q1 2019 1058 1.56%
Intel® CoreTM i5-4460 Q2 2014 801 1.41%

Intel® CoreTM i5-5200U Q4 2014 573 1.38%

Table 3: Top 5 CPU models of clients in our cloud gaming service.
GPU Release date Score Portion

Intel® UHD Graphics 630 Q3 2017 888 4.54%
Intel® HD Graphics 4600 Q2 2013 474 3.42%

Nvidia GeForce GTX 1050Ti Q4 2016 5059 3.19%
Intel® HD Graphics 630 Q3 2016 825 2.77%
Nvidia GeForce GT730 Q2 2014 863 2.48%

Table 4: Top 5 GPU models of clients in our cloud gaming service.

A.2 Practical Concerns
Since the frame-rate needs to be adjusted at the server, a
straightforward concern is whether the frame-rate adaption over
the Internet is timely for the stringent delay requirement of
high-quality RTC. The measurements in production have two
following findings. On one hand, the round-trip network delay is
short enough to enable timely feedback: the average round-trip
network delay is around 20ms of our cloud gaming service
(Appendix B.2). Measurements over other high-quality RTC
services (e.g., Google Stadia) have similar results of less than
20ms [26, 57]. On the other hand, the degradation of decoding
delay usually lasts for a long time, with a median duration
of more than 100 milliseconds (Appendix B.5). Moreover,
we also demonstrate that the increase in decoding delay and
network delay is hardly correlated (Appendix B.6). Therefore,
for high-quality RTC, when the decoder fluctuates, it is timely
enough to control the frame rate over the Internet.

B Measurement over Dataset
In this section, we supplement the observations in the main text
with measurements in production. The measurement settings
follow the details in §5.2.

B.1 User Characteristics
In addition to the distribution in §3.1, we present the top-5
models, with their release dates, benchmark scores, and portion
in our users, of CPU and GPU in Table 3 and 4.

B.2 Delay Distributions
Compared to traditional RTC scenarios, the delay distribution
for high-quality RTC has some unique features according to our
measurements. We present the Cumulative distribution function
(CDF) of component delays and the total delay to explore the
delay patterns.

First, due to the edge deployments, the network delay in our
cloud gaming service is quite small. According to Figure 20,
the average round-trip network delay is approximately around
20ms. Even in this case, similar to traditional RTC services, the
network delay is accounted for a large part of the total delay, the
network delay line closely follows the total delay at the median
for all four categories in Figure 20.

However, the tail delay of others component delays like

0 5 0 1 0 0 1 5 0 2 0 0
0 %

5 0 %

9 0 %

9 9 %1 0 0 %
CD

F

D e l a y (m s)

T o t a l
N e t w o r k
Q u e u i n g
D e c o d i n g

(a) Cat. (1): Windows+Ethernet.

0 5 0 1 0 0 1 5 0 2 0 0
D e l a y (m s)

T o t a l
N e t w o r k
Q u e u i n g
D e c o d i n g

(b) Cat. (2): Windows+WiFi.

0 5 0 1 0 0 1 5 0 2 0 0
0 %

5 0 %

9 0 %

9 9 %1 0 0 %

CD
F

D e l a y (m s)

T o t a l
N e t w o r k
Q u e u i n g
D e c o d i n g

(c) Cat. (3): MacOS+Ethernet.

0 5 0 1 0 0 1 5 0 2 0 0
D e l a y (m s)

T o t a l
N e t w o r k
Q u e u i n g
D e c o d i n g

(d) Cat. (4): MacOS+WiFi.

Figure 20: Raw measurements of delays from production.

decoding delay and queuing delay are noticeable under cloud
gaming scenarios. For the decoding delay, we can notice that the
decoding delay for 1080p frames is 18ms at the 99th percentile.
Note that the decoder of all sessions evaluated in this paper
has been hardware-accelerated. Therefore, as analyzed in §3.1,
the queuing delay is becoming noticeable at the tail. Referring
to Figure 20, the 99th percentile of queuing delay can reach
50ms under categories (2) and (4), which could degrade users’
experience for high-quality RTC services. We further present
the root cause analysis below in Appendix B.3.

B.3 Root Cause Analysis
The total delay is mainly contributed by the network delay,
decoding delay, and queuing delay §3. Therefore, we want to
investigate how these three components contribute to the increase
in total delay at the tail. For each frame, we denote T as total
delay and C as component delay, where the component delay
could be the network, decoding, or queuing delay.

To analyze the necessity and sufficiency of the component
delay increasing to the total delay at the tail, we then calculate
two conditional probabilities between the event of T longer than
a certain threshold Tth, and the event of C longer than a certain
threshold Cth:
• P(C>Cth|T >Tth). We want to account for how component

delay increasing contributes to total delay under different
delayed degrees Tth, and this conditional probability is subject
to quantify it. If this conditional probability is close to one,
there will be great confidence to blame the component delay
for contributing Cth delay to the total delay to reaching Tth.

• P(T > Tth|C >Cth). As the sum of component delays, the
total delay should increase when one of the component delays
increases. This conditional probability is subject to illustrate
this assumption and indicates the probability of total delay
reaching the Tth under different component delay increasing
degree Cth.
We calculate the conditional probabilities for three components

for different Cth and Tth, and have the following observations.

5 0 %
7 5 %

2 5 %

2 4 8 1 61 6

8

4

2

T t h / E (T)

N th
 / E

(N
)

(a) P(N>Nth|T >Tth).

5 0 %
7 5 %

2 5 %

2 4 8 1 61 6

8

4

2

T t h / E (T)

N th
 / E

(N
)

0 %
2 5 %
5 0 %
7 5 %
1 0 0 %

(b) P(T >Tth|N>Nth).

5 0 %

2 5 %
2 4 8 1 66 4

3 2
1 6
8
4
2

T t h / E (T)

Q th
 / E

(Q
)

(c) P(Q>Qth|T >Tth).

5 0 %
2 5 %

7 5 %

2 4 8 1 66 4
3 2
1 6
8
4
2

T t h / E (T)

Q th
 / E

(Q
)

0 %
2 5 %
5 0 %
7 5 %
1 0 0 %

(d) P(T >Tth|Q>Qth).

5 0 % 2 5 %

2 4 8 1 63 2
1 6
8
4
2

T t h / E (T)
D th

 / E
(D

)
(e) P(D>Dth|T >Tth).

2 5 %5 0 %7 5 %

2 4 8 1 63 2
1 6
8
4
2

T t h / E (T)

D th
 / E

(D
)

0 %
2 5 %
5 0 %
7 5 %
1 0 0 %

(f) P(T >Tth|D>Dth).

Figure 21: The heatmap of conditional probabilities for wired
connections. The horizontal and vertical axes have been normalized
by their average values. The star point’s value is recorded in table 5
The down-left corner is 100% since the total delay should always be
larger than the component delay.

Network Queuing Decoding
P(C>Cth|T >Tth) 44.7% 56.6% 4.0%
P(T >Tth|C>Cth) 29.8% 69.5% 84.2%

Table 5: Conditional probabilities with Tth = 100ms and Cth = 50ms
for wired connections, which accounts for 82% of total users of our
cloud gaming service.

Total delay increasing is a reflection of components delay
increases. As the sum of the different types of components
delay, It’s obvious that no matter what kind of component delay
is increasing, the total delay will also increase.

So to find out the sufficiency of total delay increasing, we
calculate the conditional probability of P(T > Tth|C >Cth) in
right-side of Figure 21. We can notice that for all the component
delays, their delay increasing can also mean a higher probability
of total delay increasing (75%ile line in the figure is shifting to
the right with the component delay increasing). The down-left
corner is 100%, because as the sum of all types of component
delay, the total delay must be larger than any component delay.

Queuing delay is responsible for delay increases of >100ms.
To figure out the necessity of total delay increasing, we calculate
the conditional probability of P(C > Cth|T > Tth) in left-side
of Figure 21. Our major finding is that with the different
order of severity of total delay increasing (2-16× of E(T),
the root cause of it is also changing. As we can see, when
Tth is larger than 8E(T), network delay has a high probability

0 5 0 1 0 0 1 5 0 2 0 01 0 0
8 0
6 0
4 0
2 0
0

F r a m e S i z e (K B)

De
co

din
g D

ela
y (

ms
)

1 0 - 6
1 0 - 5
1 0 - 4
1 0 - 3
1 0 - 2
1 0 - 1
1 0 0F r e q .

(a) Frequency heatmap.

(b) Decoding delay CDF.

- 0 . 2 - 0 . 1 0 . 0 0 . 1 0 . 2 0 . 3 0 . 4
0 %

2 0 %
4 0 %
6 0 %
8 0 %

1 0 0 %
CD

F

P e a r s o n ' s r

C a t . (1)
C a t . (2)
C a t . (3)
C a t . (4)

(c) Correlation coefficient CDF.

Figure 22: The correlation between the frame size and decoding delay
for hardware decoders.

(shaded red) to be blamed. However, when Tth is from 3E(T)
to 8E(T), queuing delay dominates the most increased events.
It illustrates that the queuing delay is responsible for the increase
of total delay by around 100ms. Specifically, we present the
conditional probabilities for three components with Tth=100ms
and Cth = 50ms for wired connections in Table 5. As we can
see, queuing delay has both high P(C|T) and P(T |C). Indicating
that the total delay has a great possibility of reaching 100ms
when queuing delay increases to 50ms. And for those video
frames that total delay truly getting the 100ms, there will be
great confidence to blame the queuing delay for contributing to
the majority of delay increasing. So the queuing delay will be
the root cause of the increase of total delay to 100ms.

B.4 Decoding Performance
In this section, we explain the reasons behind the ineffectiveness
of controlling the service process for eliminating queuing time
by adjusting the bit rate. The decoding time of decoders mainly
depends on the resolution of the streaming. However, due to
the dependency between frames, changing the resolution during
the streaming will make the subsequent frames undecodeable
and needs to request a new key frame for most codecs [29].
Yet, since the frame size of key frames is usually several times
ofthose of other frames [46], frequently requesting key frames
will impose additional overhead on the network and degrade the
users’ experiences.

Another straightforward solution is to try to accelerate the
service process by reducing the bit rate while maintaining the
same resolution. With the same resolution and frame-rate options,
reducing the bit rate means lesser video data per video frame can
carry. We are to investigate whether sending video frames with
smaller data sizes is helpful for decoding acceleration. However,
according to our measurements on the H.264 decoder, merely
changing the bit rate does not significantly reduce the decoding
time.

1 1 0 1 0 0
0 %

2 0 %
4 0 %
6 0 %
8 0 %

1 0 0 %

CD
F

D u r a t i o n (f r a m e)
(a) Decoder degradation dura-
tion.

1 0 - 6 1 0 - 4 1 0 - 2 1 0 00 %
2 0 %
4 0 %
6 0 %
8 0 %

1 0 0 %

CD
F

R a t i o o f f r a m e s i n a s e s s i o n

> 6 m s
> 1 2 m s
> 1 8 m s
> 2 4 m s
> 3 0 m s

(b) Frames with long decoding delay

Figure 23: Decoder degradation when filtered with different thresholds
for decoding delay.

We measure the relationship between the frame size and decod-
ing time of the dataset described in §5.2. We first present the heat
map in Figure 22(a). With the variation of frame size, the distri-
bution of decoding time does not significantly change, where the
decoding time of most frame sizes intensively falls around several
milliseconds, as shown in the red area at the top of the heat map.
To eliminate the frame size variation under the same target bit
rate, we split the frame size into different intervals and present the
cumulative distribution function (CDF) in Figure 22(b). As the
frame size become larger, the [128KB, ∞) the line does not locate
in the rightest area (higher decoding delay). And other frame size
interval’s CDF lines stay together, indicating that the lowering
frame size does not help for the decoding time acceleration.

Moreover, we split the dataset into four different categories
(Table 1), to demonstrate that reducing frame size will not help de-
code acceleration under various platforms. We leverage the Pear-
son correlation coefficient to illustrate the independence, which
value of zero can indicate that there is no association between the
two variables [70]. Figure 22(c) shows that most of the Pearson’s
r value is located around zero, indicating the poor association
between frame size and decoding delay. Therefore, controlling
the service process of encoding bit-rate cannot effectively reduce
the decoding time and alleviate the load of the decoder queue.

B.5 Decoder Degradation
Because the queue overhead will be introduced by the mismatch
of the rate of two sides of the queue [39], if the decoding speed
is not capable of processing the incoming default 60fps, it will
be necessary for AFR to change to a lower target frame rate.
However, since the client and server are located distant, the
frame-rate adjustment request to the server side will need a
control loop to take effect on the client side with the updated
frame rate. So if the AFR control loop is shorter than the decoder
degradation duration, the decoder will be capable of processing a
higher incoming frame rate before the AFR requests take effect.

We measure the duration of the decoder degradation level over
the traces introduced in §5.2. As we can see in Figure 23(a), for
frames with a decoding time of more than 12ms, 50% of them
last for more than 10 frames. Under 60fps streaming, considering
the average of RTT is close to one frame interval of 16.7ms,
and the 90%ile encoder response delay is less than three frames
interval §6.4. In this case, lowering the frame rate will be helpful
for alleviating the decoder queue even under the control loop
delay of AFR. Therefore, AFR is capable of timely adjusting
the frame rate to adapt to the decoder degradation. Moreover, the

(1) (2) (3) (4)- 0 . 1
0 . 0
0 . 1
0 . 2
0 . 3
0 . 4

Pe
ars

on
's r

Co
rre

lat
ed

(1) (2) (3) (4)0 . 0
0 . 2
0 . 4
0 . 6
0 . 8
1 . 0

No
rm

aliz
ed

 DT
W 2 5 % ~ 7 5 %

1 0 % ~ 9 0 %
M e d i a n L i n e
N e t w o r k - D e c o d e
N e t w o r k - Q u e u e
Q u e u e - D e c o d eCo

rre
lat

ed
Figure 24: Pearson’s r (left, higher is more correlated) and normalized
DTW distance (right, lower is more correlated) between delay
components.

1 6 3 2 6 4 1 2 8 2 5 6
6 4
3 2
1 6
8
4

t n e t w o r k t h r e s h o l d (m s)

t de
co

de
 th

res
ho

ld
(m

s)

(a) Network-Decode
(Max: 0.12).

4 8 1 6 3 2 6 4
6 4
3 2
1 6
8
4

t q u e u e t h r e s h o l d (m s)

t de
co

de
 th

res
ho

ld
(m

s)

0 . 00 . 10 . 20 . 30 . 40 . 5
F r e q u e n c y

(b) Queue-Decode (Max:
0.39).

1 6 3 2 6 4 1 2 8 2 5 6
6 4
3 2
1 6
8
4

t n e t w o r k t h r e s h o l d (m s)

t qu
eu

e th
res

ho
ld

(m
s)

(c) Network-Queue (Max:
0.32).

Figure 25: Cramer’s V between different delay components.

AFR can significantly help alleviate the queue overhead under
those frames with a long period of decoder degradation and
sustain queuing time for waiting for overhead queue elimination.

We further measure the ratio of frames with different decoding
delays and present the results in Figure 23(b). Half of the user
sessions suffer from a decoding delay of >12ms for at least 1‰
frames. This also indicates that the degradation of decoding
delay is a general issue among all clients.

B.6 Component Correlation Analysis
The streaming pipeline will be affected by many components,
like the networking, decoding, and queuing delays can both
cause total delay increases to degenerate the user’s experi-
ence Appendix B.3. In this paper, we propose AFR to reduce
the tail queuing delay by matching the arrival rate of the decoder
queue to the service rate (decoding speed). When decoding delay
increases to disable decode frames timely, the AFR will send a
frame-rate adjustment request from the client to the server. How-
ever, the request and subsequent frames need to be transported
through the network. Therefore, a straightforward question is:
does the increase of decoding delay affect the network delay to
put an extra effect on the AFR control loop? We will figure out
this by measuring the independence of those component delays.

We quantify the independence of different component delays
with Pearson’s r value [70], dynamic time warping (DTW) [18],
and Cramer’s v value [31]. In short, all these metrics demonstrate
the poor association between networking and decoding delay,
inclining that we could decouple the network and decoder issues
and independently control them.

Regarding the Pearson correlation coefficient, the value of
zero can indicate that there is no correlation between the two
variables [70]. Figure 24 illustrates that for all four categories
in Table 1, the Pearson’s r value of networking and decoding
are close to zero, indicating a poor correlation between them.

Moreover, the different component delays might be correlated
with each other across frames. For example, the decoding delay

𝑅 𝑛
𝑅 𝑛 + 𝑘

Timeline of traces Timeline in simulator

𝑅 𝑛 + 𝑘 + 1

𝑆 𝑛 = 𝑅 𝑛
𝑆 𝑛 + 𝑘 = 𝑅 𝑛 + 𝑘

𝑆 𝑛 + 𝑘 + 1= 1 − 𝛽 ⋅ 𝑅 𝑛 + 𝑘 + 𝛽+ 𝛽 ⋅ 𝑅(𝑛 + 𝑘 + 𝛽 + 1)
𝑆 𝑛 + 𝑘 + 2= 1 − 2𝛽 ⋅ 𝑅 𝑛 + 𝑘 + 2𝛽+ 2𝛽 ⋅ 𝑅(𝑛 + 𝑘 + 2𝛽 + 1)

𝑅 𝑛 + 𝑘 + 2
𝑅 𝑛 + 𝑘 + 3

Decide to adjust
frame-rate

Control loop
(1RTT)

Adjustment
in effect

……

Slowdown 𝛽 by
interpolation

Figure 26: Illustration of frame-rate adjustment in our simulator.

could affect the subsequent queuing delay by its incapacity
to decode video frames timely. To measure the correlation
across frames, we leverage DTW to calculate the optimal match
between two-time series [18]. The DTW algorithm is widely
used in many scenarios like sign language recognition and time
series clustering [47, 59]. The optimal match calculation under
DTW is denoted by the match with minimal cost, where the
cost is computed as the sum of absolute differences, for each
matched pair of indices, between their values. Therefore, a larger
DTW distance can be considered the mismatch between two
series to a further extent. According to Figure 24, the normalized
DTW distance of network delay to decoding delay under all four
categories is large, showing the lack of correlation between them.

The strength of the relationship can also be assessed by
Cramer’s V value, which is a metric based on the χ2-test but
normalized for different data sizes. It indicates how strongly two
categorical variables are associated [31]. A Cramer’s V value of
⩽0.1 can be interpreted as hardly correlated [22]. According to
our measurement in Figure 25, we can notice that all the Cramer’s
V values of networking and decoding delay are ⩽0.2, illustrating
the weak association between networking and decoding state.
Therefore, according to our measurements before, we can see
the independence between networking and decoding delay.

C Simulator Implementation
In this section, we introduce the implementation of our simulator.
Specifically, traces are recorded in the following format:

R(n)=
[
ts(n),τ(n)net ,τ

(n)
queue,τ

(n)
decode

]
(9)

where ts(n) is the arrival timestamp of the n-th frame, τnet , τqueue,
and τdecode are the round-trip network delay, queuing delay, and
decoding delay of that frame. The simulator reads the traces
frame-by-frame at specific timestamps and measures the current
frame rate based on the interarrival time as §4.2. The simulator
then dequeues the head frame in the decoder queue when the
decoder is available, where the decoding time of each frame is
also read from the trace.

When the adaptive frame-rate decides to set the frame-rate

(1) (2) (3) (4)0 . 0
0 . 4
0 . 8
1 . 2
1 . 6
2 . 0

Q-
av

g (
ms

)
D r o p T a i l Q L e n - S Q W a i t - S A F R - Q L e n
A F R - Q W a i t A F R - T X A F R - K i n g m a n A F R

(1) (2) (3) (4)0
1 0
2 0
3 0
4 0

To
tal

-av
g (

ms
)

Figure 27: Average queuing delay (left) and total delay (right).

0 % 1 0 % 2 0 % 3 0 % 4 0 %
0 %

2 0 %
4 0 %
6 0 %
8 0 %

1 0 0 %

CD
F

F r a m e c o s t

C a t . (1)
C a t . (2)
C a t . (3)
C a t . (4)

(a) All sessions.

0 % 1 0 % 2 0 % 3 0 % 4 0 % 5 0 %
0 %

2 0 %
4 0 %
6 0 %
8 0 %

1 0 0 %
CD

F

F r a m e c o s t
(b) Stuttered sessions.

Figure 28: The number of wasted frames when skipping frames instead
of adjusting the frame rate for AFR.

to fset , the simulator first reads the current control loop by the
round-trip network delay of the current frame τ

(n)
net . The simulator

then calculates the earliest frame n+k that the new frame-rate
fset will take in effect:

k=argmin
k

(
ts(n+k)−ts(n)⩾τ

(n)
net

)
(10)

After that, based on the measurement of the current frame-rate
fcur, the simulator calculates the slowdown factor β = fcur/ fset ,
and reads the traces with a slowdowned speed. For example,
as shown in Figure 26, When there are frames R(n+k+1) to
R(n+k+3) in the original trace, the simulator reads the traces
with indices R(n+ k+ β),R(n+ k+ 2β),··· . When β is not
integer, the simulator interpolates the traces with its neighbor
frames (S(n+k+1) and S(n+k+2)).

D Supplementary Experiments
D.1 Average Delay
We further measure the average queuing delay and total delay for
four traces and present the results in Figure 27. As we can see, the
reduction of tail delay of AFR does not sacrifice the average delay
on all traces. In contrast, the average delay has also been slightly
improved against baselines, due to the improvements at the tail.

D.2 Frame Costs of AFR with Skipping
Besides, as we discussed in §6.4, skipping frames without
changing the frame rate from the content generator (e.g., gaming
application) would waste the rendering resources of the server.
For example, for high-quality RTC, rendering at 60fps would
take approximately one time more GPU resources than rendering
at 30fps. Therefore, we measure how many frames have been
wasted (i.e., frame cost) if we merely skip the frames to approxi-
mate the target frame rate without adapting the content generator.

We present the results of all traces in Figure 28. For all traces,
adjusting the frame rate could save 3% to 12% frame costs in
all traces, saving considerable operating expenses for the service

Interarrival time Queuing delay
 (50%ile, left axis) (99%ile, right axis)

Interarrival time Total delay
 (90%ile, left axis) (99%ile, right axis)

0 . 2 5 1 4 1 6
1 6 . 8
1 7 . 2
1 7 . 6
1 8 . 0

50
%i

le
int

era
rriv

al
(m

s)

W 0 (m s)90
%i

le
int

era
rriv

al
(m

s)

2 2
2 4
2 6
2 8

(a) Cat. (1): Windows+Ethernet.

0 . 2 5 1 4 1 6

99
%i

le
tot

al
(m

s)

99
%i

le
qu

eu
ing

 (m
s)

W 0 (m s)

3
6
9
1 2

6 0
7 2
8 4
9 6

(b) Cat. (3): MacOS+Ethernet.

0 . 2 5 1 4 1 61 7
1 8
1 9
2 0
2 1
2 2

50
%i

le
int

era
rriv

al
(m

s)

W 0 (m s)90
%i

le
int

era
rriv

al
(m

s)

2 4
2 6
2 8
3 0
3 2
3 4

(c) Cat. (2): Windows+WiFi.

0 . 2 5 1 4 1 6

99
%i

le
tot

al
(m

s)

99
%i

le
qu

eu
ing

 (m
s)

W 0 (m s)
8
1 2
1 6
2 0
2 4
2 8

1 3 2
1 4 3
1 5 4
1 6 5
1 7 6
1 8 7

(d) Cat. (4): MacOS+WiFi.

Figure 29: Sensitivity analysis on W0 on different traces.

Figure 30: Performance of AFR with different settings of ξarrv and
ξserv. Y-axes have been magnified compared to Figure 29.

provider since GPU is one of the highest expenses. For stuttered
sessions (following the definition in §6.2), the saved frame cost
would be even higher.
D.3 Parameter Sensitivity
Long-term control target (W0)We present the simulation results
on the sensitivity of W0 (in the stationary controller) on different
traces in Figure 29. As we discussed in §5.2, a lower W0 results
in a more aggressive queue control yet leads to the degradation
of frame rate. We vary W0 from 0.25ms to 16ms and measure the
interarrival time, queuing delay, and total delay. By adjusting W0,
operators could effectively balance the total delay and frame rate.
Therefore, operators could adjust W0 according to the preferences
on total delay and frame rate for different users and games.

EWMA discounting factors (ξarrv and ξserv). We also vary
the EWMA discounting factors (ξarrv for the arrival process and
ξserv for the service process). Higher ξ indicates that the EWMA
focuses on the recent values more to capture changes, while
a lower value indicates more attention to the historical trends.
As shown in Figure 30, the performance metrics (including the
queuing delay, total delay, and frame rate) are relatively robust to
these two parameters. By varying ξarrv and ξserv across several
magnitudes, most metrics change marginally. For example,
the 99%ile of queuing delay changes by 4× when varying
W0 (Figure 29) while only changes by less than 15% when
varying ξarrv by three magnitudes (Figure 30). We also observe
trends in varying ξarrv and ξserv. Lower ξarrv values will slightly

Figure 31: The system begins to control the queue after control-loop
delay τ and stabilize the queue at T0.

improve the performance of AFR, implying that the long-term
behavior of arrival service is more critical. Higher ξserv also
slightly improves the performance, indicating focusing on recent
decoding time is helpful. This is because we have already filtered
out outlier decoding time. Paying more attention to recent
decoding time could make the AFR quickly adjust the frame rate.

E Convergence Analysis
Finally, we provide a detailed analysis of the convergence
time during the state transitions of the stationary controller.
As introduced in §4.2, let the expectation of queuing delay
E(τqueue)=W0, according to Eq. 1, we have:

µa=
µs

ρ
=

(
1+

c2
a+c2

s
2W0

µs

)
µs (11)

Then we can discuss the convergence time of the system. The
convergence time here refers to the time at which the stationary
controller converges to a stationary state when the service
process changes, and the potential accumulated queue during
the transition is drained up.

Specifically, without loss of generality, we discuss a simplified
case shown in Figure 31: Both the arrival and service process
have an average value of zero for t<0, and the service process
changes from zero to one at t=0. The arrival rate will gradually
respond to the change after a control loop of τ. We want to find
the convergence time T0 where

∫ T0

0
µadt>

∫ T0

0
µsdt (12)

In this case, the queue accumulated during the response to the
arrival rate will be cleared. We further illustrate the convergence
in Figure 31. By substituting Eq. 11, we have:

∫ T0

τ

(
µs+

c2
a+c2

s
2W0

µ
2
s

)
dt>

∫ T0

0
1dt (13)

From the measurement of EWMA in Eq. 5, we have

µ̂s=1−(1−ξµ)
t−τ (t>τ) (14)

Therefore, let γ=1−ξµ to simplify the expression, we need to
find the minimum T0 such that:

∫ T0−τ

0

((
1−γ

t)+ c2
a+c2

s
2W0

(1−γ
t)2

)
dt>T0 (15)

Figure 32: Contour plot of the convergence region of T0 with different
parameters.

By solving the integral in Eq. 15, finally we have

W0<
c2

a+c2
s

2
(γT0−τ−1)(γT0−τ−3)+2(T0−τ)lnγ

2(γT0−τ−1)+2τlnγ
(16)

For example, when set c2
a + c2

s = 2, we vary the other
parameters in Eq. 16 and present the minimum T0 in Figure 32.
In the most general settings of AFR (τ=1 since the average RTT
is around 15ms, ξµ = 0.25 as introduced in §5.2, W0 = 2ms),
the stationary controller can converge to the new stationary state
within 2 frames. In other settings of the AFR parameters, the
stationary controller could also converge and drain the queue
within tens of frames, which is much less than the frame-rate
adjustment interval of hundreds of frames as evaluated in §6.2.

	Introduction
	Background: High-Quality RTC
	Motivations and Challenges
	Motivation: Drastic Queuing Delay
	Choice: Controlling Proper Parameters
	Challenges

	Design – Adaptive Frame-Rate (AFR)
	Workflow Overview
	Stationary Controller
	Transient Controller

	Implementation
	Simulator Design
	Simulation Setup
	Deployment setup

	Evaluation
	Delay Improvements
	Frame-rate Maintenance
	Parameter Sensitivity
	Microbenchmarking
	Deployment in the Wild

	Discussions
	Related Work
	Conclusion
	Potential Solutions and Concerns
	Potential Solutions
	Practical Concerns

	Measurement over Dataset
	User Characteristics
	Delay Distributions
	Root Cause Analysis
	Decoding Performance
	Decoder Degradation
	Component Correlation Analysis

	Simulator Implementation
	Supplementary Experiments
	Average Delay
	Frame Costs of AFR with Skipping
	Parameter Sensitivity

	Convergence Analysis

