Check for

updates

R DIGITAL Associaiivn
acvyel® 155 Ry e @mopen}

£ Latest updates: https://dl.acm.org/doi/10.1145/3718958.3750520

RESEARCH-ARTICLE
ACE: Sending Burstiness Control for High-Quality Real-time
Communication

XIANG]JIE HUANG, Hong Kong University of Science and Technology, Hong Kong, Hong Kong
JIAYANG XU, Hong Kong University of Science and Technology, Hong Kong, Hong Kong
HAIPING WANG, ByteDance Ltd., Beijing, China

HEBIN YU, ByteDance Ltd., Beijing, China

SANDESH DHAWASKAR SATHYANARAYANA, ByteDance Ltd., Beijing, China

SHU SHI, ByteDance Ltd., Beijing, China

View all

Open Access Support provided by:
Hong Kong University of Science and Technology
ByteDance Ltd.

: PDF Download
j;b 3718958.3750520.pdf
< 12 January 2026
Total Citations: 0
Total Downloads: 2060

Published: 08 September 2025
Citation in BibTeX format
SIGCOMM '25: ACM SIGCOMM 2025
Conference

September 8 - 11, 2025

Coimbra, Portugal

Conference Sponsors:
SIGCOMM

SIGCOMM '25: Proceedings of the ACM SIGCOMM 2025 Conference (September 2025)

https://doi.org/10.1145/3718958.3750520
ISBN: 9798400715242

https://dl.acm.org
https://www.acm.org
https://libraries.acm.org/acmopen
https://dl.acm.org/doi/10.1145/3718958.3750520
https://dl.acm.org/doi/10.1145/3718958.3750520
https://dl.acm.org/doi/10.1145/contrib-99661681358
https://dl.acm.org/doi/10.1145/institution-60008592
https://dl.acm.org/doi/10.1145/contrib-99661679433
https://dl.acm.org/doi/10.1145/institution-60008592
https://dl.acm.org/doi/10.1145/contrib-99661048576
https://dl.acm.org/doi/10.1145/institution-60159665
https://dl.acm.org/doi/10.1145/contrib-99661047995
https://dl.acm.org/doi/10.1145/institution-60159665
https://dl.acm.org/doi/10.1145/contrib-99659539161
https://dl.acm.org/doi/10.1145/institution-60159665
https://dl.acm.org/doi/10.1145/contrib-99661040546
https://dl.acm.org/doi/10.1145/institution-60159665
https://dl.acm.org/doi/10.1145/3718958.3750520
https://libraries.acm.org/acmopen
https://dl.acm.org/doi/10.1145/institution-60008592
https://dl.acm.org/doi/10.1145/institution-60159665
https://dl.acm.org/action/exportCiteProcCitation?dois=10.1145%2F3718958.3750520&targetFile=custom-bibtex&format=bibtex
https://dl.acm.org/conference/comm
https://dl.acm.org/conference/comm
https://dl.acm.org/sig/sigcomm
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3718958.3750520&domain=pdf&date_stamp=2025-08-27

ACE: Sending Burstiness Control for High-Quality
Real-time Communication

Xiangjie Huang!?, Jiayang Xu!, Haiping Wang?, Hebin Yu?
Sandesh Dhawaskar Sathyanarayana?, Shu Shi?, Zili Meng!

'Hong Kong Univeristy of Science and Technology

2ByteDance

xhuangdd@connect.ust.hk, jxudn@connect.ust.hk, wanghaiping.paloma@bytedance.com, yuhebin.824@bytedance.com,
sandesh.dhawaskar@bytedance.com, shishu.1513@bytedance.com, zilim@ust.hk

Abstract

Modern real-time communication (RTC) demands both ultra-low
latency and consistently high visual quality. Yet, as content becomes
more dynamic and RTTs shrink, we reveal a previously overlooked
problem: long-tail queuing latency in the sender’s pacing queue
between encoder and network. This phenomenon is rooted in a mis-
match between the bursty frame stream produced by the encoder
and the smooth traffic expected by the network. Existing approaches
trying to smoothen the bitrate inevitably force an undesirable trade-
off between latency and video quality. To address this, we propose
a dual-control approach that manages both the encoding and trans-
mission burstiness. At the sender, we dynamically adjust the bucket
size of a token-based pacer to control burstiness at the granularity of
framelevel. Within the encoder, we introduce an adaptive complexity
mechanism that smoothens frame sizes without sacrificing quality.
Trace-driven emulation and real-world experiments show our so-
lution ACE reduces end-to-end 95th percentile latency by up to 43%
while maintaining superior visual quality versus the state of the art.

CCS Concepts

« Networks — Cross-layer protocols; - Information systems
— Multimedia streaming.

Keywords
Real-time communications, pacing, adaptive complexity encoding

ACM Reference Format:

Xiangjie Huang, Jiayang Xu, Haiping Wang, Hebin Yu, Sandesh Dhawaskar
Sathyanarayana, Shu Shi, Zili Meng . 2025. ACE: Sending Burstiness Control
for High-Quality Real-time Communication. In ACM SIGCOMM 2025 Con-
ference (SIGCOMM °25), September 8—11, 2025, Coimbra, Portugal. ACM, New
York, NY, USA, 17 pages. https://doi.org/10.1145/3718958.3750520

1 Introduction

Real-time communication (RTC) systems have become indispens-
able in modern interactive applications, from video conferencing and
cloud gaming to remote operations and virtual reality. Advancements
in network infrastructure (e.g., edge servers, 5G) have reduced net-
work round-trip times (RT Ts) to sub-30 ms [36, 59, 63]. Meanwhile,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SIGCOMM °25, September 8-11, 2025, Coimbra, Portugal

© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACMISBN 979-8-4007-1524-2/2025/09...$15.00
https://doi.org/10.1145/3718958.3750520

1182

Complexity Bucket Size
INPUT
v
=P = €3
Encoder Network

b——— Burstiness Adaptive ————

Figure 1: ACE Overview. Comlexity adaptive encoding (ACE-C) and
burstiness adaptive pacing (ACE-N) enable dual-control of sending
patterns.

there are numerous efforts trying to reduce the end-to-end latency
for RTC via video codec [18, 37, 43], Congestion Control Algorithms
(CCAs) [17, 45, 53, 57], loss recovery [5, 12, 46], and even network
layer and link layer optimizations [34, 35, 63]. Unfortunately, users
still suffer from latency-related stalls today [5, 42, 63].

One critical yet understudied bottleneck in modern RTC systems
is the pacing latency between the video encoder and the network.
Video streams are generated by encoders at each frame interval,
which inherently results in bursty traffic patterns. This burstiness
can become particularly pronounced in the context of high-quality
RTC applications. For instance, a cloud gaming application operating
at a bitrate of 30 Mbps [32, 37] and 30 fps will see each frame com-
prising over 100 packets. Transmitting such bursts directly into the
network elevates the risk of overshooting network buffers. To tame
them, WebRTC and similar stacks apply pacing, which flattens each
frame into a uniform packet stream at a steady rate [6, 16, 51]. While
this prevents overshooting network buffers, it introduces additional
pacing latency. Ideally, the added pacing latency should not exceed
one frame interval(e.g., 33 ms for 30 fps), as the pacing rate is at least
the bitrate determined by Congestion Control. However, this is not
always true, and we discuss the emergence of pacing latency in §3.1.

In today’s context, the issue of pacing latency has grown increas-
ingly critical. First, network RTTs have already shrunk to below
the frame interval, making the pacing latency a significant portion
of the end-to-end delay. Especially when the bitrate fluctuates, the
existing packets in the pacing buffer can introduce extra pacing
latency of multiple times of the network RTT. Second, the growing
variability in content leads to significant fluctuations in frame sizes,
amplifying the impact of pacing delays. While CCAs set a target
bitrate for video encoders, generated frame sizes fluctuate around
this target due to content variability. As a consequence, from mea-
surements of our nationwide cloud gaming service involving over
O(100K) sessions, pacing latency has emerged as a key contributor
to video stalls, as we will discuss in §3.1. Meanwhile, another impor-
tant observation is that much of this pacing latency is unnecessary:
the CCAs employed in low-latency RTC applications typically es-

https://doi.org/10.1145/3718958.3750520
https://doi.org/10.1145/3718958.3750520

SIGCOMM °25, September 8-11, 2025, Coimbra, Portugal

— = -Target I Normal Size I Burst Size

100 500 250
D64 A400 ——, End-to-End Latency zoof-g
1 —— X265 a =3
1 10 el 2300 [[150%
] — avl Y 200 100 §
O 102 N g
wv 100 _JI.J_.m......._...I. ______ 50 ki

1% =37 5 8 10 O 10 20 30 40 5

Size / Average Size Frame ID

Figure 2: CCDF of encoded Figure 3: Latency impact by Oversized
frame size frames

timate bandwidth conservatively [23, 31]. Due to the conservation
bandwidth underestimation of latency-sensitive CCAs, transiently
allowing some bursts to the network to a limited extent might be
beneficial to the end-to-end latency.

Unfortunately, existing solutions failed to mitigate the increase
in the pacing latency. Notably, the issue is caused by the transient
mismatch between the burstiness of the encoding of video frames
and the smoothness of pacing packets to the network. Low-latency
CCAs[45,53] canreduce the network RT T by determining how many
packets to send in one RTT, but do not optimize how to send these
packets at each timepoint. Different bucket-based pacers [19, 33]
have heterogeneous features, while the parameters of pacing are
still fixed, oscillating between network overflows and high pacing
latency. Existing co-design [17, 56] efforts between the codecs and
the network reduce the pacing latency by enabling accurate bitrate
control, but at the cost of sacrificing the video quality.

This motivates us to address pacing latency by tackling the prob-
lem at a finer-grained timescale. We analyze from both the dequeue
and enqueue perspectives of the pacing buffer. From the dequeue per-
spective (packets sent to the network), the sending patterns should
be adaptively regulated to achieve two objectives: (i) minimize the
risk of network buffer overflow caused by burstiness and (ii) reduce
unnecessary pacing latency. This necessitates adapting to the state of
the network buffer and determining how much data can be instantly
transmitted into the network. From the enqueue perspective (frames
generated from the encoder), the encoder must generate video frames
as smoothly as possible to avoid oversized frames, which mitigates
frame-level burstiness. And meanwhile it should maintain the visual
quality required by the application.

To this end, we propose ACE, a burstiness control framework
for high-quality RTC that integrates complexity-adaptive encoding
(ACE-C) and burstiness-adaptive pacing (ACE-N). The design of ACE
is illustrated in Fig. 1. By leveraging this dual-control mechanism,
ACE answers two questions:

(1) When to burst? To reduce overall latency by eliminating pacing
delays, we must carefully manage burst transmission. Though burst-
ing canimprove latency, it risks exacerbating end-to-end delays if the
network buffer overflows, which can lead to massive retransmissions
(detailed discussed in §3.3). Preventing such losses is critical — we
only want to allow bursts to alimited extent of not to overflow the net-
work. To address this, ACE-N adjusts the bucket size of a token bucket
pacer to be adaptive to network conditions. The key factor influenc-
ing this decision is the available buffer size in the network, which
is highly unpredictable. ACE-N observes the state of the in-network
buffer by estimating network buffer occupancy using fine-grained
packet arrival patterns. The design of ACE-N is detailed in §4.1.

1183

Xiangjie Huang et al.

(2) How to compress? Existing solutions mitigate the oversized
frames by compromising visual quality [17, 56], which is not accept-
able for high-quality RTC applications. ACE-C avoids by exploiting
the complexity-size tradeoff inherent in modern video codecs. By
adaptively increasing encoding complexity, ACE-C achieves smaller
frame sizes without quality degradation - albeit at the cost of higher
encoding time and computational overhead. This approach comes
with two challenges: (i) maintaining the practicality by strictly
bounding overhead increases, and (ii) predicting whether the in-
crease of encoding time outweighs the decrease of pacing latency.
To address these challenges, we first predict frame size before the en-
coding process by the differences between two frames. Based on this
prediction, ACE-C selects only the oversized frames (less than 5%)
and adjust appropriate complexity levels to reduce the sum of encod-
ing time and pacing latency. The design details are discussed in §4.2.

We implement ACE on top of WebRTC and a widely-used libx264
encoder and evaluate its performance through both trace-driven em-
ulations and real-world experiments in §6. ACE achieves a 43% reduc-
tion in 95th-percentile latency while maintaining VMAF scores [44]
equivalent to those of the highest-quality baselines. Our compre-
hensive evaluation also includes interactions with different CCAs,
ablation studies, fairness, and system overheads. Additionally, we im-
plement part of our design, ACE-N, on the RTC engine employed by
our cloud gaming application and evaluate its performance through
real-world traces. Results show that ACE-N reduces latency by 15%
compared to production baselines and maintains the best stall rate
and frame rate. The implementation will be open-sourced and can
be easily applied as a patch to both WebRTC and libx264 source code.

2 Background

We explain two key phenomena in real-time video encoding: frame
size variability and encoding complexity tradeoffs. These form the
foundation for ACE’s design.

Frame size fluctuation. Modern video codecs inherently produce
variable frame sizes even under constant bitrate targets. This vari-
ability stems from two compression mechanisms. First, content-
dependent redundancy: frames with higher visual complexity, such
as those containing intricate textures, require more bits to maintain
quality compared to simpler frames like static backgrounds. Second,
inter-frame dependencies: predictive coding (e.g., P-frames) creates
variable compression ratios depending on reference frame similarity.
In this context, only the average bitrate aligns with the target bitrate
over time in a long timescale [20], while individual frame sizes can
significantly fluctuate around the target bitrate.

We empirically support the observation by experiments. We transcode

all the videos from the UGC dataset from YouTube [55] with low
latency presets by 4 commonly used video codecs(H264, H265, VP9,
AV1) and measure the frame size. As depicted in Fig. 2, all codecs
exhibit heavy-tailed distributions - 10% of frames exceed 2X aver-
age size, and 1% even exceeding 5% the average size. Importantly,
this variability in frame size is not attributable to the distinction
between key frames and non-key frames, as RTC rarely has key
frames nowadays [40].

Encoding complexity. Video codecs expose complexity parameters
that govern computational effort during encoding. These parameters
control motion estimation depth (e.g., search range, subpixel pre-
cision), mode decision granularity (partition sizes, reference frame

100
90
80
70
60
50

A
The Evolution of Coding Standard .

Frame Size (%)

150 200
Encoding Time(ms)

Figure 4: Impact of encoding complexity on frame size and encoding time.
The frame size is normalized by the largest one.

selection), and quantization optimizations. Higher complexity set-
tings enable better compression efficiency—smaller frame sizes at
equivalent quality—but increase encoding time.

We quantify the relationship between frame size and encoding
time across four prominent codecs under the same quality. As illus-
trated in Fig. 4, all codecs exhibit a trade-off between frame size and
encoding time. For example, compared to the lowest complexity, us-
ing the highest complexity can reduce frame size by 38%-51%. While
advancements in coding standards continue to improve compression
efficiency (reducing the minimum achievable frame size, as shown
by the dashed line), they do not eliminate this trade-off.

A critical advantage of complexity adaptation lies in its asym-
metric impact. Unlike encoding, decoding remains unaffected by
complexity choices. As shown in Fig. 5, encoding time escalates from
6 ms to 12 ms with increased complexity, whereas decoding time
exhibits minimal variation. Our evaluation also explores the CPU
and memory overheads associated with both encoding and decoding
(details in the §6 and Appendix. B). The findings indicate that the
encoder’s CPU usage and memory increase more significantly with
higher complexity compared to the decoder’s, which remain almost
unaffected. This asymmetry enables ACE to optimize encoding deci-
sions without burdening resource-constrained receivers—a crucial
property for mobile clients in cloud gaming and VR applications.

3 Motivation and Challenges

In this section, we discuss the motivation to address the problem of
pacing latency in §3.1, analyze the limitations of existing solutions
in §3.2, and outline the design challenges in both the encoding and
sending processes in §3.3.

3.1 Motivation: Controlling Pacing Latency.

Pacing latency has emerged as a significant challenge in real-time
communication, particularly in latency-sensitive applications like
cloud gaming. Measurements from our production cloud gaming
service emphasize the critical need to address this issue. To quantify
the impact of pacing latency, we collected and analyzed end-to-end
latency breakdowns and video stall events from online-reported
data over a full 24-hour period on January 1st, 2025. This dataset
encompasses approximately 300,000 sessions, with metrics reported
at 2-second intervals. Our analysis specifically focuses on scenarios
where the pacer is active. We examined three key latency compo-
nents: encoding/decoding latency, pacing latency, and transmission
latency (measured by RTT). If pacing latency were not a factor con-
tributing to video stalls, its value would remain consistent regardless
of stall events, similar to coding latency. However, as shown in Fig. 6,
pacing latency during stall events is 60% higher than without stalls

1184

SIGCOMM °25, September 8-11, 2025, Coimbra, Portugal

15 30 Ew/o stall EEEw/ stall
—— Decoding Time
=12 —— Encoding Time % 25
£ E20
- >
g 9 E 15
= 210
8
6 5
0
p=1 =2 p=3 Codec Pacer Network
(Default) Latency Breakdown

Figure 5: Encoding and decoding
Time vs. complexity

Figure 6: Latency breakdown

and is larger than the network delay (RTT). This observation un-
derscores the strong correlation between pacing latency and video
stalls. Notably, even though the latency is averaged over the 2-second
reporting interval, the increase during stall events remains evident.
The primary reason for pacing latency arising is encoder over-
shoots target rate. Ideally, pacing latency is at the level of the frame
intervals — when the pacer smooths an average-sized frame into
the network at the estimated rate, the pacing latency for a frame
corresponds to one frame interval (e.g., 33 ms at 30 fps). However, the
situation deteriorates when individual frames are oversized. As we
discussed in §2, the frame size will still fluctuate to up to 5x for 1% of
frames even if the target bitrate is fixed. When frames are transmitted
at the pacing rate, the time required to send a frame becomes directly
proportional to its size. We provide an example to show how the over-
sized frame affects the latency, as illustrated in Fig. 3. Despite the av-
erage frame size being close to the target (as indicated by the dashed
line), the transmission of an oversized frame (highlighted in red)
results in a substantial increase in pacing latency. Consequently, the
end-to-end latency (solid line) experiences a corresponding surge.

Trend: Pacing latency becomes increasingly importantas RTT
decreases and frame size variations grow. With the advent of
technologies like CDNs, 5G, and Wi-Fi 6, combined with the evo-
lution of congestion control algorithms (CCAs) from traditional
approaches (e.g., Cubic/BBR) to modern ones (e.g., GCC/Copa), net-
work conditions have dramatically improved. In the past, RTTs for
interactive video streaming often exceeded 100 ms, making pacing
latency negligible in comparison. However, today, as RT Ts shrink
significantly, pacing latency has become a critical factor. Currently,
the RTT for interactive video streaming is within 30 ms. For instance,
we measure the median RTT in our production cloud gaming service
nationwide for 12 months in 2024, covering O(100) games, resulting
in O(300M) sessions. The median network RTT of the measurement
is only 29.0 ms across all sessions. If we only focus on the sessions
with clients and servers in the same region, the median network
RTT even drops to 19.6 ms. In this context, at 30 FPS, a frame that is
double the average size introduces pacing latency of 67 ms (2x33.3
ms), making it 6X the one-way latency.

We further validated this trend through emulated evaluations on
WebRTC, with experimental settings detailed in §6.1. Fig. 7(a) breaks
down latency components across RT Ts ranging from 160 ms to 10 ms,
focusing only on long-tail frames with end-to-end latency exceeding
200 ms. As RTT decreases, pacing latency gradually emerges as the
dominant contributor to total delay. Fig. 7(b) fixes the RTT at a low
value of 20 ms with various overall latency ranges. Pacing latency
accounts for over 60% of the total delay when the overall latency

SIGCOMM °25, September 8-11, 2025, Coimbra, Portugal

== Pacing Delay —%— Encoding Delay OTransmissiv:)n Delay

100% 100%

—0— Decoding Delay

80% 80%
60% 60%
40% Sra 40%
20%| T = 20%
10, 10,
0%"150 100 50 0 0%5 50 100150200 250
RTT (ms) End-to-End Latency (ms)

(a) End-to-end latency > 200 ms (b) RTT =20 ms
Figure 7: Pacing latency contribution in WebRTC: Dominates at low

RTT (a) and high end-to-end latency (b).

reaches 200 ms. In summary, pacing latency becomes significant in
scenarios where RTT is low yet overall latency remains high.

Another important trend exacerbating pacing latency is the in-

creasing variability in frame sizes due to the growing complexity of
real-time communication content. As shown in Fig. 8, the standard
deviation of frame sizes varies across different content types(same
settings align with §6) when encoded with the same real-time en-
coder. We found that as content complexity increases—from lecture
to vlog to game videos—the coefficient variation (CV) of frame sizes
nearly doubled from 0.56 to 1.03, which intensifies the pacing latency
problem.
Issue: Bandwidth underestimation by latency-sensitive CCA
makes pacing latency not always necessary. To achieve a con-
sistent low network latency, high-quality RTC applications em-
ploy latency-sensitive CCAs such as GCC rather than throughput-
oriented CCAs such as Cubic [45, 53]. By being sensitive to subtle
network fluctuations, these CCAs prevent queue buildup in the net-
work, but this comes at the cost of reduced network utilization—they
consistently underestimate available bandwidth. Such an underes-
timation is rooted in the fundamental trade-off between queueing
delay and utilization in queueing theory [37].

We have seen this observation in our experiments as well. We test
GCC over a mixed network condition, including 4G, 5G, and Wi-Fi
(details in §6.1) for over 1200 seconds. As shown in Fig. 9, GCC reacts
conservatively to network fluctuations, creating a substantial gap
between the actual bandwidth and the estimated bandwidth (BWE).
In fact, across all traces, GCC is underestimating the available band-
width in over 90% of the time. This observation aligns with findings
from prior studies [23, 31].

Rather than increasing the sending rate to fully utilize band-
width—a trade-off decision best left to CCA designers—we focus
on refining sub-RTT sending patterns. While CCAs determine how
many packets to send within one RTT, they do not optimize how these
packets are sent within that interval (e.g., via pacing, bursting, or
adaptive strategies). This latter question is orthogonal to CCA design.

By optimizing sub-RTT sending patterns, it’s possible to avoid
excessive pacing latency. Given the bandwidth underestimation in-
herent to latency-sensitive CCAs, sending packets in short bursts
offers two key benefits: (i) it shifts packets from the pacing buffer to
router buffers, and (ii) it is unlikely to cause buffer overflow. In such
scenarios—where the actual network capacity is typically larger than
the CCA’s conservative estimate—queueing delays in the network
will be shorter than the pacing latency otherwise introduced. In that
case, the pacing latency is unnecessary, and sending frames in burst
can reduce end-to-end delay. That said, buffer overflow may still
occur during network fluctuations, where pacing latency remains
necessary. Thus, we are motivated to dynamically adapt sending

1185

Xiangjie Huang et al.

1.2 240 Bandwidth
) Increasing Content Complexity Q - —= BWE
509 =30
g £
©0.6 T 20
£ EN |
So3 2107 o
@] @© L o1 A
0.0 ® 0
20 22 24 26 28 30

\’edo‘e\;\og N 590&, 636\6

Time (s)

Figure 9: Low-latency CCA always
underestimates bandwidth.

Figure 8: Frame size variation
over video contents

patterns between pacing and bursting to strike an optimal balance.
3.2 Why Do Existing Solutions Fall Short?

Current methods—such as various pacer designs, refined conges-
tion control, and precise encoding rate control—exhibit fundamental
limitations in effectively mitigating the issue of pacing latency.

(1) Limited adaptation to bursting. Various implementations de-
sign different pacer structures to schedule data transmission. For
instance, WebRTC employs a leaky bucket algorithm to pace data ac-
cording to the estimated bandwidth, permitting bursts up to 2.5 times
the pacing rate for large I-frames. Similarly, some QUIC implemen-
tations, such as mvfst [29, 33], utilize tokenless pacers, while others
adopt token-based pacers with pacing rates set at 1.25 times the esti-
mated bandwidth to allow moderate bursts. Systems like Salsify [17]
allow even higher burst rates (up to 5x the bandwidth) to minimize
delays. Moreover, some latency-sensitive applications, such as cloud
gaming, forgo pacing entirely, enabling unrestricted bursts.

However, these implementations share a common limitation: they
fix the level of burstiness to a certain extent and lack adaptive
sending pattern designs. These approaches were reasonable in previ-
ous contexts, particularly when RTTs dominated and pacing latency
was not the primary concern. As discussed above, thisisnolonger suf-
ficient. The straightforword choice between pacing and bursting can
lead to excessive bursts that overwhelm the network or overly conser-
vative pacing that unnecessarily delays frame packets at the sender.
In §6, we will evaluate both bursty and paced sending methods.

(2) Failure to enable frame-level rate control while maintain-
ing quality. CCAs strive to respond agilely to network variations,
ensuring low latency and high throughput while mitigating conges-
tion. Even with accurate bandwidth estimation, CC can only predict
acceptable network bandwidth and relay this information to the
encoder, lacking the ability to manage the variability in frame sizes
produced by the encoder itself(§2). Thus, the latency induced by
fluctuating frame sizes remains an unresolved challenge.

Some strategies aim to minimize frame size variability by directly
controlling the encoder. For example, Salsify [17] re-encodes frames
multiple times to comply with congestion window constraints, while
other systems implement rate control mechanisms designed to en-
force near-constant bitrate (CBR) encoding. However, these methods
often achieve CBR by aggressively adjusting quantization parame-
ters (QPs), leading to a deterioration in the quality of larger frames
due to excessive lossy compression. Our evaluation(detailed in §6)
further shows the significant quality loss of the accurate rate control
solutions. This trade-off sacrifices visual quality to adhere to network
constraints, which is particularly undesirable in high-quality aware
real-time communication systems.

ACE

- ---- Burst —— Pace ---- Burst —— Pace

& 1000 H 5% N

E 500 i o 4% 2t

> ! 53 ,¥

O 600 ! S3% e

2 100 y 9 2% !

3 | S 1% v

o 2000V EVTY T = 6 7

g 0 0% | —————————at AM
1000 800 600 400 200 1000 800 600 400 200

Buffer Size (Packets)
(a) P95 delay vs. Buffer Size

Buffer Size (Packets)
(b) Loss rate vs. buffer size

Figure 10: Blindly transmitting bursts into the network is dangerous
when the buffer size is unknown.

3.3 Design Challenges of ACE

The shortcomings of existing solutions highlight the need for a
new approach to address pacing latency effectively. To this end, we
propose ACE, which focuses on two key objectives: (i) burstiness
adaptive pacing and (ii) quality-preserving encoding control.
We face the following challenges in achieving these goals:
Dequeue: Allowing bursty sending and meanwhile minimiz-
ing packet loss risks. While pacing mechanisms have shortcom-
ings, directly canceling pacing can be risky. Eliminating pacing
means that burst packets are directly handled by the network. We
conducted experiments by disabling WebRTC’s pacing, sending en-
coded frames directly into the network. Using the emulation settings
detailed in §6, we used Mahimahi [39] to emulate the network buffer
size varied from 1000 packets (1500 Bytes MTU) downwards.

As shown in Fig. 10, when the buffer size decreases beyond a cer-
tain threshold, we observe a rapid increase in packet loss rate and a
significant rise in video tail latency. At this point, the network buffer
overflows, and the network cannot handle subsequent retransmis-
sion requirements, which is catastrophic to overall performance.
However, with a sufficient buffer size, lower latency is observed com-
pared to pacing, due to higher transient bandwidth utilization. From
these observations, the key factor in determining whether to send
a burst is the sufficiency of the network buffer. The sender method
should satisfy (i) the capability to send frame-level bursts; and (ii) the
ability to sense changes in the network buffer to prevent overflow.
To address these requirements, we estimate network queuing size
to detect changes in network buffers (§4.1) and use a conservative
strategy to make sure the network is capable to handle bursts.

Enqueue: Achieving smoother frame sizes without compro-
mising quality or adding overhead. As discussed in §2, frames
vary in redundancy levels, and existing solutions often encode at a
smooth bitrate, compromising quality. ACE, however, leverages the
flexibility of encoding complexity to balance transmission delay and
encoding times.

However, determining the optimal frame size based on coding
complexity poses key challenges. The core goal is to select, from
the available set of coding complexities, the one that minimizes to-
tal delay. First, a critical challenge arises from timing constraints:
coding complexity must be specified before encoding begins, yet
identifying whether a frame will be oversized can only be known
after encoding. This necessitates accurate prediction of the encoded
frame size prior to the encoding process. Second, we must ensure
that the time invested in this trade-off is worthwhile, which requires
modeling of the encoding time corresponding to each complexity
level. To address these challenges, we define a gain function to eval-
uate the optimal coding complexity for each frame. We elaborate on

1186

SIGCOMM °25, September 8-11, 2025, Coimbra, Portugal

the design details in §4.2.
4 Design

In this section, we first provide an overview of ACE design. In §4.1,
we introduce ACE-N, the pacing controller. §4.2 presents ACE-C, the
encoding controller.

ACE Workflow: ACE operates whenever the encoder starts pro-
cessing a frame. ACE-N (§4.1) dynamically adjusting the bucket size
of a token-based pacer based on the current observed network state.
Meanwhile, ACE-C (§4.2) determines the coding complexity of the
frame to be encoded by analyzing the raw input pixels.

It is worth noting that ACE does not interrupt the bitrate control
logic in the existing delivery pipeline. Before encoded frames are
produced, CCA monitors the network, predicting the available band-
width and assessing how much data can be transmitted at any given
moment. This information still serves as input for the encoder.

4.1 ACE-N: Pacing Controller

ACE-N sending controller manages the most appropriate sending
patterns over short timescales observed from the network. First, it is
crucial to emphasize the distinction between ACE-N and congestion
control algorithms (CCAs). Since ACE-N takes network state as input
and outputs how many packets are directly sent out, it is easy to
confuse it with CCAs. However, a key difference lies in the context
of RTC: the actual transmission rate is not strictly determined by the
CCA. Instead, after processing by the encoder, the real output rate
always fluctuates around the bitrate determined by the CCA, as dis-
cussed in detail in §2, resulting in transient bias from the target rate.
In the long run, these encoded frames will eventually be transmitted,
whether in bursts or at a paced rate. Thus, ACE-N focuses on solving
the problem of how to send these already-encoded packets, rather
than determining new bitrates. In this context, we assume that the
bandwidth estimated by the CCA is accurate enough for long-term
transmission; ACE-N, instead, focuses on whether small bursts will
cause transient network overshoots. In summary, ACE-N operates in
a different control space and involves distinct design considerations
compared to CCAs, making them orthogonal. We also evaluate ACE
over different CCAs in §6.6 to validate this.

The primary challenge for ACE-N is to balance between additional
pacing delay (if the pacer is too conservative) and additional packet
loss (if the pacer is too aggressive). Due to variability in frame sizes,
oversized frames entering the pacer are more likely to incur extra
pacing delays. While sending them into the network may mitigate
pacing latency and benefit overall latency, a burst of frames can
significantly increase the risk of packet loss, leading to further re-
transmission delays. The critical distinction lies in whether these
frames will cause network buffer overflow. If overflow is not a con-
cern, frames should be allowed to burst into the network; conversely,
if overflow is likely, the sender should retain these packets.

To address these challenges, the design of the controller must
fulfill two key requirements: First, it should manage frame-level data
by controlling the burst size for individual frames. Second, it should
respond to current network conditions, predicting the volume of data
that can still be sent in bursts. For the first requirement, we employ a
token-bucket-based pacer to enable finer-grained data transmission
management within a frame. For the second, we utilize an adaptive
bucket size management approach to react to the network changes.

SIGCOMM °25, September 8-11, 2025, Coimbra, Portugal

Frame Size
B Burst Size

=== Additive Increase ====Threshold Breach ====Fast Recovery
Application Limit ====Packet Loss

Bucket Size

Decrease [} Increase

t1

t2 t3
Frame-level Timepoints

t4 t5 t6 t7 t8

Figure 11: Bucket size adaption illustration

Token-bucket pacer structure. As a widely used traffic shap-
ing mechanism [4, 47, 52], the token bucket accommodates bursty
traffic while enforcing a defined average transfer rate. The algorithm
operates by maintaining a metaphorical bucket that fills with tokens
ata predetermined rate, with each token permitting the transmission
of one packet. It is worth noting that we do not propose any new
token bucket design — instead, we decide to use the existing token
bucket filters for the convenience of implementation.

The token bucket is governed by two parameters: Bucket Size and
Token Rate. The Token Rate controls how many packets to send on
average. Recall that our design is orthogonal to CCAs and focuses
only on the sending patterns within one RTT. Therefore, we set the
Token Rate to be the sending rate determined by the CCA.

Bucket Size is the main focus of ACE-N. A larger Bucket Size allows
for greater bursts of packets to be transmitted into the network. To
handle bursty traffic, we adjust the Bucket Size dynamically, primar-
ily in response to the observed network queue size. We will discuss
in detail how ACE-N reacts to adjust the bucket size in the following
analysis.

Adaptive bucket size. We explain how ACE-N adjusts the bucket
size dynamically. To support this, estimating the in-network queue
size is fundamental. Inspired by Copa [6], we estimate queue delay
using RTT observations. The queue size is calculated by multiply-
ing RTT with the current link capacity, which is determined using
the widely-used PacketPair algorithm [25]. Based on the estimated
queue size, ACE-N increases and decreases the bucket size as follows.

Increase. The token bucket increases its size when it believes the
network can absorb a larger burst. However, it is fundamentally
challenging to precisely estimate the bottleneck buffer capacity.
Therefore, we have a two-fold design:

1. Additive Increase: When lacking historical information, we con-
servatively probe the available buffer size using an additive increase
approach (Fig. 11: t0-t1, t2-t3, t6-t7).

2. Fast Recovery: We track two values: (i) the historical bucket size
when the network buffer was empty, and (ii) the network queue size
just before the most recent packet loss, scaled by a factor & (0 <@ < 1),
as a conservative estimate of the bottleneck’s maximum capacity
(Fig. 11: t7-t8). The bucket size is updated by selecting the smaller
of these values once queued network packets have cleared.

Such a design is to avoid aggressive overshooting while mitigating
the slow growth of additive increase, which can cause unnecessary
pacing delays. To further manage inaccuracies, we enforce an ap-
plication limit (Fig. 11: t1-t2, t3—t4): if the bucket size exceeds the
previous frame’s size, no increase is applied to the current frame.

Decrease. While a larger bucket size can reduce pacing delays, it
also increases the risk of packets overshooting the bottleneck buffer,

1187

Xiangjie Huang et al.

leading to packet loss. To address this, we adopt two strategies to
minimize packet loss:

1. Queue-size-triggered prevention: To proactively prevent packet
loss, we define a threshold T to limit the number of packets queued
in the network. If the predicted queue size exceeds T, the bucket size
isreduced by the excess amount (Fig. 11, t4-t5). This threshold is em-
pirically determined to balance reliability and performance: an exces-
sively high threshold risks packet loss, while an overly low threshold
leads to unnecessary pacing delays (For more details, see §6.5).

2. Packet-loss-triggered response: To reactively address the issue
of packet loss, we respond immediately by halving the bucket size
to avoid further losses (Fig. 11, t5-t6).

4.2 ACE-C:Encoding Controller

Table 1: Notations defined in ACE-C design

Symbol Definition
AT Reduction in transmission delay
AT, Increase in encoding delay
AF Reduction in frame size
¢(c) Compression reduction factor for complexity ¢
F Frame size
p Actual proportion of frame size over average
p Predicted proportion of frame size over average
w Weight used in SATD-based frame size prediction
offset Offset used in SATD-based frame size prediction

ACE-C is designed to select the appropriate complexity-related
encoding parameters for each frame. The symbols and definitions
used can be found in Table 1.

As our objective is to trade encoding time for transmission time,
the optimization goal of ACE-C can be expressed as

. AF
Ga1n=ATt—ATe = m —ATe (1)

Here, AT;, can be calculated by dividing the reduction in frame size
by the available bandwidth, which we trust the CCA and estimate
it as the estimated bandwidth (BWE). In this equation, AF can be
replaced by ¢(c) - p - F, where F, is the average frame size over a
short time window n.

As mentioned earlier, the target bitrate is tied to the BWE, and
average bitrate coding allows frame sizes to fluctuate around the
target bitrate within the time window. Thus BWE = f - Fy,, where f
is the frame rate. Now, given a complexity level c € {cy,c1,....cm }, we
can compute the Gain as it relates to encoding complexity c:

p-9(c)

Gain(c) = —AT.(c) (2)

Before encoding each frame, ACE-C selects the complexity c that
maximizes the Gain. To do this, we must estimate the relative size
p and the factors related to encoding complexity. We will explain
these next.

SATD-based size prediction. This step predicts the relative frame
size p compared to the target size, which should be done prior to
encoding. ACE-C uses a simple yet effective method, based on the
Sum of Absolute Transformed Differences (SATD), to estimate the
size of the encoded frame. The SATD is computed by comparing the

ACE

SIGCOMM °25, September 8-11, 2025, Coimbra, Portugal

Parameters Range Introduction
inter [I8x8, 14x4, PSUB] Inter Prediction Partitions
intra [18x8, I4x4] Intra Prediction Partitions
i_me_method [DIA, HEX] Motion Estimation Method
i_subpel_refine [1..4] Subpixel motion estimation refinement level

i_trellis True or False

Trellis Quantification

Table 2: x264 complexity parameter selection

frequency domain differences between the current frame and the
preceding frame, making it a reliable proxy for the encoding process.
The SATD between two video frames F,, and F,,_1 , denoted as S,
can be expressed as:
S(FaFn-1)=) IT(Fa(x,4)) =T (Fa-1(x1))| 3)
xy
where T is a transformation function, such as the discrete cosine
transform (DCT) or the discrete Fourier transform (DFT), applied
to each pixel of the frames. The absolute differences between trans-
formed pixel values are summed across all pixels (x, y). In line with
many rate control algorithms in video encoding, the relationship be-
tween SATD and bit rate is modeled linearly. Therefore, the predicted
p is also proportional to the SATD, as follows:

S
p=w- S: +offset 4)
n

Here, w and offset are initialized with empirical values and up-
dated after encoding each frame.

Complexity Factors. For each encoding complexity level c € {co,c1,...,

we need to estimate a(c) and AT (c) to calculate the Gain. These
factors are initially set to empirical values and are updated based on
actual frame size and encoding time.

Parameter Updating. The parameters w, offset, §, and AT, are
updated using an exponentially weighted moving average (EWMA)
after each new value is obtained, ensuring a smooth update process.
We set a to 0.5 for this smoothing process:

Pt:aPt+(1—oc)Pt_1 (5)

In summary, before encoding each frame, ACE-C calculates the

Gain for the available complexity options and selects the optimal

complexity parameter. We implement and evaluate ACE-C using

the libx264 encoder, which supports three complexity levels in the
parameter set (detailed in §5.1).

5 Implementation

We introduce the implementation of ACE controller on WebRTC
and x264 encoder.

5.1 x264implementation

We have integrated our encoder controller design into x264 (Version
0.164.3191M), a widely used open-source H.264 software encoder.
While the native WebRTC employs OpenH264 for H.264 encoding
due to licensing constraints, we opted for x264 due to its more ad-
vanced rate control algorithm and greater flexibility in complexity
management.

cm},

1188

The x264 encoder offers three rate control methods: Constant
Quantization Parameter (CQP), Constant Rate Factor (CRF), and
Average Bit Rate (ABR). For real-time encoding, we utilize the recom-
mended mode, ABR combined with the Variable Bitrate Video (VBV)
buffer control. VBV serves as a hypothetical decoding buffer, allow-
ing for frame size limitation and reduction of frame size volatility
by adjusting the Quantization Parameter (QP). Our implementation
is built upon the ABR + VBV modes, with the introduction of size
prediction and complexity management.

Size Prediction. Fortunately, size prediction is already a feature of
the x264 encoder for rate control, enabling us to leverage it without
additional computational overhead. The encoder begins encoding a
frame with a rate control analysis, measuring the content complexity
against previous frames using the Sum of Absolute Transformed Dif-
ferences (SATD). With the default complexity, the encoder predicts
the p based on the SATD.

Complexity Management. We have identified five key coding com-
plexity control parameters within the x264 encoder to effectively
manage frame size, as outlined in Table 2. These parameters pre-
dominantly pertain to the partitioning and Motion Estimation(ME)
phases. Utilizing these parameters, we have defined three distinct
complexity modes, denoted as co, c1, and cz. Specifically, co employs
only 8x8 inter and intra partitions, DIA motion search, level 1 subpel
refinement, and disables trellis quantification. Instead, ¢z includes
all of the partition methods, the HEX motion search [38], level 4
subpel refinement, and enables trellis quantification. The difference
between c¢; and ¢z is c1 disables trellis quantification.
Interaction with Rate Control. Inx264, the frame sizes are planned
at the start of encoding a frame. Given that most frames are encoded
with the base complexity mode ¢y, the predicted frame size aligns
with the size expected from ¢y complexity. However, when actual
encoding commences, the encoder with higher complexity performs
MB-level rate controls, adjusting the QP for each row to achieve the
planned frame size. This approach can result in an original frame
size with improved quality, which is not our intended outcome. To
counter this, we modify the initial planned frame size using the pre-
set o and the VBV budget, thereby reducing the frame size to achieve
a similar quality level.

5.2 WebRTC implementation

We have implemented our controller design within the WebRTC C++
source code (based on Version M119). The native WebRTC frame-
work utilizes a Pacer module to regulate the transmission rate. Our
primary modifications involved enhancing the pacing module and in-
tegrating a Token Bucket control algorithm on top of it. We developed
an ACE controller class to oversee the Token Bucket mechanism. The

SIGCOMM °25, September 8-11, 2025, Coimbra, Portugal

Token Bucket rate is configured to match the estimated bitrate, and to
bypass the Round-Trip Time (RTT) and packet reception timestamps
from the RTCP receiver, we can predict the in-network buffer size.
The ACE controller adjusts the sending pace, overriding the Next
Sending Time originally determined by the Pacing controller.

Interaction with CCA. We also made adaptations to the Google
Congestion Control (GCC) algorithm used by WebRTC. GCC es-
timates the bandwidth partly through a delay-based controller. It
employs an arrival-time filter, which is continuously updated based
on the arrival times of incoming packets, calculated using the first
packet of each packet group. WebRTC applies linear regression to
predict the delay gradient trend, using a fixed number of packet
groups within a window to determine the trendline. Packet groups
are delineated by time intervals. The ACE design facilitates packet
bursts, which reduces the number of packet groups. This reduction
canmake GCClessresponsive to network changes, as it calculates the
trendline over an extended period. To counteract this, we replaced
the fixed number trendline estimator with a time-based window of
200 milliseconds for calculating the delay gradient.

6 Evaluation

Inthis section, we evaluate ACE with various experiments and results.
For quick reference, we structure our analysis around the following
questions:

Q1. What is the overall latency reduction achieved by ACE?
See §6.2, ACE cuts 95-th percentile latency by up to 43% versus
the state-of-the-art WebRTC* baseline.

Does ACE sacrifice video quality for lower latency?
See §6.2, No. ACE maintains the same VMAF score (perceptual
quality) as the highest-quality baseline.

Which network conditions were tested?

02.

03.

See §6.1, most of our experiments were conducted in Mahimahi [39]

emulation cover real-world Wi-Fi, 4G, and 5G traces from
dataset in Zhuge [35]. We also evaluated in real-world campus
Wi-Fi(§6.8) and production service(§6.9).

How does ACE perform on different content types?

See §6.2, ACE reduces latency by ~70% on high-motion Gam-
ing videos while preserving quality; gains are smaller on low-
motion Lecture videos.

Whatis theimpact on packetloss and other QoS metrics?
See §6.3, ACE keeps loss rates slightly above paced baselines
but far below blind-burst schemes. We also present here other
QoS metrics such as stall rate and end-to-end delays at differ-
ent quantiles.

Does ACE interfere with existing CCAs?

See §6.6, No. Bandwidth-estimation accuracy and reaction to
sudden drops remain unchanged for both GCC and BBR.

Is there additional CPU/ memory overhead for ACE-C?
See §6.6, negligible; sender CPU rises by only ~2 ms per frame
and no extra load on the receiver.

How does ACE behave in real-world campus Wi-Fi?
See §6.8, on-campus tests confirm latency on par with low-
latency baselines and the highest VMAF score.

Can ACE be implemented on production and what are
the results?

See §6.9, trace-based experiments show ACE-N reduces la-
tency by 15%.

04.

Q5.

Q6.

Q7.

08.

Q9.

1189

Xiangjie Huang et al.

6.1 Main Experiment Setup

Testbed. We implement a testbed to automatically run the exper-
iments and analyse the results. Experiments are conducted on a
single server, where two separate processes initialize the sender and
receiver. The receiver’s downlink conditions are controlled using
Mahimahi [39]—a network emulator that replays real network traces
to simulate bandwidth variability. Network buffering is emulated via
Mahimahi’s drop-tail queue, with a fixed queue size of 100 Kilobytes
across all experiments. During experiments, timestamps of frame
transmission and reception (same time reference) are logged and
used to compute end-to-end latency.

Video Selections. We chose 5 categories of videos to test, namely
Music, Gaming, Sports, Vlog, and Lecture. We selected the most-
watched video in the most-subscribed channel ranked and catego-
rized at HypeAuditor Website [21]. The total duration of the videos
is more than 1200 seconds, comparable to similar works [12, 14, 17].
The framerate of the videos is fixed at 30 fps.

Traces. We used real-world traces from Zhuge [35], which include
both Wi-Fi and cellular network links. From this dataset, we sam-
pled nine traces. Each trace consists of timestamps corresponding
to available bandwidth, with a timestamp interval of 200 ms. The
median bandwidth across all traces is 55 Mbps, with the 25th and
75th percentiles being 29 Mbps and 125 Mbps, respectively.

Competing Flows. To emulate the influence of in-network buffer
change and evaluate fairness, we added competing flows in our ex-
periments. We use Selenium [2] to randomly load Web pages from
the Alexa Top-100 websites [1] through Google Chrome (Version
124.0.6367.201).

Metric. In the evaluation, we mainly focus on two metrics: (1) end-
to-end delays, as a critical metric for RTC measured by various
works [17, 37, 45] and (2) VMATF Score [44] introduced by Netflix
to indicate perceptual quality. These two metrics are orthogonal to
each other to reflect the overall performance.

Baselines. Our experiment encompasses several baselines for com-
parative analysis:

WebRTC. This version utilizes the native WebRTC codes (Version
M119) employed by Chrome, featuring a VP8 encoder.
WebRTC-B. As a strawman solution, we test with a fixed but in-
creased pacing rate to 2.5x of the BWE (a deprecated WebRTC
setting before).

WebRTC* (WebRTC + x264 Average Bitrate). We have integrated
libx264 into WebRTC, and tuned it for zero-latency operation. The
VBV (Video Buffering Verifier) setting follows [40].

CBR (WebRTC + x264 Constant Bitrate). By adjusting the parame-
ters of the encoder, we enable the generation of constant bitrates,
precisely matching the target bitrate.

Salsify [17]. Salsify includes a functional VP8 codec and a
congestion control mechanism tailored for real-time applications.
It simultaneously generates two frames of different sizes, allowing
the transmission protocol to select the most appropriate one.

6.2 Overall Performance

Fig. 12 illustrates the main performance trade-off plots between the
95th percentile latency and the average VMAF score across three
sets of traces. Arrows to the upper left show the higher quality and
lower latency.

ACE SIGCOMM °25, September 8-11, 2025, Coimbra, Portugal
o8 “INebRTC* JVebRTC* SbRTC*
87.5{ & 75 $CE .~ SvebRTC 75 fCE A
85.0 T JVebRTC
g ® 75.0 o WeBRTC-B
8 8 8 701
o 8] N 725 n
[T WebRT [T [T
< go.o] Salsify Soy. % < . Soy. < 651 - Ses,
b JVebRTC-B %, < 70.0 P %, = Yoy
Y Y palsify > Alsi
77.5 ; d%a sify
/ 67.51 £BR 60 1
250 £BR JVebRTC-B £BR
200 250 300 350 140 160 180 200 220 100 125 150 175 200
95th Percentile Latency (ms) 95th Percentile Latency (ms) 95th Percentile Latency (ms)
(a) WI-FI trace (b) 4G Cellular trace (c) 5G Cellular trace
Figure 12: ACE performance over different network traces
71 ACE [T CBR OIT1 WebRTC
) —=— ACE Burst --&- Pace
X0 WebRTC* E= Salsify K2 WebRTC-B
0.999
100
w b 0.99
wn
90 ’
= 5 5
3 $ 80 g o9
[[T
2 05
© <§(70
> 60 0
e 100 200 300 400 500
50 Latency (ms)
4\& 0@9 @QQ \)a,& & (a) Latency CDF
&P A &
ACE Burst Pace ACE Burst Pace
Figure 13: Comparison over video categories 5% 4%
L 4% jo)
As shown in Fig. 12, WebRTCx* achieves the highest quality among S 53%
all baselines, largely due to its effective strategy for allocating bi- @ 29% o
trate across frames. However, it also incurs the highest latency, as 1% N 1%

its pacer introduces additional delays by smoothing frame bursts
into the network. In contrast, CBR achieves the lowest latency across
all traces by consistently producing frames that never exceed the
instantaneous pacing rate. However, this comes at a significant cost
to quality, with VMAF scores dropping by 7 to 15 points compared
to WebRTC*, which demonstrates the quality loss of the lossy quan-
tization methods. Other baselines balance different encoding rate
control strategies and sending paces, positioning themselves along
the trade-off frontier. ACE, however, breaks this trade-off by dynam-
ically adjusting both encoding complexity and sending pace. As a
result, it achieves a substantial P95 latency reduction of 34% com-
pared to WebRTC* while maintaining the same level of video quality.

ACE outperforms all baselines among various network traces
and videos. The performance across different network traces shows
a consistent trend between Wi-Fi and Cellular traces, with ACE re-
liably outperforming all baselines. ACE has the highest VMAF Score
among all the baselines, other baselines with comparable quality
have to sacrifice from the increase of P95 latency by 43%, 23%, and
35% on Wi-Fi, 4G, and 5G traces, respectively. This indicates that ACE
is robust to variations in network environments. In cellular traces,
the performance gains are less pronounced. This is because sudden
bandwidth drops occur more frequently in cellular networks, ampli-
fying the contribution of congestion-related latency—thus reducing
the relative impact of ACE ’s optimizations.

Results over different videos. We illustrate the comparative per-

1190

0% 0%

& e o © (P & e o © (P
» \@"\ o W ‘@@ » «9"‘\ N W \x@“‘ﬁ

Methods Methods
(b) Loss rate (c) Video stall rate
Figure 14: Other QoS metric

formance of ACE and baselines across various video categories in
Fig. 13. ACE is capable of reducing latency by around 70% in Gaming
videos while maintaining quality on par with WebRTC#*, which deliv-
ers the highest quality across all video types. It is noteworthy that
ACFE’s performance in terms of quality is similar to CBR, where CBR
does not exhibit a significant quality loss compared to average bitrate
encoding. This is particularly true for Lecture videos, which lack
moving content, resulting in a relatively stable encoded frame size.
This observation suggests that the ACE controller is better suited
for deployment in scenarios with significant content variation, such
as Virtual Reality (VR) streaming and Cloud Gaming.

6.3 Other QoS Metric

We further analyze five other QoS metrics compared to the baselines.
Latency Distribution. We present the Cumulative Distribution
Function (CDF) of latency in Fig. 14(a), comparing ACE with WebRTC*
and WebRTC-B, marked as Pace and Burst, respectively. From the fig-
ure, it is evident that ACE consistently achieves the lowest latency
across most percentiles. The Burst method exhibits similar latency to
ACE around the 90th percentile but shows higher latency in the tail

SIGCOMM °25, September 8-11, 2025, Coimbra, Portugal

Xiangjie Huang et al.

90 100 = Burek
L} urs
ACE-C 88 5 —
88 ! 1 J-)
&CE | aceN :’25 € sof o= m Pace
0 g6 O g . 3 X Harder Encode
o o c]
3] o S 60
D g4 0 84 2 -
< TG < o S 3 L)
. o Sop m
s 82 V%’» z % %’ ¢ w "
>) > - o - .&
. L= I] []
80 @ 80 a 20 e
o o il)
78 i 78 ; 0 i Balhm < ¥ X
175 200 225 250 275 300 160 180 200 220 240 0 1 2 3 4

95th Percentile Latency (ms)

Figure 15: Ablation study

due to network overshooting. On the other hand, the Pace method
smooths the transmission pattern but still results in higher latency
across all percentiles compared to ACE, with pacing latency dominat-
ing. Notably, Pace achieves the lowest latency at the 99.9th percentile.
We infer that despite ACE-N’s controls, some false-negative deci-
sions (allowing bursts when they should be paced) still cause network
overshooting, contributing to ACE’s slightly higher latency at this
extreme percentile.

Loss Rate. We compare the loss rates between ACE and the other
baselines. As shown in Fig. 14(b), baselines with bursty sending pat-
terns exhibit loss rates exceeding 4%, significantly higher than those
employing pacing mechanisms. ACE achieves a loss rate slightly
higher than the Pacer method but remains well below the bursty base-
lines, around 1%. This demonstrates ACE ’s ability to strike a balance
between efficient transmission and maintaining low packet loss.
Frame Rate. Enabling frame dropping could introduce significant
bias in video quality assessment. To ensure consistency and fairness
across all measurements, we disabled the frame-dropping option. As
aresult, the average frame rates across all experiments are reported
to be close to 30 FPS, consistent with the original video frame rate.
Video Stall Rate. We measured 100ms stall rate, which is defined
as the ratio of the stall duration (periods where the video receiving
interval exceeds 100 ms) to the total duration of a session. The stall
rate is depicted in Fig. 14(c). ACE achieves an average video stall
rate of 2.39%, which is among the lowest and is comparable to the
best-performing baseline, CBR. Additionally, ACE reduces the stall
rate by 16% compared to WebRTCx and 17% compared to WebRTC-B.
These results demonstrate that ACE effectively mitigates video stalls
caused by both pacing latency and retransmissions.

Link Utilization. We assess ACE’s link utilization in comparison to
the WebRTC default pacing method. Fig. 18 displays the CDF of the
sending rate over a very fine timescale of 10 milliseconds, normal-
ized by both bandwidth and estimated bandwidth. It demonstrates
that ACE can maximize instantaneous link capacity utilization while
avoiding overshoot of the bandwidth, unlike Pacing. Consequently,
ACE optimizes link usage without causing excessive queuing in the
network.

6.4 Ablation Study

In this experiment, we removed the new components implemented
in ACE one by one to better understand their contribution to the total
performance of the system. First, we removed the feature of ACE-N
by sending the packets with a pacing rate fixed to estimate band-
width. The performance degradation of this configuration is shown

95th Percentile Latency (ms)

Figure 16: Sensitivity of the parameter T

1191

Frame Size / Target Size

Figure 17: ACE decision understanding.

100% e = 100% e
80% 7 80% ,"
/
w 60%1° w 60% 4
[a) ’ o 7
O 40%{ / O 40% o
ol --- PACE 509 - --- PACE
20% ACE o ACE
0% 0%
00 05 10 15 2.0 00 05 1.0 15 2.0

(a) Sending Rate / Bandwidth (b) Sending Rate / BWE

Figure 18: Link Utilization Analysis: ACE allows packets to be sent
in bursts, resulting in longer silent periods, better utilizing the link by
achieving a higher sending rate over short time scales.

in Fig. 15 as ACE-C; without this component, ACE has less latency
reduction because the link is not well utilized on tiny timescales.
However, only ACE-C still improves latency by smoothing the send-
ing stream among frames, and the quality is higher by using a higher
complexity. Next, we only keep ACE-N. The latency is significantly
improved with the ACE-N, while the quality remains similar. Notably,
the contribution of ACE-N is largely greater than ACE-C. However,
both degradations lie on the upper left side of the envelope of base-
lines. It indicates that the two parts of our design can be employed
separately and achieve a greater improvement when used together.

6.5 Parameter Sensitivity

We further evaluated the sensitivity of ACE parameters, focusing on
the parameter T in decreasing the bucket-size, which is the threshold
of packet size to trigger size reduction. We tested with T values of 7.5,
10,12.5,and 15, and the results are shown in Fig. 16. Our findings indi-
cate that ACE is not particularly sensitive to the parameter settings;
all tested configurations outperformed the baseline envelope. Specif-
ically, as T increases, there is a higher likelihood of packet loss, which
can lead to a loss in video quality. However, by fully utilizing the
link capacity, it is possible to achieve lower latency. The parameter
allows operators to effectively balance quality and latency.

6.6 Microbenchmarks

Relative Size Prediction Accuracy. Fig. 19 shows the accuracy of
the predicted relative size p using SATD. The color intensity indi-
cates the probability distribution P(5|p). As shown, the predictions
closely match the actual frame sizes, particularly in the higher range
(oversized frames), where p accurately tracks p.

Interaction with Congestion Control. We evaluated the inter-
action between the ACE over two CCAs implemented on WebRTC
— GCC and BBR [9]. Here, BBR is derived from WebRTC’s legacy
codebase [3]. Since ACE operates at a layer above CCA, our goal is
to ensure that it does not interfere with CCA’s effectiveness. The

ACE

- 80
g 100 g Bandwidth
- m| 75 s 60 ACE BWE
4 3 = —-- Pace BWE
Q3 50 & 40
25 520 .
= i T P -
0 0 @
0123456 Qs 255 26
p Time (s)
Figure 19: SATD precisely Figure 20: Reaction example to
predicts the relative frame size. . qwidih drop.
10° 10°
W N
A \
w “.,‘ w \\\
810 ‘ 8107 R
O k o 3
=== GCCT == === BBR)
—— ACE over GCC —— ACE ov R
1072

1072
0.0 05 1.0 1.5 2.0
BWE/Bandwidth BWE/Bandwidth
(a) GCC (b) BBR
Figure 21: Comparison of CC accuracy. BWE/Bandwidth < 1.0 indicates
underestimation, otherwise overshoot.

0.0 05 1.0 1.5 2.0

impact of ACE is measured by the accuracy of CCA’s bandwidth es-
timation, calculated as the ratio of estimated to actual bandwidth at
10 millisecond intervals. The CDF plot in Fig. 21(a) shows that the
average bandwidth estimation accuracy of ACE is comparable to
that of the pacing method, indicating no negative impact on both
CCAs. Additionally, Fig. 20 illustrates how GCC responds to a sud-
den drop in bandwidth, with the reaction curves of ACE and the
pacing method nearly overlapping, demonstrating similar behavior.
Furthermore, to validate that ACE has no negative impact on CCAs
in real-world scenarios, we evaluated its interaction with a custom
CCA deployed in a production cloud gaming application. Detailed
performance results are provided in §6.9.

Encoding Time. Fig. 23 shows the distribution of encoding times
for various baselines compared to ACE. On average, ACE’s encoding
time is only 2 milliseconds higher than the x264 baseline, demonstrat-
ing its efficiency. Notably, the VP8 encoder exhibits higher encoding
times than x264, while Salsify takes the longest due to its multiple
encoding passes.

Runtime Overhead. We evaluated the overall system overhead.
As illustrated in Fig.22, CPU usage and memory consumption on
the sender increase with higher sending bitrates and frame rates.
However, ACE introduces negligible additional overhead, with its
impact being minimal compared to the influence of frame rate and bi-
trate. Additionally, we evaluated the overhead on the receiver, which
remains similarly low. Detailed results and analysis are provided in
the Appendix B.

Fairness. Given that our method sends streams unevenly on a small
time scale, it is crucial to ensure that it does not negatively impact
other streams. We measure fairness by assessing the page load time
of competing streams, as shown in Fig. 24. Our method maintains
an average level among the baselines, demonstrating that it does not
significantly affect the competing flows.

1192

SIGCOMM °25, September 8-11, 2025, Coimbra, Portugal

N WebRTC* BB ACE-N EENACE-C HEEACE N WebRTC* BN ACE-N EENACE-C BN ACE

150
100
120
75
S g 90
] 50 o]
S S 60

25

2mbps
(a) CPU Usage Vs Bitrate

6mbps 10mbps 15fps 30fps 60fps

(b) CPU Usage Vs Frame rate

Figure 22: Runtime CPU overhead on sender

= w

£%0 930

) €25

E40 F30

30 =R

g 8§13

g 20 1.0

1) 1 ¢

a0 A g3
& B S O R N2 X oS LO P
T < e?’\(’\\“e“iéyf\(’ v @e@:\c& 6’5\9;\60:\ e

Methods Methods

Figure 23: Encoding latency Figure 24: Page load times

6.7 ACE Deep Dive

Understanding ACE Decisions: Our example, depicted in Fig. 17, il-
lustrates the ACE decision-making process for encoding and sending
controllersacross frames during the streaming of a gaming video. The
x-axis shows frame sizes normalized relative to the target frame size,
while the y-axis indicates buffer occupancy in the network buffer.
The shape of each scatter point represents the joint decisions of ACE-
N and ACE-C. As shown, most frames are transmitted in bursts (blue
squares) and sent out completely. A minority of frames, which are
more close to buffer overflow, are transmitted using pacing (green
squares). For encoding, most frames use the cq complexity level; only
oversized frames are processed with higher complexity (marked as X-
shaped points). Clearly, ACE achieves smoothness through two key
actions: encoding larger frames to reduce their size, and adjusting
the burstiness of transmission based on network queuing conditions.

ACE-C Encoding Complexity Choices. In our tests, ACE-C offers
three complexity levels (cg to c2). We found that 97% of frames still
use the default ¢, so ACE-C only steps in for the occasional large
frame—for example, shown in Fig. 17, only for frames bigger than
1.6X the average size. For these outliers, the gain in Eq. 2 favors a
higher level, trading extra encoding time for a worthwhile transmis-
sion delay. That’s the reason the overall overhead for encoding stays
small. Nevertheless, Fig. 15 shows ACE-C still trims the tail latency,
confirming that these sporadic big frames are essential causes of
high tail latency.

ACE-N Sending Pattern Decisions.Fig.25 illustrates the behavior
of ACE-N under a typical network changing scenario in a 1-second
time interval. At the start, the available bandwidth is underestimated
by the BWE (blue line in Fig.25 (a)). ACE-N allows to send frames in a
bursty pattern, as shown by the sharp spikes in buffer occupancy (red
line in Fig.25 (b)). During this phase, the token bucket size (brown
line in Fig.25 (c)) is large enough to accommodate bursts, preventing
pacing delays by efficiently utilizing the underestimated bandwidth.

At t = 400 ms, the predicted queue size (green line in Fig.25(b)) ex-
ceeds the threshold T (dashed line). To avoid triggering the drop-tail

SIGCOMM °25, September 8-11, 2025, Coimbra, Portugal

30 — BWE Actual Bandwidth
@ 20 (a)
s BW underestimated
= 10
0
—— Network Buffer Occupancy —— Predicted Queue Size
£ 501 (b)
S 25/ Bursty Pattern Pacing Pattern
& .- ST - | S L VUSROS
o - N
60 —— Token Bucket Frame Size m Burst Size
g 40 ©
° 20 JFast Recovered
N 201
"
RELTTTRRINL) SERRRR AT
0 200 400 600 800 1000

Time (ms)
Figure 25: Understanding of ACE-N adaptive pacing

limit of the bottleneck buffer, ACE-N reduces the token bucket size.
This transition effectively switches the sending pattern from bursty
to pacing, as shown by the smoother network buffer occupancy after
the adjustment. By responding to the predicted queue size, ACE-N
avoids network overshooting and packet loss.

At t =600 ms, the predicted queue size drops to zero, indicating
that the network buffer is no longer occupied. In response, ACE-N
allows the fast recovery mechanism, quickly restoring the token
bucket size to enable larger bursts (Fig.25(c)). This is the end of an
increase/decrease cycle.

6.8 Real-World Experiment

To further validate the performance, we conducted experiments in
areal-world network environment. The sender was a Ubuntu server
located in the university’s data center running ACE over WebRTC,
while a Windows laptop connected to the campus wireless network
(eduroam) acted as the receiver. For comparison, we included base-
lines in the Wi-Fi trace emulation at the frontier (WebRTCx, CBR,
and Salsify Additionally, we tested Google Meet as a representa-
tive industry-standard baseline to reflect current real-world perfor-
mance.

The evaluation involved transmitting a high-motion gaming video
from the sender to the receiver, lasting approximately 200 seconds.
Each frame of the video contained QR codes for precise identification.
The receiver captured the screen and analyzed the metrics, focusing
on end-to-end latency and VMAF score—consistent with the metrics
used in the emulation environment. The tests were conducted over
a 24-hour period, covering both peak and off-peak hours on campus.
Fig. 26 presents the CDF of end-to-end latency and VMAF score
across all test scenarios.

The results demonstrated that ACE delivered consistently low
latency, comparable to CBR and Salsify, but stood out by achieving
the highest VMAF score, on par with WebRTC#*, while significantly
reducing latency. Notably, Salsify’s performance was constrained by
extended encoding times, leading us to lower the resolution to 540p
for real-time encoding, which caused a significant quality drop, re-
flected in a median VMATF score below 60. In contrast, Google Meet
maintained a stable VMAF score of around 66, but its performance
was likely optimized for video conferencing rather than high-motion

1193

Xiangjie Huang et al.

— ACE ABR —:: Google Meet «:::: Salsify == CBR
0.99 1.0 - 4
0.95 08
w L 0.6
g oo 8
0.4
0.5 02
0 0.01
0 50 100 150 200 250 60 64 68 72 76 80 84 88

Latency (ms) VMAF

Figure 26: Real-world experiment results

Method StallRate Latency RecvFPS

ACE-N 2.89 136.97 56.80
AlwaysPace 2.96 161.06 56.58
AlwaysBurst 13.37 323.34 53.79

Table 3: Performance on production application

content, making it less suitable for gaming scenarios. These find-
ings highlight ACE ’s strong real-world performance, successfully
achieving low latency and high video quality.

6.9 Production Application Experiment

In this section, we incorporate ACE-N into the production RTC en-
gine of our cloud gaming application, which serves millions of users
nationwide. To validate the effectiveness of ACE-N, we benchmark it
against the AlwaysPace and AlwaysBurst baselines using real-world
network traces collected from weak network environments such
as canteens, coffee shops, and airports. Each method was evaluated
over a period of 1333 seconds using a 60 FPS game content video
as the test case. We report stall rate, average latency, and received
frame rate (Recv FPS) as the primary performance metrics, which
directly impact the quality of user experience.

As shown in Table 3, ACE-N demonstrates significant improve-

ments over the baselines across all key performance metrics. Com-
pared to AlwaysPace, ACE-N reduces latency by 15.0%, while main-
taining a higher received frame rate (56.80 vs. 56.58 FPS). Against
AlwaysBurst, ACE-N delivers a dramatic reduction in stall rate (2.89
vs. 13.37) and latency (136.97 ms vs. 323.34 ms), alongside a 5.6% im-
provement in received frame rate (56.80 vs. 53.79 FPS). These results
highlight ACE-N’s ability to adapt effectively to various network
conditions, ensuring a smoother gaming experience with lower la-
tency. Notably, the AlwaysBurst baseline suffered from extremely
high packet loss under weak network conditions. The aggressive
bursting behavior of this approach exacerbates retransmissions, sig-
nificantly increasing latency and degrading overall performance. In
contrast, ACE-N mitigates these issues by dynamically adjusting
its sending patterns. By carefully balancing bursty sending to re-
duce latency while avoiding excessive packet loss, ACE-N effectively
overcomes the limitation of traditional burst-or-pace methods and
ensures optimal performance.
Ethical Concerns: We only collect the objective measurement logs
of the participating volunteers to obtain the timestamps of all re-
ceived frames. Other metrics are calculated based on that. This data
collection process does not involve any user privacy information
and has already obtained the consent of the users.

ACE

7 Discussions

Scenario Limitations. As evaluated in §6.2, ACE is particularly
well-suited for scenarios with high-quality, rapidly changing con-
tent—such as cloud gaming and VR streaming—due to its ability
to adapt to fluctuating frame sizes. However, in use cases where
frame sizes remain relatively stable (e.g., video conferencing), ACE
provides marginal benefits over constant bitrate (CBR) baselines. In
practice, our real-world tests of ACE and baseline methods on static
content showed comparable quality levels to the baselines.

Encoder Generalization. In our evaluation, we implemented the
ACE encoder using the widely-adopted software encoder x264, which
is an H.264 encoder offering a comprehensive set of tools to control
encoding complexity. In contrast, the default WebRTC H.264 en-
coder, OpenH264, lacks such a broad range of tools. In Appendix A,
we detail how our encoding complexity control mechanisms can be
adapted to other mainstream video encoders (e.g., AV1 and HEVC),
demonstrating the generalization of our method across mainstream
encoder architectures. Notably, ACE-C is currently limited to soft-
ware encoders as the complexity is typically fixed for hardware
encoding. We therefore aim to share these insights with the hard-
ware encoding community to advocate for more granular interfaces
for controlling the encoding process.

8 Related work

Real-time Video Coding. Various methods have been developed
in video coding to optimize real-time communication (RTC) perfor-
mance. A primary focus has been enhancing encoder resilience to
transmission errors and packet losses, including through Scalable
Video Coding (SVC) [15, 48, 49], error concealment techniques [26,
54, 62], and joint source-channel coding [8, 13, 28]. Another notable
trend includes neural codec adaptations in RTC systems [10, 12, 50].

The mismatch between video codecs and network, as a key mo-
tivation of this paper, was firstly studied very early when people
noticed that I-frames can overshoot network and fixed by intra-block
refreshing [27]. Recent work also addresses the mismatch through
cross-layer designs [17, 24, 60, 61]. Notably, these co-designs are still
fundamentally quality-latency trade-offs.

Transport-layer innovations. Numerous prior efforts have fo-
cused on optimizing latency for RTC in the transport layer. The
first and most studied one is through low-latency congestion con-
trol [6, 24, 45, 53, 57]. Another function of the transport layer is
reliable transmission; recent researches include optimizations in
Forward Error Correction (FEC) [5, 11, 30, 46] and retransmission
improvements [7, 36, 41]. However, to our knowledge, adaptive
strategies via pacing mechanisms are understudied.

Our approach is orthogonal to other transport-layer strategies:
while CCAs determine how many packets to send within one RTT,
we optimize how those packets are transmitted within that interval.
ACE can be readily integrated with existing CCAs to enhance per-
formance. The orthogonality also works for reliable transmission.
That said, our strategy ACE-N takes loss as input; random loss which
should be dealt with by FEC may be noise to our algorithm. We leave
co-designing ACE with loss recovery mechanisms for our future
work.

1194

SIGCOMM °25, September 8-11, 2025, Coimbra, Portugal

9 Conclusion

ACE introduces a burstiness control framework designed for high-
quality real-time communication, addressing the mismatch between
encoding and transmission patterns. By dynamically adjusting en-
coding complexity at the frame level to smooth frame sizes (ACE-C)
and adaptively managing transmission patterns to mitigate pacing
delays (ACE-N), ACE significantly reduces end-to-end latency with-
out sacrificing quality. Experimental results demonstrate that ACE
achieves up to a 43% reduction in 95th-percentile latency compared
to state-of-the-art solutions, all while maintaining leading visual
quality (VMAF). ACE aims to provide insights into managing tran-
sient sending patterns and leveraging adaptive encoding complexity
for real-time transmission.

Acknowledgements. We sincerely thank our shepherd Dongsu
Han, anonymous reviewers, and labmates in SPARKLab from HKUST
for their valuable feedback. This work was supported by Guangdong
NSF Project (No. 2025A1515010460). Zili Meng is the corresponding
author.

References
[

2022. Alexa Top Websites >> ExpiredDomains.net. https://member.expireddo
mains.net/domains/researchalexamillion/.

2022. Selenium. https://www.selenium.dev/.

Aerys Nan. 2021. BBR Development - Groups Google .
//groups.google.com/g/bbr-dev/c/1IEPG5UwBANo.

Anup Agarwal, Venkat Arun, Devdeep Ray, Ruben Martins, and Srini-
vasan Seshan. 2024. Towards provably performant congestion control.
In 21st USENIX Symposium on Networked Systems Design and Imple-
mentation (NSDI 24). USENIX Association, Santa Clara, CA, 951-978.
https://www.usenix.org/conference/nsdi24/presentation/agarwal-anup
Congkai An, Huanhuan Zhang, Shibo Wang, Jingyang Kang, Anfu Zhou, Liang Liu,
Huadong Ma, Zili Meng, Delei Ma, Yusheng Dong, and Xiaogang Lei. 2025. Tooth:
Toward Optimal Balance of Video QoE and Redundancy Cost by Fine-Grained
FEC in Cloud Gaming Streaming. In 22nd USENIX Symposium on Networked
Systems Design and Implementation (NSDI 25). USENIX Association, Philadelphia,
PA, 635-651. https://www.usenix.org/conference/nsdi25/presentation/an
Venkat Arun and Hari Balakrishnan. 2018. Copa: Practical {Delay-Based}
congestion control for the internet. In 15th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 18). 329-342.

Ethan Blanton, Vern Paxson, and Mark Allman. 2009. TCP Congestion Control.
RFC 5681. IETF.

Eirina Bourtsoulatze, David Burth Kurka, and Deniz Giindiiz. 2019. Deep joint
source-channel coding for wireless image transmission. IEEE Transactions on
Cognitive Communications and Networking 5, 3 (2019), 567-579.

Neal Cardwell, Yuchung Cheng, C Stephen Gunn, Soheil Hassas Yeganeh, and Van
Jacobson. 2016. Bbr: Congestion-based congestion control: Measuring bottleneck
bandwidth and round-trip propagation time. Queue 14, 5 (2016), 20-53.

Bo Chen, Zhisheng Yan, Yinjie Zhang, Zhe Yang, and Klara Nahrstedt. 2024.
LiFteR: Unleash Learned Codecs in Video Streaming with Loose Frame
Referencing. In 21st USENIX Symposium on Networked Systems Design and
Implementation (NSDI 24). USENIX Association, Santa Clara, CA, 533-548.
https://www.usenix.org/conference/nsdi24/presentation/chen-bo

Sheng Cheng, Han Hu, and Xinggong Zhang. 2023. ABRF: Adaptive BitRate-FEC
joint control for real-time video streaming. IEEE Transactions on Circuits and
Systems for Video Technology 33, 9 (2023), 5212-5226.

Yihua Cheng, Ziyi Zhang, Hanchen Li, Anton Arapin, Yue Zhang, Qizheng Zhang,
Yuhan Liu, Kuntai Du, Xu Zhang, Francis Y Yan, et al. 2024. {GRACE }:{Loss-
Resilient} {Real-Time} Video through Neural Codecs. In 21st USENLX Symposium
on Networked Systems Design and Implementation (NSDI 24). 509-531.

Kristy Choi, Kedar Tatwawadi, Aditya Grover, Tsachy Weissman, and Stefano
Ermon. 2019. Neural Joint Source-Channel Coding. In Proceedings of the 36th
International Conference on Machine Learning (Proceedings of Machine Learning
Research, Vol. 97), Kamalika Chaudhuri and Ruslan Salakhutdinov (Eds.). PMLR,
1182-1192. https://proceedings.mlr.press/v97/choil9a.html

Mauro Conti, Simone Milani, Ehsan Nowroozi, and Gabriele Orazi. 2021. Do
not deceive your employer with a virtual background: A video conferencing
manipulation-detection system. arXiv preprint arXiv:2106.15130 (2021).
Mallesham Dasari, Kumara Kahatapitiya, Samir R. Das, Aruna Balasubramanian,
and Dimitris Samaras. 2022. Swift: Adaptive Video Streaming with Layered
Neural Codecs. In 19th USENIX Symposium on Networked Systems Design

https:

—
i)

[10

[11

[12

=
&

(14]

[15

https://member.expireddomains.net/domains/researchalexamillion/
https://member.expireddomains.net/domains/researchalexamillion/
https://www.selenium.dev/
https://groups.google.com/g/bbr-dev/c/1EPG5UwBANo
https://groups.google.com/g/bbr-dev/c/1EPG5UwBANo
https://www.usenix.org/conference/nsdi24/presentation/agarwal-anup
https://www.usenix.org/conference/nsdi24/presentation/agarwal-anup
https://www.usenix.org/conference/nsdi25/presentation/an
https://www.usenix.org/conference/nsdi24/presentation/chen-bo
https://www.usenix.org/conference/nsdi24/presentation/chen-bo
https://proceedings.mlr.press/v97/choi19a.html

SIGCOMM °25, September 8-11, 2025, Coimbra, Portugal

[16]

[17]

(18

[19]

[20]

[21]

[22

[23]

[24]

[25

[26]

[27]

[28]

[29

[30]

and Implementation (NSDI 22). USENIX Association, Renton, WA, 103-118.
https://www.usenix.org/conference/nsdi22/presentation/dasari

Sandesh Dhawaskar Sathyanarayana, Kyunghan Lee, Dirk Grunwald, and Sangtae
Ha. 2023. Converge: Qoe-driven multipath video conferencing over webrtc. In
Proceedings of the ACM SIGCOMM 2023 Conference. 637-653.

Sadjad Fouladi, John Emmons, Emre Orbay, Catherine Wu, Riad S Wahby, and
Keith Winstein. 2018. Salsify:{Low-Latency} network video through tighter
integration between a video codec and a transport protocol. In 15th USENIX
Symposium on Networked Systems Design and Implementation (NSDI 18). 267-282.
Sadjad Fouladi, Riad S. Wahby, Brennan Shacklett, Karthikeyan Vasuki Bal-
asubramaniam, William Zeng, Rahul Bhalerao, Anirudh Sivaraman, George
Porter, and Keith Winstein. 2017. Encoding, Fast and Slow: Low-Latency Video
Processing Using Thousands of Tiny Threads. In 14th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 17). USENIX Association,
Boston, MA, 363-376. https://www.usenix.org/conference/nsdi17/technical-
sessions/presentation/fouladi

Google. 2021. Paced Sending. https://chromium.googlesource.com/external/w
ebrtc/+/master/modules/pacing/g3doc/index.md.

HandBrake Team. 2023. HandBrake Documentation — Constant Quality vs Aver-
age Bit Rate. https://handbrake.fr/docs/en/latest/technical/video-cq-vs-abr.html
[Online; accessed 19-Sep-2024].

HypeAudio. 2021. Top YouTube Channels | HypeAuditor YouTube Ranking.
https://hypeauditor.com/top-youtube/.

ITU/ISO/IEC. 2018. HEVC Test Model (HM) Documentation.
http://hevc.info/HM-doc/.

Bart Jansen, Timothy Goodwin, Varun Gupta, Fernando Kuipers, and Gil
Zussman. 2018. Performance Evaluation of WebRTC-based Video Con-
ferencing. SIGMETRICS Perform. Eval. Rev. 45, 3 (March 2018), 56-68.
https://doi.org/10.1145/3199524.3199534

Zhidong Jia, Yihang Zhang, Qingyang Li, and Xinggong Zhang. 2024. Tackling
Bit-Rate Variation of RTC Through Frame-Bursting Congestion Control. In
2024 IEEE 32nd International Conference on Network Protocols (ICNP). 1-11.
https://doi.org/10.1109/ICNP61940.2024.10858541

Srinivasan Keshav. 1995. Packet-pair flow control. IEEE/ACM transactions on
Networking (1995), 1-45.

Vineeth Shetty Kolkeri. 2009. Error concealment techniques in H. 264/AVC, for
video transmission over wireless networks. (2009).

Sunil Kumar, Liyang Xu, Mrinal K Mandal, and Sethuraman Panchanathan.
2006. Error resiliency schemes in H. 264/AVC standard. Journal of Visual
Communication and Image Representation 17, 2 (2006), 425-450.

David Burth Kurka and Deniz Gindiiz. 2020. Deepjscc-f: Deep joint source-
channel coding of images with feedback. IEEE Journal on Selected Areas in
Information Theory 1, 1 (2020), 178-193.

Adam Langley, Alistair Riddoch, Alyssa Wilk, Antonio Vicente, Charles Krasic,
Dan Zhang, Fan Yang, Fedor Kouranov, Ian Swett, Janardhan Iyengar, et al. 2017.
The quic transport protocol: Design and internet-scale deployment. In Proceedings
of the conference of the ACM special interest group on data communication. 183-196.
Insoo Lee, Seyeon Kim, Sandesh Sathyanarayana, Kyungmin Bin, Song Chong,
Kyunghan Lee, Dirk Grunwald, and Sangtae Ha. 2022. R-fec: Rl-based fec
adjustment for better qoe in webrtc. In Proceedings of the 30th ACM International
Conference on Multimedia. 2948-2956.

[31] Jinsung Lee, Sungyong Lee, Jongyun Lee, Sandesh Dhawaskar Sathyanarayana,

[32]

[33]

[35

[36

Hyoyoung Lim, Jihoon Lee, Xiaoging Zhu, Sangeeta Ramakrishnan, Dirk
Grunwald, Kyunghan Lee, and Sangtae Ha. 2020. PERCEIVE: deep learning-based
cellular uplink prediction using real-time scheduling patterns. In Proceedings of
the 18th International Conference on Mobile Systems, Applications, and Services
(Toronto, Ontario, Canada) (MobiSys "20). Association for Computing Machinery,
New York, NY, USA, 377-390. https://doi.org/10.1145/3386901.3388911

Tong Li, Kai Zheng, Ke Xu, Rahul Arvind Jadhav, Tao Xiong, Keith Winstein,
and Kun Tan. 2020. Tack: Improving wireless transport performance by
taming acknowledgments. In Proceedings of the Annual conference of the ACM
Special Interest Group on Data Communication on the applications, technologies,
architectures, and protocols for computer communication. 15-30.

Robin Marx, Joris Herbots, Wim Lamotte, and Peter Quax. 2020. Same standards,
different decisions: A study of QUIC and HTTP/3 implementation diversity. In
Proceedings of the Workshop on the Evolution, Performance, and Interoperability
of QUIC. 14-20.

Zili Meng, Nirav Atre, Mingwei Xu, Justine Sherry, and Maria Apostolaki.
2024. Confucius: Achieving Consistent Low Latency with Practical Queue
Management for Real-Time Communications. arXiv:2310.18030 [cs.NI]
https://arxiv.org/abs/2310.18030

Zili Meng, Yaning Guo, Chen Sun, Bo Wang, Justine Sherry, Hongqiang Harry
Liu, and Mingwei Xu. 2022. Achieving consistent low latency for wireless
real-time communications with the shortest control loop. In Proceedings of the
ACM SIGCOMM 2022 Conference. 193-206.

Zili Meng, Xiao Kong, Jing Chen, Bo Wang, Mingwei Xu, Rui Han, Honghao Liu,
Venkat Arun, Hongxin Hu, and Xue Wei. 2024. Hairpin: Rethinking packet loss
recovery in edge-based interactive video streaming. In 21st USENIX Symposium

1195

[37

(38]

[39

[40

[41

[42

[43

'S
&

[45

[46

[47

(48

N
o)

[50

[51

o
5,

[53

(54

[55

[56

[57

[58

Xiangjie Huang et al.

on Networked Systems Design and Implementation (NSDI 24). 907-926.

Zili Meng, Tingfeng Wang, Yixin Shen, Bo Wang, Mingwei Xu, Rui Han, Honghao
Liu, Venkat Arun, Hongxin Hu, and Xue Wei. 2023. Enabling high quality {Real-
Time} communications with adaptive {Frame-Rate }. In 20th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 23). 1429-1450.

Loren Merritt and Rahul Vanam. 2007. Improved Rate Control and Motion
Estimation for H.264 Encoder. In 2007 IEEE International Conference on Image
Processing, Vol. 5.V - 309-V - 312. https://doi.org/10.1109/ICIP.2007.4379827
Ravi Netravali, Anirudh Sivaraman, Somak Das, Ameesh Goyal, Keith Win-
stein, James Mickens, and Hari Balakrishnan. 2015. Mahimahi: Accurate
Record-and-Replay for HTTP. In 2015 USENIX Annual Technical Conference
(USENIX ATC 15). USENIX Association, Santa Clara, CA, 417-429. https:
//www.usenix.org/conference/atc15/technical-session/presentation/netravali
Nvidia. 2024. NVENC Video Encoder API Programming Guide - NVIDIA Docs.
https://docs.nvidia.com/video-technologies/video-codec-sdk/12.1/nvenc-video-
encoder-api-prog-guide/index.html

Colin Perkins, Orion Hodson, and Vicky Hardman. 1998. A survey of packet loss
recovery techniques for streaming audio. IEEE network 12, 5 (1998), 40-48.

Peter Holslin. 2024. The Best Internet for VR Gaming, Streaming, and More.
https://www.highspeedinternet.com/resources/best-internet-for-vr. Accessed:
2024-09-12.

Yi Qiao, Han Zhang, and Jilong Wang. 2024. NetFEC: In-network FEC En-
coding Acceleration for Latency-sensitive Multimedia Applications. In IEEE
INFOCOM 2024 - IEEE Conference on Computer Communications. 2348-2357.
https://doi.org/10.1109/INFOCOM52122.2024.10621183

Reza Rassool. 2017. VMAF reproducibility: Validating a perceptual practical video
quality metric. In 2017 IEEE international symposium on broadband multimedia
systems and broadcasting (BMSB). IEEE, 1-2.

Devdeep Ray, Connor Smith, Teng Wei, David Chu, and Srinivasan Seshan.
2022. SQP: Congestion Control for Low-Latency Interactive Video Streaming.
arXiv:2207.11857 [cs.NI] https://arxiv.org/abs/2207.11857

Michael Rudow, Francis Y Yan, Abhishek Kumar, Ganesh Ananthanarayanan,
Martin Ellis, and KV Rashmi. 2023. Tambur: Efficient loss recovery for videocon-
ferencing via streaming codes. In 20th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 23). 953-971.

Sambit Sahu, Philippe Nain, Christophe Diot, Victor Firoiu, and Don Towsley.
2000. On achievable service differentiation with token bucket marking for TCP.
ACM SIGMETRICS Performance Evaluation Review 28, 1 (2000), 23-33.

Thomas Schier]l, Thomas Stockhammer, and Thomas Wiegand. 2007. Mobile
video transmission using scalable video coding. IEEE transactions on circuits and
systems for video technology 17, 9 (2007), 1204-1217.

Heiko Schwarz, Detlev Marpe, and Thomas Wiegand. 2007. Overview of the
scalable video coding extension of the H. 264/AVC standard. IEEE Transactions
on circuits and systems for video technology 17, 9 (2007), 1103-1120.
Vibhaalakshmi Sivaraman, Pantea Karimi, Vedantha Venkatapathy, Mehrdad
Khani, Sadjad Fouladi, Mohammad Alizadeh, Frédo Durand, and Vivienne
Sze. 2024. Gemino: Practical and Robust Neural Compression for Video
Conferencing. In 21st USENIX Symposium on Networked Systems Design and
Implementation (NSDI 24). USENIX Association, Santa Clara, CA, 569-590.
https://www.usenix.org/conference/nsdi24/presentation/sivaraman

Bruce Spang, Shravya Kunamalla, Renata Teixeira, Te-Yuan Huang, Grenville
Armitage, Ramesh Johari, and Nick McKeown. 2023. Sammy: smoothing video
traffic to be a friendly internet neighbor. In Proceedings of the ACM SIGCOMM
2023 Conference. 754-768.

Pugqi Perry Tang and T-YC Tai. 1999. Network traffic characterization using token
bucket model. In IEEE INFOCOM’99. Conference on Computer Communications.
Proceedings. Eighteenth Annual Joint Conference of the IEEE Computer and Com-
munications Societies. The Future is Now (Cat. No. 99CH36320), Vol. 1. IEEE, 51-62.
Shibo Wang, Shusen Yang, Xiao Kong, Chenglei Wu, Longwei Jiang, Chenren Xu,
Cong Zhao, Xuesong Yang, Jianjun Xiao, Xin Liu, et al. 2024. Pudica: Toward {Near-
Zero} Queuing Delay in Congestion Control for Cloud Gaming. In 21st USENIX
Symposium on Networked Systems Design and Implementation (NSDI 24). 113-129.
Yi Wang, Xiaogiang Guo, Feng Ye, Aidong Men, and Bo Yang. 2013. A novel
temporal error concealment framework in H. 264/AVC. In 2013 IEEE International
Conference on Multimedia and Expo (ICME). IEEE, 1-6.

Yilin Wang, Sasi Inguva, and Balu Adsumilli. 2019. YouTube UGC Dataset for Video
Compression Research. In 2019 IEEE 21st International Workshop on Multimedia
Signal Processing (MMSP). 1-5. https://doi.org/10.1109/MMSP.2019.8901772
Wikipedia contributors. 2023. Constant bitrate — Wikipedia, The Free Ency-
clopedia. https://en.wikipedia.org/wiki/Constant_bitrate [Online; accessed
19-Sep-2024].

Keith Winstein, Anirudh Sivaraman, and Hari Balakrishnan. 2013. Sto-
chastic Forecasts Achieve High Throughput and Low Delay over Cellular
Networks. In 10th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 13). USENIX Association, Lombard, IL, 459-471. https:
//www.usenix.org/conference/nsdil3/technical-sessions/presentation/winstein
x265 Project. 2018. x265 Command Line Options. https://x265.readthedocs.io
/en/master/cli.html.

https://www.usenix.org/conference/nsdi22/presentation/dasari
https://www.usenix.org/conference/nsdi22/presentation/dasari
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/fouladi
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/fouladi
https://chromium.googlesource.com/external/webrtc/+/master/modules/pacing/g3doc/index.md
https://chromium.googlesource.com/external/webrtc/+/master/modules/pacing/g3doc/index.md
https://handbrake.fr/docs/en/latest/technical/video-cq-vs-abr.html
https://hypeauditor.com/top-youtube/
https://hypeauditor.com/top-youtube/
http://hevc.info/HM-doc/
http://hevc.info/HM-doc/
https://doi.org/10.1145/3199524.3199534
https://doi.org/10.1145/3199524.3199534
https://doi.org/10.1109/ICNP61940.2024.10858541
https://doi.org/10.1109/ICNP61940.2024.10858541
https://doi.org/10.1145/3386901.3388911
https://arxiv.org/abs/2310.18030
https://arxiv.org/abs/2310.18030
https://arxiv.org/abs/2310.18030
https://doi.org/10.1109/ICIP.2007.4379827
https://www.usenix.org/conference/atc15/technical-session/presentation/netravali
https://www.usenix.org/conference/atc15/technical-session/presentation/netravali
https://docs.nvidia.com/video-technologies/video-codec-sdk/12.1/nvenc-video-encoder-api-prog-guide/index.html
https://docs.nvidia.com/video-technologies/video-codec-sdk/12.1/nvenc-video-encoder-api-prog-guide/index.html
https://www.highspeedinternet.com/resources/best-internet-for-vr
https://www.highspeedinternet.com/resources/best-internet-for-vr
https://doi.org/10.1109/INFOCOM52122.2024.10621183
https://doi.org/10.1109/INFOCOM52122.2024.10621183
https://arxiv.org/abs/2207.11857
https://arxiv.org/abs/2207.11857
https://www.usenix.org/conference/nsdi24/presentation/sivaraman
https://www.usenix.org/conference/nsdi24/presentation/sivaraman
https://doi.org/10.1109/MMSP.2019.8901772
https://en.wikipedia.org/wiki/Constant_bitrate
https://www.usenix.org/conference/nsdi13/technical-sessions/presentation/winstein
https://www.usenix.org/conference/nsdi13/technical-sessions/presentation/winstein
https://x265.readthedocs.io/en/master/cli.html
https://x265.readthedocs.io/en/master/cli.html

ACE SIGCOMM °25, September 8-11, 2025, Coimbra, Portugal

[59] Xiaokun Xu and Mark Claypool. 2022. Measurement of cloud-based game
streaming system response to competing TCP cubic or TCP BBR flows. In
Proceedings of the 22nd ACM Internet Measurement Conference. 305-316.

[60] Zicheng Zhang, Hao Chen, Xun Cao, and Zhan Ma. 2023. Anableps: Adapting

bitrate for real-time communication using VBR-encoded video. In 2023 IEEE
International Conference on Multimedia and Expo (ICME). IEEE, 1685-1690.

[61] AnfuZhou, Huanhuan Zhang, Guangyuan Su, Leilei Wu, Ruoxuan Ma, Zhen Meng,
Xinyu Zhang, Xiufeng Xie, Huadong Ma, and Xiaojiang Chen. 2019. Learning to
coordinate video codec with transport protocol for mobile video telephony. In The
25th Annual International Conference on Mobile Computing and Networking. 1-16.

[62] Jie Zhou, Bo Yan, and Hamid Gharavi. 2010. Efficient motion vector interpolation
for error concealment of H. 264/AVC. IEEE Transactions on Broadcasting 57, 1
(2010), 75-80.

[63] Yuhan Zhou, Tingfeng Wang, Liying Wang, Nian Wen, Rui Han, Jing Wang, Chen-
glei W, Jiafeng Chen, Longwei Jiang, Shibo Wang, Honghao Liu, and Chenren Xu.
2024. AUGUR: Practical Mobile Multipath Transport Service for Low Tail Latency
in Real-Time Streaming. In 21st USENIX Symposium on Networked Systems Design
and Implementation (NSDI 24). USENIX Association, Santa Clara, CA, 1901-1916.

https://www.usenix.org/conference/nsdi24/presentation/zhou-yuhan

1196

https://www.usenix.org/conference/nsdi24/presentation/zhou-yuhan

SIGCOMM °25, September 8-11, 2025, Coimbra, Portugal

A Encoding Complexity Parameters

In this section, we share empirical insights into selecting encoding
complexity parameters across different codecs.

A.1 Why Choose the x264 Encoder?

We selected the x264 encoder for its optimized performance and
suitability for real-time encoding. As a widely adopted industry stan-
dard, x264 supports a broad range of encoding latencies—from 5
ms to 200 ms per frame in our tests with different presets—offering
flexibility to balance encoding and transmission time. Importantly,
X264 is not the only encoder compatible with our design: other main-
stream codecs such as HEVC and AV1 share a similar architectural
framework to H.264.

A.2 Mainstream Codecs Overview

Mainstream codecs include Google’s VPX series and JVET s H.26x
series. These codecs share a common framework encompassing pre-
diction, transformation, and quantization: they leverage intra and
inter-frame prediction to reduce temporal redundancy, transform
coding like DCT to reduce spatial redundancy, and apply quanti-
zation for lossy compression. Additionally, they provide extensive
parameters to control encoding complexity and quality.

A.3 Parameters for HEVC (H.265)

HEVC, also known as H.265, was developed by JVET as the suc-
cessor to H.264, offering superior compression efficiency for high-
resolution content. The reference software, HM [22], only supports
standard-compliant coding tools that actually operate at the highest
complexity level of HEVC. To enable adaptive complexity control
for HEVC, a viable approach is to use x265— a widely adopted alter-
native encoder. Parameter selection for x265 is largely analogous
to its predecessor x264: operators can easily adjust complexity via
presets. Notably, our experience tuning x265 shows that presets
beyond medium yield minimal gains in encoding complexity while
incurring significant increases in encoding time/overhead. Thus, we
recommend controlling complexity via partition levels, specifically
using the min-cu-size parameter [58].

A.4 VP9and AV1

VP9 and AV1—developed by Google—are widely used in web stream-
ing platforms such as YouTube) due to their open-source, royalty-
free nature. Both codecs provide adjustable parameters via a speed
control, which influences encoding complexity and output qual-
ity: higher speed settings reduce encoding time by simplifying pro-
cesses like motion estimation and intra prediction. However, unlike
x264/x265, the Google-developed encoders for these codecs do not
allow frame size to be significantly adjusted via speed alone. Thus,
we also suggest the adjustment of block division parameters. For
example, AV1 supports superblock size configurations (from 128x128
to 64X64) in its sequence header, which can be tuned to regulate
complexity.

B Overhead Experiment Results
B.1 Runtime Overhead vs. Encoding Complexity

Beyond measuring encoding/decoding time across different encod-
ing complexities (Fig. 5), we also evaluate runtime CPU and mem-
ory overhead. For CPU overhead (Fig. 27), we observe that as com-
plexity increases, the sender’s overhead rises significantly while

1197

200

Xiangjie Huang et al.

180
160
140

CPU (%)

120
100

80

—— Sender
—— Receiver

p=1
(Default)

p=2 p=3

Figure 27: Runtime CPU Overhead vs. Encoding Complexity

iy
v
o

Memory (MB)
-

o v N
o O o

w
o

0=
p=1
(Default)

p=1
(Default)

p=2 p=3

(b) Receiver

Figure 28: Runtime Memory vs. Encoding Complexity

[WebRTC* EEMIACE-N EEEIACE-C EEEIACE
150

120

90

CPU (%)

60

30

2mbps
(a) CPU Usage vs. Bitrate

6mbps 10mbps

N WebRTC* EEEACE-N EEEACE-C EEEACE

125

100

75

50

Memory (MB)

25

2mbps
(a) Memory vs. Bitrate

6mbps

10mbps

[WebRTC* EEEACE-N EEEACE-C EEEIACE

150

120

90

CPU (%)

60

30

15fps
(b) CPU Usage vs. Frame Rate

Figure 29: Runtime CPU Overhead on Receiver

30fps 60fps

[WebRTC* EEMIACE-N [ENIACE-C EEEIACE
125

100

75

50

Memory (MB)

25

15fps
(b) Memory vs. Frame Rate

30fps 60fps

Figure 30: Runtime Memory Overhead on Sender

ACE

Algorithm 1: Logic for Adaptive Bucket Size

Input: Historical bucket
size, predicted queue size, a, application limit, threshold
Output: Updated bucket size
1 Initialization: Set initial bucket size B;
2 Procedure Increase(B)

3 if Historical information is unavailable then

4 /* Additive Increase */;

5 B« B+A;

6 end

7 else

8 /* Fast Recovery */;

9 Bhistorical < bucket size when buffer was empty;
10 Brecent < queue size just before packet loss;
1 B < min (Bpjstorical® * Brecent)5
12 end

13 /* Application Limit */;

14 if Bucket size exceeds previous frame’s size then
15 B« B;

16 /* No change */

17 end

18 Procedure Decrease(B)

19 if Predicted queue size exceeds threshold then

20 /* Threshold-Breach-Triggered Prevention */;
21 B« B— (Predicted Queue Size — Threshold);
22 end

23 if Packet loss is detected then

24 /* Packet-Loss-Triggered Response */;

25 B« B/2;

26 end

1198

SIGCOMM °25, September 8-11, 2025, Coimbra, Portugal

S WebRTC* ESSIACE-N ESSIACE-C EEEIACE B WebRTCH ESSIACE-N ESSIACE-C EEEIACE
160 160
o 120 o 120
= =
> >
s 80 5 80
£ £
[[
= 40 = 40
0
2mbps 6mbps 10mbps 15fps 30fps 60fps
(a) Memory vs. Bitrate (b) Memory vs. Frame Rate

Figure 31: Runtime Memory Overhead on Receiver

the receiver’s remains largely unchanged, mirroring the trends in
encoding/decoding time. For memory overhead (Fig. 28(b)), both
sender and receiver exhibit minimal increases with rising complexity,
though the sender’s growth is slightly greater, further confirming
that the receiver’s overhead remains relatively stable across com-
plexities.

B.2 Runtime Overhead Evaluation

In addition to measuring CPU overhead on the sender (Fig. 22), we
also evaluate it on the receiver (Fig. 29). Despite ACE dynamically ad-
justing encoding complexity, the results indicate no increase in CPU
overhead on the receiver compared to the original WebRTC. Notably,
CPU overhead on both sender and receiver is heavily influenced by
encoding bitrates and frame rates. Similarly, memory overhead mea-
surements (Fig. s 30 and 31) show that ACE introduces no additional
impact on either side.

C Pseudocode of ACE-N

Algorithm 1 shows how ACE-N’s bucket size adaptation logic works
according to different conditions.

	Abstract
	1 Introduction
	2 Background
	3 Motivation and Challenges
	3.1 Motivation: Controlling Pacing Latency.
	3.2 Why Do Existing Solutions Fall Short?
	3.3 Design Challenges of ACE

	4 Design
	4.1 ACE-N: Pacing Controller
	4.2 ACE-C: Encoding Controller

	5 Implementation
	5.1 x264 implementation
	5.2 WebRTC implementation

	6 Evaluation
	6.1 Main Experiment Setup
	6.2 Overall Performance
	6.3 Other QoS Metric
	6.4 Ablation Study
	6.5 Parameter Sensitivity
	6.6 Microbenchmarks
	6.7 ACE Deep Dive
	6.8 Real-World Experiment
	6.9 Production Application Experiment

	7 Discussions
	8 Related work
	9 Conclusion
	References
	A Encoding Complexity Parameters
	A.1 Why Choose the x264 Encoder?
	A.2 Mainstream Codecs Overview
	A.3 Parameters for HEVC (H.265)
	A.4 VP9 and AV1

	B Overhead Experiment Results
	B.1 Runtime Overhead vs. Encoding Complexity
	B.2 Runtime Overhead Evaluation

	C Pseudocode of ACE-N

