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ABSTRACT

Real-time multimedia streaming is one of the most important applications in the Inter-
net, and has a stringent requirement for latency. Existing solutions cannot fully satisty the
requirements of real-time multimedia streaming applications in many parts of the Inter-
net architecture. Among them, latency fluctuation is the most challenging problem in the
latency optimization. This dissertation focuses on the latency issue of real-time multime-
dia streaming and systematically optimizes the latency fluctuation thoroughly from many
aspects of the Internet architecture. The main contributions of this dissertation are as fol-
lows:

1. To address the issue of heterogeneous latency contributors of real-time multimedia
transport, this dissertation proposes the architecture of real-time multimedia transport. It
identifies that the heterogeneous latency contributors of real-time multimedia transport are
mainly caused by the control path and data path of the system. This dissertation further an-
alyzes how control path and data path affect the latency of real-time multimedia transport,
and optimizes each part respectively.

2. To address the latency fluctuations on the control path, this dissertation separates the
control path into feedback and decision-making, and proposes Zhuge and Metis, respec-
tively, to control the performance fluctuation of these two parts. Zhuge identifies that the
inflation of feedback delay prevents the sender from adjusting the sending rate of multime-
dia in time. Zhuge proposes a feedback mechanism that separates the control path and data
path to improve performance. Metis notes that the increasing complexity of the decision
algorithm may cause delayed or erroneous decisions, which leads to performance fluctua-
tions. Metis converts complex algorithms into low-latency and interpretable decision trees
to mitigate performance fluctuations. Experimental results based on real-world traffic show
that up to 75% latency fluctuations can therefore be mitigated.

3. To address the latency fluctuations on the data path, this dissertation proposes AFR,
Hairpin and Confucius, respectively, to control the latency fluctuations of the applica-
tion layer, transport layer and network layer. AFR addresses the issue of application-level
delay fluctuations caused by the delay of the application decoder. AFR proposes an adap-
tive frame-rate management mechanism to reduce the delay fluctuations of the application
layer. Hairpin addresses the issue that the existing loss recovery schemes cannot meet the
requirements of real-time multimedia streaming applications due to the stringent require-
ments of latency fluctuations. Hairpin proposes a joint loss recovery scheme that combines
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retransmission and redundant recovery to control the delay fluctuations caused by packet
loss. Confucius addresses the issue that the delay fluctuations caused by unknown compet-
ing flows and interference on the network layer cannot be controlled by the existing fairness
mechanisms. Confucius proposes a progressive active queue management mechanism to
control the delay fluctuations on the network layer while ensuring fairness. Experimental
results show that AFR, Hairpin and Confucius can reduce the latency fluctuations of real-
time multimedia streaming by 13-67% in different scenarios.
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Introduction

1.1 RESEARCH BACKGROUND AND SIGNIFICANCE

1.1.1 REAL-TIME MULTIMEDIA TRANSMISSION

The Internet has become an indispensable part of our lives. Whether it is for work, study,
socializing, or entertainment, our daily activities depend on the Internet. In particular,

over the past two to three decades, with the continuous upgrading of network technology,



cellular networks have gradually been deployed from 2G to 5G, and wireless local area net-
works have gradually been deployed from WiFi to WiFi6, greatly enhancing the speed and
bandwidth of the Internet. This has led to an increasingly diverse range of Internet appli-
cations, extending from traditional text and image transmission to multimedia streaming.
Nowadays, it is difficult for people, from urban to rural areas, to imagine life without the
Internet. According to statistics, 59.7% of the world’s population were long-term Internet
users in 2022, with an average monthly data usage of 49.8GB and an average Internet speed
of 75.4Mbps[35].

Multimedia streaming applications, which include audio, video, images, text, and var-
ious other multimedia data, are an essential component of the Internet. As early as 2016,
multimedia traffic accounted for half of the total Internet traffic. By 2022, multimedia
traffic had reached 82% of the total Internet traffic [35]. Especially since the outbreak of
the COVID-19 pandemic, the real-time nature of multimedia streaming has attracted in-
creasing attention. Tencent Meetings and Zoom software have been extensively applied in
various scenarios, such as teaching, conferencing, and remote work. Subsequently, emerg-
ing real-time multimedia streaming applications have also garnered widespread attention.
Real-time multimedia streaming has expanded into cloud gaming, virtual reality, remote
healthcare, and many other areas, extending from traditional person-to-person calls to
human-machine interaction control and beyond. Some common scenarios include holo-
graphic video conferencing, cloud gaming, virtual reality, remote healthcare, and industrial
control, among others.

In summary, Figure 1.1 illustrates the overall structure of real-time multimedia stream-

ing. As multimedia streaming is inherently a network application, we divide it vertically
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Figure 1.1: Overall structure of real-time multimedia streaming

into application, transport, and network layers from the perspective of the Internet archi-
tecture, and horizontally into servers, routers, and clients.

Real-time multimedia transmission has received widespread attention in academia in
recent years. High-level international conferences in the fields of networking, such as SIG-
COMM and NSD], and multimedia, such as MM and MMSys, have published numerous
papers on optimization in this direction. In the industrial sector, numerous open-source
and closed-source frameworks have emerged. Examples include Google’s WebRTC, Al-
ibaba’s AliIRTC, Agora’s AgoraRTC, and Tencent’s TRTC.

1.1.2 PERFORMANCE OF REAL-TIME MULTIMEDIA STREAMING: LATENCY FLUCTUATION

Latency is the most crucial metric for real-time multimedia transmission as it directly cor-
relates with user experience. Real-time multimedia transmission applications not only re-
quire low latency but also demand stability in latency. For example, assume that most of

the time, wireless users can experience satisfactory round-trip delays of less than 1ooms.



However, if the 99th percentile of network round-trip delays exceeds 400ms, the network
latency will far surpass the application’s latency budget [172, 199]. In this case, one out
of every 100 packets may experience high latency, severely affecting the user experience.
Therefore, reducing tail latency and stabilizing latency fluctuations are of paramount im-

portance for real-time multimedia transmission applications.

STRICT DEADLINE REQUIREMENTS

As interactive streaming applications continuously interact with humans, controlling end-
to-end latency is essential for achieving a satisfactory user experience. For instance, video
conferencing aims for an end-to-end latency of less than r3oms [150, 188], while cloud
gaming strives for a latency of less than 96ms [151]". In practice, server-side and client-
side processing typically require approximately 30 ms [45, 123, 239, 259]. Therefore, the
end-to-end round-trip delay of the network should not exceed s0-150ms (depending on the
application), which constitutes the application’s deadline [27, 241].

We conducted a measurement on a typical cloud gaming service (Tencent START Cloud
Gaming). During the measurement, the round-trip interaction latency of each video frame
was categorized into several intervals. This allowed us to study users’ tolerance for different
latency: when users experience higher interaction latency and terminate their sessions due
to an inability to tolerate such high latency, the frames with high interaction latency will
be very close to the end of the user’s session. Therefore, this measurement analyzes users’

reactions to latency by examining the distribution of frames with difterent latency. Figure

"This is based on the statistics of most users. Different users and applications may have varying sensitiv-
ity to latency. For example, for gaming applications, 3D games have stricter latency requirements than 2D

games [143].
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Figure 1.2: Distribution of frame locations for Figure 1.3: Distribution of session-level and
different latencies frame-level packet loss rates

1.2 shows the distribution of frame positions in the stream for each category, where the x-
axis represents the position of the frame in a session, normalized by the total length of the
session. For example, a position of 99% indicates that the frame appears very close to the
end of the session. If a line is horizontal between 0% and 100% (e.g., the solid lines in the
figure), it indicates that these frames appear uniformly throughout the session. Conversely,
the three dashed lines in the figure indicate that these frames are more likely to appear at
the end of the session. Compared to the uniform distribution of low-latency frames (solid
lines), frames with latency greater than 1ooms (dashed lines) have a higher probability of
appearing at the end of the stream. We infer that this is because users tend to terminate
sessions when experiencing higher latency. This also suggests that as long as packets can
be transmitted within the deadline (approximately 1ooms in this case), faster transmission
rates will not significantly impact the user experience.

Therefore, the deadline miss rate (DMR ) should be minimized to achieve seamless user
experience in real-time multimedia transmission. For example, in the cloud gaming ser-

vice, the interaction latency deadline is approximately rooms. For real-time multimedia
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Figure 1.4: This paper focuses more on the optimization of extreme tail latency control for real-time
multimedia transmission

Table 1.1: Recent relevant measurement results on wireless network latency

Tail latency of 5G hops has not improved much

Narayanan etal. (2020) [201] compared to 4G, and can be as high as 20om:s.

The average WiFi hop latency of 802.11ax (also known

Daldou etal. (2020) [91] as WiFi 6) is greater than 3oms with 30 interferers.

Up to a quarter of 802.11a wireless access points
Bhartia et al. (2017) [62] p d Taw p
suffer from >1ooms latency on the last hop.

Ghoshal et al. (2022) [124] For median users, §G millimeter wave does not improve

maximum latency much compared to 4G LTE.

transmission, this deadline miss rate needs to be reduced to an extremely low level. For in-
stance, even if the DMR is 1073, it would result in a decrease in user experience for one
out of every 10oo frames. Note that when the frame rate is 6ofps, this interval is a mere
17 seconds. Such an occurrence every tens of seconds would significantly degrade the user
experience [27].

This differs from the focus of existing work. Figure 1.4 provides a perspective on latency
distribution (complementary cumulative distribution function), with traditional work
generally focusing on the more common soth percentile latency (and sometimes the 9oth
percentile). However, 107> implies that we need to focus on the 99.9% percentile latency,

which presents a new set of requirements.
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Figure 1.5: Round-trip latency, frame delay, and frame rate distribution on WiFi, 4G, and wired net-
works

UNSATISFACTORY PERFORMANCE

However, the current network performance, especially wireless access network perfor-
mance, is unsatisfactory at the tail end. Several recent observations support this view. First,
existing literature reveals that even when using advanced access technologies, wireless net-
works exhibit long tail latencies. We summarize recent measurement results in Table 1.1.
Even with WiFi 6 (802.11ax) or §G (millimeter wave), wireless networks still perform
poorly. This is consistent with feedback from some content providers. For example, the
technical director of a large telecommunications service cloud provider said, “We recom-
mend that customers use wired networks to access cloud desktops.” A cloud gaming provider’s
guide states, “If you encounter network problems, please plug your computer into a wired
Ethernet connection if possible” [29]. Latency-sensitive applications find that users prefer
inconvenient but stable wired networks due to the high tail latency of wireless networks.
Additionally, our measurements reveal a decline in wireless network tail performance.
We measured an online real-time communication service that serves millions of users daily
and showed the network conditions and application performance of wired, WiFi, and 4G

access networks. The data comes from an online real-time communication service that serves



millions of users daily. Frame delay refers to the latency measured at the application layer. As
shown in Figure 1.5, most of the time, wireless networks can provide satisfactory round-
trip latencies (less than 1ooms). However, the 99th percentile round-trip latency for wire-
less networks exceeds 400ms, far surpassing the application’s latency budget[172, 199]. In
this case, one out of every 100 packets may experience high latency, severely affecting the
user experience. Application layer metrics show a similar pattern: wireless users encounter
twice the video latency (long frame delays) as Ethernet users. Moreover, the frame rate drop

(video stutter) ratio for wireless networks is ten times that of wired networks.

1.2 RESEARCH CONTENT

This dissertation commences with an examination of internet architecture, conducting a
comprehensive analysis of the sources of latency fluctuations in the new generation of mul-
timedia transmission. The study encompasses the complete process of identifying, defin-
ing, and resolving the issue. Initially, the research focuses on the latency fluctuations in the
new generation of multimedia transmission, conducting a thorough analysis and identify-
ing the impact of multiple links in the internet architecture on latency fluctuations. Subse-
quently, the study optimizes the causes of latency fluctuations in these links, delving into
an in-depth investigation from the application layer to the network layer of the protocol
stack.

The following sections provide a brief introduction to the main content of each part of

the study.



1.2.1 REVIEwW OF RELATED RESEARCH

Real-time multimedia transmission applications are vital components of the internet,
having been researched for decades. Solutions abound from academia to industry, both
domestically and internationally. Since the onset of the pandemic, the usage of real-time
multimedia transmission applications has surged, giving rise to numerous cutting-edge re-
search projects. However, there is currently no comprehensive review of the latest research
advancements in these newer studies. This dissertation organizes and analyzes these new
works according to the various levels of internet architecture while summarizing existing
research. The study classifies existing work based on control and data paths, highlighting

some shortcomings in current research. The detailed work is presented in Chapter 2.

1.2.2 REAL-TIME MULTIMEDIA TRANSMISSION ARCHITECTURE

Before analyzing the latency issues in real-time multimedia transmission, it is essential
to understand the sources of latency. This dissertation systematically proposes possible
sources of latency fluctuations in real-time multimedia transmission, highlighting the im-
pact of control path and data path latency on overall end-to-end latency. The study first an-
alyzes the lifecycle of a video frame from rendering to playback, breaking down each com-
ponent and expressing them formally. Additionally, the possible interactions between dif-
ferent components are examined. Through a comprehensive analysis and modeling of the
real-time multimedia transmission architecture, the study can optimize each component
individually.

In this context, the control path refers to the passage of control information, specifically

the control loop’s response to performance fluctuations in the network. If the endpoint



responds too late to network fluctuations, latency fluctuations may result from bandwidth
mismatches. The data path refers to the route a data packet itself takes, encompassing the
application, transport, and network layers. If latency fluctuations occur at any stage, the
overall end-to-end latency of the data packet will fluctuate accordingly. The detailed work is

presented in Chapter 3.

1.2.3 CONTROL PATH LATENCY

In the analysis and optimization of control path latency, this dissertation focuses on the
feedback and decision-making components. The latency fluctuations and reliability of
these two components directly affect the end-to-end latency of data packets.

Feedback refers to the process by which the signal of "fluctuation occurrence” in the
network reaches the sender. When the network’s available bandwidth changes at a specific
moment, the sender cannot instantly understand this change — the transmission of this
message takes time. For example, in the TCP protocol, messages are usually transmitted
through changes in ACK packet delay or delivery rate. In this case, the feedback time re-
quires at least one round-trip delay. The detailed work is presented in Chapter 4.

Decision-making refers to the process from the sender’s initial receipt of the network
fluctuation signal to the sender’s response. If the sender only observes one or two signals
of network fluctuations, it may not take them seriously — network noise is substantial, and
changes in one or two packets may be mistaken for noise. For example, many congestion
control algorithms only make decisions after observing a specific network change for a con-
tinuous RTT or even longer. In this case, the timeliness and reliability of decisions are cru-

cial. The detailed work is presented in Chapter s.
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1.2.4 Data PaTH LATENCY

In the analysis and optimization of data path latency, this dissertation primarily focuses on
the application, transport, and network layers, which are the upper layers in the network
architecture. The latency fluctuations in each of these layers directly affect the end-to-end
latency of data packets.

Application layer latency generally includes data processing and queuing delays at the
application layer. For example, at the receiving end, once the data has been sequenced by
the transport layer, if the upper-layer application cannot promptly process and retrieve
the data, it must queue at the application layer, waiting for processing. In this situation, if
the application’s end-to-end latency requirements are stringent (e.g., real-time multimedia
transmission), this queuing will result in increased end-to-end latency. This issue becomes
increasingly severe as the resolution and frame rate requirements of real-time multimedia
transmission increase. Consequently, active management of application layer latency is
necessary. The detailed work is presented in Chapter 6.

Transport layer latency is primarily caused by packet loss recovery. A data packet may be
lost during transmission, whether due to queue overflow or wireless network interference,
resulting in the packet being damaged and unable to pass verification to reach the receiver.
In this case, the sender must promptly identify the packet loss event and retransmit the lost
data packet. However, both the identification of packet loss (e.g., out-of-order packets and
packet loss may appear similar) and the process of retransmitting lost data packets generate
additional latency. Additionally, due to the "best-effort” nature of internet design, packet

loss is often challenging to avoid. As real-time multimedia transmission latency require-
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ments become increasingly stringent, reducing transport layer latency is also necessary. The
detailed work is presented in Chapter 7.

Network layer latency is generally caused by mismatches in queue rates and bandwidth.
In network queues, multiple users’ traffic shares (or competes for) the same resource —
bandwidth. The traffic characteristics of other users are often difficult for the current user
to predict in advance. For example, if other users competing with a real-time multimedia
transmission stream suddenly increase their transmission rate, the available bandwidth for
the real-time multimedia transmission traffic will typically decrease. Of course, conges-
tion control algorithms will converge to a new steady state. However, as attention to tail
latency increases, even the fluctuations in this convergence process can lead to a decline in
end-to-end latency and corresponding user experience. The detailed work is presented in

Chapter 8.

1.3 MAIN CONTRIBUTIONS

In conjunction with the overview of the overall research content in the previous section,

this dissertation’s main contributions are as follows:

1. IN THE FEEDBACK LOOP OF THE CONTROL PATH, A SOLUTION IS PROPOSED TO
SHORTEN THE CONGESTION SIGNAL OF THE FEEDBACK LOOP. This chapter provides a
detailed analysis of how end-to-end congestion control and rate control mechanisms in the
current network respond to network fluctuations. Through numerous experiments, it is
demonstrated that when the feedback loop expands, data path latency fluctuations increase

with the expansion of the feedback loop. This is particularly evident in long-distance trans-
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mission over wide-area networks (e.g., video conferencing). To address this phenomenon,
this chapter proposes an early feedback solution to shorten the congestion signal of the
feedback loop by decoupling the feedback loop from the data path. Specifically, this work
classifies real-time multimedia transmission protocols based on their feedback modes into
in-band and out-of-band feedback and optimizes different feedback modes accordingly.
Experiments based on real routers and large-scale simulations show that the proposed early
feedback solution for shortening the congestion signal of the feedback loop eftectively re-

duces end-to-end latency fluctuations, thereby enhancing user experience.

2. IN THE DECISION-MAKING LOOP OF THE CONTROL PATH, A RATE CONTROL DECI-
SION FRAMEWORK IS PROPOSED, CHARACTERIZED BY LOW DECISION LATENCY AND
STABLE RESULTS. This chapter focuses on the analysis of how the complexity of rate con-
trol decision algorithms has increased with the introduction of complex rate control de-
cision algorithms, such as deep learning and integer programming, leading to an increase

in the computational overhead of end-to-end rate control decision algorithms. Through
experiments, it is shown that as decision-making becomes increasingly black-boxed and
time-consuming, these complex algorithms may introduce more performance fluctuations
in end-to-end rate control decisions due to potential decision lag and errors. To address this
phenomenon, this chapter proposes a lightweight, reliable rate control decision transforma-
tion and interpretation framework that simplifies complex rate control decision algorithms
into simpler ones, achieving timely and reliable decision-making. Specifically, this work
converts existing complex rate control decision algorithms based on machine learning and

integer programming into simple decision tree-based rate control decision algorithms. Ex-
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periments and analysis based on existing algorithms show that the proposed lightweight,
reliable rate control decision transformation and interpretation framework effectively re-

duces performance fluctuations, thereby enhancing user experience.

3. IN THE APPLICATION LAYER OF THE DATA PATH, A SOLUTION IS PROPOSED TO RE-
DUCE APPLICATION LAYER QUEUING LATENCY THROUGH ADAPTIVE FRAME RATE AD-
JusTMENT. This chapter primarily analyzes how, with the emergence of next-generation
multimedia applications (e.g., cloud gaming), application demands for multimedia trans-
mission quality have increased, leading to a continuous increase in latency for video codecs
in the application layer. Through large-scale measurements of real applications, it is shown
that when latency fluctuations in the application layer’s video codecs are significant, data
path latency fluctuations also increase with the latency fluctuations in the video codecs.
Since existing application layer designs lack active queue management, this latency is easily
turther amplified. To address this phenomenon, this chapter proposes an adaptive frame
rate adjustment solution that reduces latency fluctuations in video codecs in the application
layer by actively adjusting the frame rate. Specifically, this work is based on a joint anal-
ysis of network conditions and application conditions, employing queueing theory and
stochastic process modeling to develop an active queue management solution for the ap-
plication layer. Experiments for large-scale users demonstrate that the proposed adaptive
frame rate adjustment solution effectively reduces end-to-end latency fluctuations in cloud

gaming applications.
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4. IN THE TRANSPORT LAYER OF THE DATA PATH, A PACKET LOSS RECOVERY MECH-
ANISM FOR REAL-TIME MULTIMEDIA TRANSMISSION IS PROPOSED. This chapter em-
phasizes that as the new generation of multimedia applications becomes less tolerant of
latency fluctuations, existing transport layer packet loss recovery mechanisms can no longer
meet application demands for latency fluctuations. Analysis based on real measurement
data shows that, under existing transport layer packet loss recovery mechanisms and current
network conditions, relying solely on retransmission or redundancy for single packet loss
recovery is almost unattainable. To address this phenomenon, this chapter proposes a joint
packet loss recovery solution that combines existing packet loss recovery mechanisms, par-
ticularly retransmission and redundancy recovery. Specifically, this work employs a Markov
chain to model packet loss and retransmission jointly, developing an optimal strategy for
adding redundancy and determining whether to retransmit. Experiments based on real net-
work datasets show that the proposed joint packet loss recovery solution effectively reduces

end-to-end latency fluctuations while also reducing bandwidth costs.

5. IN THE NETWORK LAYER OF THE DATA PATH, A ROUTER QUEUE MANAGEMENT
SCHEME IS PROPOSED THAT SUPPRESSES MULTI-APPLICATION COMPETITION QUEU-
ING AND STABILIZES PERFORMANCE. This chapter notes that although many solutions
attempt to control latency fluctuations at the endpoint, end-to-end latency fluctuations
caused by sudden multi-application competition queuing in the network layer remain a
serious problem. Regardless of endpoint optimization, the endpoint cannot predict other
users’ sudden competition in the network, so optimization of bottleneck router manage-

ment is still necessary to reduce end-to-end latency fluctuations. Measurements based on
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thousands of websites show that end-to-end latency fluctuations caused by web applica-
tions are a significant issue, especially for next-generation multimedia applications with
high latency fluctuation requirements. To address this phenomenon, this chapter proposes
a novel router queue management scheme that reduces end-to-end latency fluctuations

by differentiating service optimization for bandwidth allocation without relying on end-
point information. Specifically, this work observes the encroachment of different flows on
bottleneck queues to infer the latency sensitivity of different flows, thereby achieving dit-
ferentiated service optimization for various flows. Tests based on real routers and thousands
of websites show that the proposed router queue management scheme effectively reduces
end-to-end latency fluctuations without relying on any endpoint labels or other informa-

tion.

1.4 DisSERTATION RoaDMAP

This dissertation consists of nine chapters, with the overall structure illustrated in Figure

1.6.
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Chapter 1 serves as the introduction, presenting the research background, content, main
contributions, and thesis organization.

Chapter 2 covers related work, introducing the related research involved in this disserta-
tion.

Chapter 3 outlines the existing real-time multimedia transmission architecture analyzed
in this dissertation and examines which components’ latency affects the final user-perceived
latency. In this chapter, it is noted that the latency of the two components in the control
path and the three components in the data path affect the final user-perceived end-to-end
latency.

Chapters 4 to 8 address the two paths and five issues mentioned in the previous chapter.

In the control path, Chapters 4 and 5 study the latency fluctuations caused by the two
components in the control path: Chapter 4 introduces a solution to reduce latency fluctu-
ations by decreasing the feedback loop in response to the end-to-end latency fluctuations
caused by the expansion of the control path feedback latency; Chapter s introduces a solu-
tion to reduce performance fluctuations in end-to-end rate control decisions by simplifying
models in response to the end-to-end performance fluctuations caused by unstable and
time-consuming decision-making in the control path.

In the data path, Chapters 6 to 8 study the latency fluctuations caused by the three com-
ponents in the data path: Chapter 6 introduces a solution to reduce latency fluctuations
by adaptively adjusting the frame rate in response to the end-to-end latency fluctuations
caused by the performance fluctuations of video codecs in the application layer; Chapter 7
introduces a solution to reduce latency fluctuations by implementing a joint recovery solu-

tion that combines multiple packet loss recovery mechanisms in response to the end-to-end
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latency fluctuations caused by packet loss and its recovery mechanism in the transport layer;
Chapter 8 introduces a solution to reduce latency fluctuations by optimizing differentiated
service for bandwidth allocation without relying on endpoint information in response to
the end-to-end latency fluctuations caused by sudden multi-application competition queu-
ing in the network layer.

Finally, Chapter 9 concludes the dissertation, summarizing the research results and look-

ing forward to some unfinished research directions.
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Related Work

This chapter provides an overview of existing research on multimedia transmission systems,
with a particular emphasis on network-based optimization for multimedia transmission.
The chapter follows the division of existing technologies according to the Internet archi-

tecture introduced in the previous section, discussing how the existing work in each layer
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Figure 2.1: Internet architecture and the main focus of related work in this chapter

improves the performance of real-time multimedia transmission or, more generally, reduces
network application latency.

As shown in Figure 2.1, this chapter will primarily discuss the application layer, trans-
port layer, and network layer work within the dashed box. These are the areas of primary
concern for network researchers. Link layer and physical layer work are more often the fo-
cus of researchers in the communication field. In this paper, low-latency work and real-time
multimedia work in these two layers will not be discussed. In the following sections, the
innovations of this paper will be elaborated upon in comparison to existing work.

Section 2.1 introduces various application layer optimization efforts for multimedia
transmission. The first category is optimization for codecs, including the development
of new encoding and decoding algorithms to achieve stable performance on fluctuating
network links. The second category involves protocol design tailored to multimedia trans-

mission characteristics to better adapt to the multimedia content being transmitted. The
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third category is adaptive adjustment of applications based on network conditions, such as
adaptive bitrate adjustment, to enhance the user experience.

Section 2.2 presents work on optimizing latency and jitter at the transport layer of the ex-
isting Internet. The two main functions of the transport layer are rate control and reliable
transmission. The first category is recent work on Internet latency optimization through
rate control, represented by congestion control. The second category focuses on latency
optimization for multimedia transmission through reliable transmission, represented by
packet loss recovery.

Section 2.3 introduces network layer work on controlling latency within the network.
The primary devices in the network layer are network routers. The first category of work
involves adjusting the buffer size on routers to control latency. The second category dis-
cusses how active queue management on routers can be used in conjunction with endpoint
algorithms to control latency. The third category directly introduces performance opti-

mization through end-to-end message passing.

2.1 APPLICATION LAYER ON DATA PaTH

Real-time multimedia transmission applications mainly include the following key features:
First, when a video source generates an image, the encoder must encode the image into a
video stream. For example, video conference images are obtained from the user’s camera,
while cloud gaming and virtual reality images are rendered by the GPU. All of these require
the original video to be encoded before it can be transmitted. Second, during the video
encoding process, the encoding parameters (mainly the bitrate) need to be adjusted in real-

time based on network conditions. For instance, when the network conditions improve,
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Table 2.1: Real-time multimedia optimization related work in the application layer

Academic/Industry Proposals Solution Main Approach
Swift (NSDI’22)[92] Real-tim Ensure content decoding in weak
CGEncoder (MMSys’20)[272] e y network conditions through
; Video Codec i
VP9 (Google’13)[74] updated codec design
BI,% (SIGCOMM 14,)[141] Ad‘ap tve Adapt bitrate to bandwidth,
Pensieve (SIGCOMM’17)[179] Bitrate reducine bufferin
Puffer (NSDI'20)[265] Algorithm ccuicing Utiering

RTP/RTCP (RFC8888) [229]  Multimedia
RTSP (RFC7826)[232] Transmission
DTP (ICNP’21) [277] Protocol

Protocol design to convey
necessary application information

the encoder can increase the encoding bitrate to deliver clearer video content to the user.
Similarly, when network conditions worsen, the encoder will reduce the bitrate to ensure
that the user can at least see smooth content. Third, once the content is ready, the sender
needs to send it using a protocol specific to the application for better content management.
As mentioned in the introduction to this chapter, there has been an increasing amount
of work in recent years on multimedia transmission, particularly in the application layer
and in conjunction with application design. We will introduce these efforts in the following

sections.

2.1.1 CoDEC OPTIMIZATION

The history of codec development is long, and its range of applications is extensive. The
main principle of video encoding is to exploit the temporal and spatial correlations of video
content, significantly compressing the content through differential value storage and other
methods to save bandwidth costs. The most widely used codec today is H.264 [4]. In re-

cent years, codec optimization efforts have mainly focused on two aspects: optimizing the
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performance of the codec and tailoring the codec design to specific application scenarios.
In terms of codec performance optimization, a new H.265 codec mechanism has been in-
troduced in recent years [5], which can save a considerable amount of bandwidth costs at
the same level of clarity. However, due to various issues such as patent rights, its deploy-
ment is far from ideal compared to H.264. Recently, researchers have also been promoting
the standardization and demonstration of H.266 codec applications. In the field of real-
time multimedia transmission, the VP9 codec promoted and deployed by Google is cur-
rently the most widely used [74]. It is now included in the WebRTC real-time audio and
video transmission framework and can be easily used by developers.

In addition, other research efforts have focused on optimizing other application metrics,
such as image or video quality (e.g., SSIM [258] or PSNR [14]). For example, Alfalfa [118]
specifically optimizes the multi-threaded parallelism of a large number of users during the
transcoding process of real-time multimedia transmission. Salsify [119] further makes the
encoder aware of network conditions and reserves space for network adjustments. The
most recent work, Swift [92], uses neural network techniques to further optimize the en-
coding efficiency and processing latency of the codec, allowing users to use virtual reality
(VR) and other technologies more smoothly. CGEncoder [272] combines the character-
istics of cloud gaming and other gaming applications, first analyzing the specific needs of
game users — the user experience of game users may not necessarily be entirely consistent
with objective indicators of clarity such as PSNR or SSIM. Based on this, it further designs
a codec mechanism to make the codec more suitable for cloud gaming scenarios. The work
mentioned above is orthogonal to the interaction latency (per-frame latency) that we are

concerned with; they focus on video clarity, while we focus on the potential interaction lag
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that users may experience. Therefore, the optimizations for clarity mentioned above can
coexist with the latency optimizations of this work.

At the same time, the biggest problem in designing codecs is the issue of deployability.
Video decoding has a strong demand for real-time performance: when one video frame is
played, the next frame should have been decoded and ready to play to avoid user perception
of buftering. However, encoding and decoding involve a large number of mathematical
operations, which are extremely resource-intensive within the CPU. As a result, in exist-
ing solutions, there are usually dedicated encoding and decoding chips within the CPU or
graphics card to speed up the decoding process. However, these hardware decoding chips
may not necessarily support the emerging encoding and decoding mechanisms mentioned
above. In fact, many works themselves mention one of their major shortcomings as not be-
ing supported by existing hardware. Therefore, although the H.264 encoding mechanism
has been proposed for more than 20 years, it remains the most widely used encoding and

decoding mechanism.

2.1.2 ADAPTIVE BITRATE OPTIMIZATION

As mentioned in the introduction, adaptive bitrate is one of the essential components of
existing multimedia transmission mechanisms. Its primary function is to modify the en-
coding bitrate of the encoder according to the fluctuations in network conditions, ensuring
that the encoder’s bitrate does not exceed the network’s carrying capacity. Since the birth
of real-time multimedia transmission, corresponding adaptive bitrate algorithms have been
developed. In the past decade, a typical algorithm is the Bufter-based algorithm proposed

by Netflix [141]. It innovatively suggests adjusting the multimedia bitrate in the network
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by estimating the client-side buffer status in on-demand multimedia videos. When the
client bufter is low, it means that the risk of client stuttering increases, and the encoding
bitrate needs to be reduced to deliver new content to the client as soon as possible. When
the client buffer is high, it means that the encoder can try to explore a higher encoding bi-
trate to provide better image quality for the user. In this direction, there are also algorithms
like BOLA [245], which make decisions based on buffer occupancy but can also perform
theoretical analysis based on Lyapunov stability. BOLA is currently the default adaptive
bitrate algorithm for the widely used on-demand streaming media framework dash.js. Af-
ter that, further improvements and enhancements have been made with algorithms like
BOLA-E [246], further optimizing buffer-based methods.

In addition, there are sending rate estimation algorithms, such as PANDA [165] and
Squad [257], which are similar to congestion control and estimate the most suitable video
bitrate for transmission based on network conditions. In parallel, there are many adaptive
rate control algorithms based on both buffer and network status. For example, some re-
searchers have proposed using integer programming to systematically model the adaptive
bitrate problem, and proposed the RobustMPC algorithm [269] for optimization and solv-
ing, obtaining the most suitable bitrate decision for current transmission. In recent years,
there has been a trend of using machine learning algorithms to optimize adaptive bitrate al-
gorithms. Pensieve [179], presented at the SIGCOMM 2017 conference, is the first work to
use deep neural networks to optimize adaptive bitrate selection. It uses deep reinforcement
learning to model the adaptive bitrate problem and designs corresponding state spaces,
action spaces, and reward functions, using a series of algorithms to optimize adaptive bi-

trate algorithms. Subsequently, further optimizations have been made to the structure and
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optimization methods of neural networks in works like HotDASH [23 5] to enhance user
experience. This area of work has been a hot topic in academia in recent years. However,
there is still a significant gap between current algorithms [179, 269] and some theoretically
optimal analyses. Therefore, we believe there is still much room for improvement. As an
example, the academic community has been continuously holding competitions to seek
better QoE algorithms [267]. In summary, to achieve better performance, continuously
optimized methods have been (and will continue to be) proposed [267].

This work does not focus on adaptive bitrate at the application layer, meaning we are
orthogonal to it. This is because adaptive bitrate works similarly to congestion control, ad-
justing the application-side rate to avoid congestion or stuttering in the network or client.
In this paper, our work is more concerned with reducing the delays that are inherently in
the application layer. Therefore, existing algorithms in the architecture proposed in Chap-

ter 1 do not target delay jitter or extreme tail latency optimization.

2.1.3 MULTIMEDIA TRANSMISSION PROTOCOL DESIGN

Another important research work in recent years is the design of new multimedia transmis-
sion protocols. Application layer protocols are indispensable in the Internet architecture.
On top of transport layer protocols, appropriate application layer protocols are needed to
ensure the correct transmission of content. The most widely used protocol recently is the
RTP/RTCP protocol [229]. RTP and RTCP are a pair of UDP-based protocols, where
RTP sends packets from the server to the client to transmit video content, making it a data
path protocol; RT'CP is responsible for feeding back network status, video status, and other

state information from the client to the server, making it a control path protocol. RTCP
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constructs Sender Reports (SR) and Receiver Reports (RR) to report sender and receiver
information. RT'CP also constructs NACK (Negative Acknowledgement) and TWCC
(Transport-wide Congestion Control) messages to report packet loss and delay situations
to the sender. The sender can selectively decide whether to retransmit certain packets. In
this case, such a UDP-based application layer protocol can essentially achieve almost reliable
transmission. Both the open-source framework WebRTC [18] and industrial solutions like
Zoom [182] or Google Meet [67] use this protocol or its variants for transmission.

In history, there have also been protocols like RT'SP [232] for multimedia transmission
applications. These protocols are based on reliable transmission protocols like TCP, elimi-
nating the need for ensuring transmission reliability at the application layer. Recently, some
researchers have noticed the latency-sensitive requirements of emerging applications and
proposed deadline-aware transport protocols (DTP) [238, 277] that carry deadline infor-
mation for corresponding data packets in the protocol design. In this case, both network
devices and receivers can schedule data packets more reasonably based on the deadline in-
formation of data packets, maximizing the satisfaction of application requirements.

In contrast, this paper does not propose a new application layer protocol but seeks reli-
able low-latency on the existing framework. This is because, from a deployability perspec-
tive, we want our solution to be as compatible and coexistent with existing frameworks as
possible, making it valuable for practical applications. At the same time, existing protocol
designs do not explicitly address application latency requirements. The work at the applica-

tion layer in this paper can coexist with almost all common application layer protocols.
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Table 2.2: Related work on real-time multimedia optimization in the transport layer

Academic/Industry Proposals Solutions Main Ideas

Sprout (NSDI'13) [261]
GCC (MMSys’16) [76]
NADA (RFC8698) [289]
Scream (RFC8298) [149]
Copa (NSDI'18) [47]
Vivace (NSDI'18) [100]

By adapting the sending rate to

Congestion Control bandwidth to reduce latency

WebRTC (ICIP’13) [137]
AdaptFEC (MM’19) [115]
Tambur (NSDI’23) [225]
TLP (RFC8985) [86]

By reducing retransmissions to

Packet Loss Recovery reduce end-to-end latency

2.2 TRANSPORT LAYER ON DATA PATH

The transport layer is a highly focused component in Internet optimization, especially in
the networking community represented by SIGCOMM/NSDI. The main function of the
transport layer is to ensure that the data delivered by the application layer can reliably reach
the receiving end in a timely manner. This is particularly challenging when latency varies,
available bandwidth fluctuates, and network packet loss conditions change constantly.
Therefore, the two main functions of the transport layer are rate control and reliable trans-
mission. Rate control mainly focuses on congestion control in the actual Internet, while
reliable transmission mainly focuses on packet loss recovery. Rate control works more on a
macro scale, trying to avoid long queues in the Internet and ensure its efficiency by adjust-
ing congestion windows and other means. Reliable transmission, on the other hand, works
more on a micro scale, aiming to deliver one or a few lost packets to the receiving end. Be-
low, we will briefly introduce the related work in these two aspects that are close to the goal

of real-time multimedia transmission.
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2.2.1 CONGESTION CONTROL

Congestion control has a history of more than 40 years and is not covered in detail here.
Among them, low-latency congestion control has long been a concern for network re-
searchers. Early congestion control algorithms such as Reno[209] and Cubic[129] aimed
to improve network resource utilization by occupying queues as much as possible, but this
led to an increase in end-to-end latency. In recent years, a more widely used algorithm is
BBR, proposed by Google in 2016 [75]. BBR estimates the bottleneck bandwidth and
round-trip time of the link to determine how many data packets should be in the network,
and sends data packets at this rate. In this way, BBR no longer needs to occupy the bot-
tleneck queue, and can achieve lower latency. In addition, there are algorithms such as
Sprout [261], Verus [273], and Copa [47] that further use latency information to perform
more accurate rate control for the TCP protocol. For example, Verus[273] is a congestion
control algorithm that specifically adapts to the channel fluctuations of cellular networks
by adapting latency estimation; Copa[47] adjusts the congestion window on the endpoint
by using the signal of latency fluctuations. They can both effectively achieve lower latency.
In the field of real-time audio and video, these algorithms have also been deployed to
some extent. For example, Facebook has tested the Copa algorithm in its live streaming
business[122] and achieved good results. In addition, there are many congestion control
algorithms specifically designed for real-time audio and video applications. For example,
Google proposed the GCC [77] algorithm, which is used in the WebRTC framework. The
GCC algorithm controls the sending rate by using delay gradient information - measur-
ing the delay of each packet is usually inaccurate, because distinguishing between queue

delay and transmission delay has always been a problem for end-to-end congestion con-
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trol algorithms. Therefore, the GCC algorithm focuses on the difference in delay between
two packets - called the delay gradient - for rate control: when the packet delay is gradually
increasing, the bottleneck queue in the network is probably accumulating. At this time,
GCC will reduce its sending rate, and vice versa. In addition, Cisco and Ericsson have also
proposed NADA [289] and SCREAM [149] algorithms, respectively, to specifically opti-
mize real-time audio and video transmission. They further use some information including
Explicit Congestion Notification (ECN) to reduce end-to-end transmission latency.
However, as we introduced in Chapter 1, even though congestion control has made
many efforts to control latency jitter, existing algorithms still struggle to achieve satisfac-
tory latency for real-time multimedia transmission applications. Users still suffer from poor
network experiences in many situations. On the one hand, this is certainly because applica-
tions have increasingly higher demands for latency and smoothness, and on the other hand,
it also shows the limitations of purely end-to-end congestion control algorithm optimiza-
tion. This work aims to explore the new performance bottlenecks in the transport layer and

congestion control based on existing work.

2.2.2 PackeET Loss RECOVERY

Packet loss recovery is an important issue in network transmission, and its purpose is to en-
sure the reliability of transmission when packet loss occurs in the network. A significant
feature that distinguishes the TCP protocol from the UDP protocol is its ability to eftec-
tively recover lost packets in the kernel. For most applications, including real-time multi-
media transmission, the main recovery method when packet loss occurs in the network is

retransmitting the lost packet. Retransmitting packets also requires many design consid-
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erations, mainly how to determine if a packet is lost rather than out of order or delayed.
Initially, TCP used Retransmission Timeout (RTO) to make this judgment - if the original
packet’s acknowledgment is not received after waiting for a period of time (usually 1 second
or 200 milliseconds), the sender will choose to retransmit the packet [230]. Subsequently,
the Fast Retransmit mechanism allowed three consecutive identical acknowledgments to
quickly trigger retransmission. Recent work has proposed Tail Loss Probe (TLP) [86] and
other mechanisms that can still promptly retransmit discarded packets when waiting for
three identical acknowledgments takes too long.

Another line of research is to introduce redundancy for packet loss recovery. This ap-
proach is also easy to understand: for example, when the sender intends to send three data
packets, the sender can encode a fourth packet using Forward Error Correction (FEC) and
send all four packets together, fearing that the packets may be lost. In this case, as long as
the receiver receives any three packets, it can recover the fourth packet. In this direction,
one approach is to use existing FEC technology but dynamically adjust its parameters ac-
cording to the current network state: when the network packet loss rate is high, the pro-
portion of redundant packets is higher. For example, Bolot[66] and USF[208] algorithms
adjust parameters based on the historical packet loss recovery situation and their recovery
capabilities. In this direction, there are also strategies for WebRTC’s FEC parameters[17]
and even recent algorithms that use deep reinforcement learning and other machine learn-
ing tools to further predict network status and optimize redundancy parameters[81]. They
all achieve good performance in different experimental test environments, effectively recov-

ering lost packets.
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In addition to optimizing redundancy parameters, another category of work is to directly
design redundancy coding mechanisms. This usually requires strong knowledge of groups,
rings, fields, and other mathematical concepts. Many of these works have also been pub-
lished in information theory-related journals, such as IEEE Transactions on Information
Theory. More representative works include AdaptFEC [115], coding mechanisms by Fong
etal. [116], and coding mechanisms by Krishnan et al. [157]. However, these algorithms
are difficult to deploy in practice due to their high complexity. In fact, XOR codes are
currently the most widely used redundancy coding mechanisms in real-time multimedia
transmission. Even slightly more complex codes like Reed-Solomon (RS) codes are not yet
mature.

The main contribution of this work in the transport layer for packet loss recovery sce-
narios is to jointly optimize the two types of work, redundancy and retransmission. From a
practical perspective, this work does not propose a new redundancy coding mechanism but
tries to optimize existing coding mechanisms. Another highlight of this work is to optimize
the packet loss recovery mechanism from the perspective of latency fluctuations. These

contents will be introduced in detail in Chapter 7.

2.3 NETWORK LAYER ON DATA PATH

In recent years, there has not been much optimization work on the network layer in wide-
area networks. The main reason is that the main component of the network layer is routers
within the network. In other scenarios such as data centers, routers (or switches) are re-
placed more frequently. Therefore, new technologies have the opportunity for faster de-

ployment. However, in wide-area networks, there is almost no situation where a single en-
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Table 2.3: Real-time multimedia optimization related work in the network layer

Academic/Industry Proposals Solutions Main Ideas
CoDel (CACM’12) [203]

Drop packets early to force
RED[168], BLUE[108], the sender to slow down
GREEN][110], Yellow[173] to avoid over-sending
BDP/n (SIGMETRICS’21) [244] Queue Size Set appropriate queue size

Active Queue
Management

ABS (INFOCOM’22) [251] Optimization to reduce latency
XCP (SIGCOMM’02) [153] Carrv more dimensi
RCP (INFOCOM’08) [249] End-to-End Arty mote dimensions

of network state for

Kickass (ICNP’16) [112] Message Passing better decision-making

ABC (NSDTI’20) [125]

tity controls all devices on a path. Therefore, in the following discussion, the deployability
of these works is an important point we focus on.

On routers, what they can do is to operate the packets passing through the router to
implicitly or explicitly inform the sender of the current network status. Based on this, the
sender can be implicitly informed by active queue management techniques to achieve low
latency - when the network status deteriorates, the router can selectively discard some pack-
ets; it can also directly adjust the queue size to physically limit its maximum latency - if the
buffer is too small, packets have to be discarded, so although the packet loss rate may in-
crease, the latency can also be bounded, which is not necessarily a bad thing for real-time
multimedia. Alternatively, new network layer protocols can be explicitly constructed to
carry network status information back to the sender for information delivery purposes.

This section will review these works from these perspectives.
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2.3.1 ACTIVE QUEUE MANAGEMENT

In the network layer, Active Queue Management (AQM) is a common method to con-
trol network congestion. There are many AQM algorithms on routers. The earlier active
queue management algorithm is RED [113], which informs the current network deteri-
oration by probabilistically random dropping at an early stage. The default active queue
management algorithm currently deployed on many edge routers is CoDel, proposed in
2012 [203], which mainly solves the problem that estimating queue length is difficult to
adapt to routers with different bandwidths, while using the dwell time in the queue can
more accurately control the latency target. In addition, many more AQM algorithms have
been proposed, such as SFB [109], Green [110], Yellow [173], Black [79], and AFD [210].
The latest development is the DualQ algorithm, which has just become an IETF RFC in
2023 [231], which is part of the IETF’s L4S working group and performs active queue
management by classifying data streams into different categories.

In addition, in data centers, there is a large amount of work on managing the queues of
data center switches. Examples include PIAS [5 1], pFabric [42], and SIGCOMM 2022’s
ABM [40]. However, the biggest difference between these works and active queue man-
agement in wide-area networks is that they can assume cooperation between end hosts:
an enterprise can control both switches and servers within its data center. This provides
great convenience for flow type differentiation, flow size estimation, etc. However, in the
Internet, we cannot make such assumptions. If an algorithm prioritizes a certain type of
traffic, all Internet users will disguise their traffic as this type of traffic, rendering the mech-
anism ineffective. In fact, this is one of the reasons why mechanisms such as differentiated

services[ s3] are less widely used in wide-area networks.
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In comparison, they also have a common problem of assuming that the end-to-end con-
gestion control algorithm is sensitive to packet loss or ECN marking. However, with the
emergence of rate-based or delay-based congestion control algorithms such as Copa and
BBR, they are no longer sensitive to packet loss or ECN. Therefore, if it is expected to rely
on packet loss to reduce the sending rate of the end-to-end congestion control algorithm,
this requires very serious packet loss. For example, BBR does not respond to packet loss
rates below 20% in terms of rate. Therefore, there is an urgent need to optimize new active

queue management mechanisms for such delay-sensitive congestion control algorithms.

2.3.2  QUEUE S1ZE OPTIMIZATION

How to set the bottleneck queue size has always been a difficult problem in network layer
management. A small queue can lead to frequent packet loss in the network when dealing
with bursty traffic. A large queue, on the other hand, can cause long queuing delays when
the rate adjustment is not timely. Therefore, setting the appropriate queue size has always
been a concern for network administrators and an important means to reduce end-to-end
latency. In this regard, there have been a series of empirical works exploring this issue. For
example, in 2019, experts led by Stanford University Professor Nick McKeown organized
the Buffer Sizing Workshop to discuss how to set switch queue sizes. In addition, there
are many adaptive queue size works, such as ABS [251]. It adjusts the router’s queue size
adaptively based on the burstiness of network traffic.

Another major work in queue size optimization is theoretical analysis. Initially, schol-
ars proposed that the bottleneck queue size should be no less than the Bandwidth-Delay

Product (BDP) to ensure that the congestion control algorithms at the time (e.g., AIMD
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or Vegas) could fully utilize the link capacity throughout the entire cycle [3]. Subsequently,
in 2004, Appenzeller et al. [44] proposed that, in fact, by utilizing the statistical multiplex-
ing characteristics of different congestion control flows, the bottleneck queue size can be
reduced to BDP/ /N, where Nis the number of flows on the switch. In recent years, schol-
ars have pointed out that with the emergence of new congestion control algorithms such as
BBR, the bottleneck queue size can be further reduced to BDP/N [244]. As a result, the
maximum possible latency on the switch may also continue to decrease.

However, this setting generally only applies to core backbone switches, as they typically
have millions of flows. In edge routers (e.g., home wireless routers), there may be only tens
or hundreds of flows in most cases. In this case, since Nis small, the result is actually trivial.
A more serious problem is that in wireless networks, as described in Chapter 1, the band-
width fluctuations may be quite large, so the queue has to be set very long. This actually
leads to the situation where many last-hop routers have very “deep” queue bufters. In this
case, the occurrence of high latency is difficult to avoid. The work in this paper is trying to

shorten the end-to-end latency without changing this setting.

2.3.3 END-TO-END MESSAGE PASSING

The last category of work is to design new protocols at the network layer to better com-
municate between end hosts and network devices. Having good message passing can also
conveniently control latency because, in an ideal case, if the end host can perfectly repli-
cate the changes in available bandwidth, there will be no congestion due to improper self-
adjustment. Typical work in this area is XCP in 2002 [153] and subsequent RCP [249].

They design new protocols that include the bottleneck bandwidth rate in the protocol
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header fields to precisely control the sending rate. This also includes some works that may
not have designed new protocols but have similarly carried network status information in
existing protocols, such as Kickass [112] and ABC [125]. Kickass [112] passes the available
bandwidth information of a flow on the current router back to the sender through the size
of IP fragments. ABC [125] uses the two bits left over from differentiated services (TOS)
that are not widely used on the Internet to mark whether the current router thinks the flow
needs to speed up or slow down.

However, the biggest problem with these works is still the lack of deployability. As men-
tioned at the beginning of this section, there are numerous innovations in the network
layer, but very few have been truly deployed in the Internet. The main reason is that it is
extremely difficult to modify network devices. The above schemes require modifications
to both network devices and end host devices. This is very difficult in practice: end host
devices are usually maintained by content providers (such as Baidu, Alibaba, etc.); while
network devices are maintained by equipment manufacturers (such as Huawei, H3C, etc.).
Coordinating both parties to make changes to achieve performance gains has been proven
to be very difficult in the long history of Internet development.

In the design of this paper, we always adhere to the principle of minimizing modifica-
tions to devices. The proposed work can be deployed with benefits by modifying only a
single network device, without the need for communication and collaboration with other
devices. In this way, the work has a certain degree of deployability and has some examples

of actual deployment in the current network.
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2.4 SUMMARY

This chapter starts from the characteristics of real-time multimedia and low-latency net-
works, and according to the existing Internet architecture, introduces the efforts made by
academia and industry in these two aspects of optimization from the application layer,
transport layer, and network layer perspectives. This chapter first introduces the design
work on real-time codecs, adaptive bitrate algorithms, and multimedia transport proto-
cols at the application layer, followed by related work on congestion control and packet loss
recovery at the transport layer, and finally introduces work on active queue management,
router queue size management, and end-to-end collaborative optimization at the network
layer. In the process of introduction, this chapter also analyzes the shortcomings of existing

work, laying the groundwork for the introduction of the work in this paper.
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Real-Time Multimedia Streaming

Architecture

As described in Chapter 1, when the optimization goal of real-time multimedia transmis-
sion applications shifts to tail latency, the main sources of latency may no longer be con-

sistent with the sources of median or average latency in the original architecture. In this
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chapter, we focus on analyzing where the end-to-end latency fluctuations come from in the
existing real-time multimedia transmission architecture. We will first analyze the sources of
latency fluctuations in general, and then analyze the causes of latency fluctuations from the

perspectives of control path and data path.

3.1 ANALYSIS OF LATENCY FLUCTUATION SOURCES

In traditional real-time multimedia transmission, the main component of latency is net-
work latency - when the physical distance between sender and receiver is still far, and con-
gestion control mechanisms still produce long queues, network latency will occupy most of
the latency. However, as described in Chapter 1, with the deployment of edge nodes, im-
provements in network congestion control mechanisms, network latency is no longer the
main component of latency. The current reality is that in many real-time multimedia trans-
mission applications, application service providers can achieve average or median latency as
low as 10-15ms through heavy investment. For example, in applications like cloud gaming,
service providers deploy servers from a few nodes across the country to several nodes in each
province and region. In this case, for most users, there is likely a computing node in their
city to provide services. This greatly shortens network latency. Similarly, as access network
technology upgrades from 4G to sG, and WiFi 4 to WiFi 6, the wireless link transmission
latency of the last-hop access network has also been greatly improved.

However, when the focus of real-time multimedia transmission shifts to the tail latency
of one in a thousand or one in ten thousand, any small fluctuation in any link may cause
the end-to-end latency to rise at the 99.99 percentile. The existing real-time multimedia

transmission architecture has considered adapting to fluctuations in different network sit-
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uations during design, but not enough attention has been paid to the transition and con-
vergence process from one state to another. This is natural - when the latency percentile of
concern is at the soth or even goth percentile, there is no need to worry about these tran-
sient convergence processes. However, when the application focuses on these tail latencies,
these transient convergence processes become crucial. Therefore, this section mainly ana-
lyzes the possible sources of latency fluctuations when real-time multimedia transmission
focuses on the tail latency and the cutoft time miss rate of one in a thousand.

One important source of latency fluctuations found in this work is the presence of con-
trol path latency. As mentioned earlier, network conditions are constantly fluctuating, so
the response at the endpoint needs to be constantly adjusted based on network conditions.
However, due to the presence of the control loop, the response at the endpoint is often de-
layed. Formally, the response action 4(#) at the endpoint at time # is not based on the net-
work state 5(¢) at time #, but on the network state s (£ — Zy01) at ime £ — Ty, where
Teonsrol 1 the control path latency. Therefore, when the network state changes, the response
action 4(¢) at the endpoint often lags behind the change in network state, leading to fluctu-
ations in end-to-end latency.

This becomes very important when the application focus shifts from latency to tail la-
tency. In the past, when the network state changed, the response at the endpoint might be
slightly late. But as long as the endpoint can make the correct response, parameters such as
sending rate can converge to the new steady-state value. And this transient process is often
short-lived, so it does not affect the median or 9oth percentile latency. But network fluctu-

ations do occur occasionally. For example, a measurement in Chapter 4 shows that in some
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real wireless network data, the probability of network bandwidth dropping to one-fiftieth
of the original may be as high as 1%. In this case, the control path latency becomes crucial.

At the same time, the roles of different components in the data path in end-to-end la-
tency also change. With the deployment of edge data centers and the emergence of new
access network technologies such as s G and WiFi 6, network end-to-end latency at the me-
dian (in general) can even be achieved at 10-20 milliseconds[197]. In this case, when we ob-
serve that the latency of a video frame rises to hundreds of milliseconds, the possible cause
is no longer just the long physical distance between the two parties. Latency fluctuations at
the application layer, transport layer, and network layer can all lead to instantaneous latency
increases.

The remaining two sections of this chapter will analyze these two aspects. Figure 3.1
shows some components in the real-time multimedia transmission architecture that may
affect latency jitter after modeling and analysis. In the control path, feedback latency and
decision latency will affect the latency of the control path itself. In the data path, latency
at the application layer, transport layer, and network layer will also affect the end-to-end
data latency in the data path. The several works involved in this paper are also carried out
in these two aspects, aiming to systematically solve the problem of latency fluctuations in

real-time multimedia transmission.

3.2 CoNTROL PaTH DELAY

This section first identifies the significant role of the control path in causing fluctuations in
tail-end-to-end delay. The impact of the control path on the delay of real-time multimedia

transmission is indirect and only comes into play when the application focuses on tail delay:
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Figure 3.1: Real-time multimedia transmission architecture and the relationship of the works in this
paper
if the sending end of the multimedia transmission adjusts its sending rate slower when the
network condition changes, this may cause performance degradation due to delay fluctu-
ations. Do not underestimate this little response time: if the sending end needs hundreds
of milliseconds to respond each time the network condition changes, the user experience of
multimedia transmission in these hundreds of seconds will be poor. However, the Internet
is always fluctuating — if the network status fluctuates slightly every few minutes, it means
that users have a few thousandths of a chance of encountering performance degradation
caused by delay fluctuations. In this case, the delay of the control path becomes crucial.
Figure 3.2 shows an illustrative example. In the Internet, the available bandwidth of a
flow may fluctuate at any time due to wireless channel interference and changes in com-
peting traffic patterns. At this time, the sending rate of the sending end of real-time mul-
timedia transmission needs to change accordingly to adapt its throughput to the current

available bandwidth in real-time. Without loss of generality, when the available bandwidth
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Figure 3.2: An example of control path delay when available bandwidth drops

of a real-time multimedia flow at the bottleneck router (solid line) suddenly drops to one-k
of the original, the sending rate of the sending end also needs to be reduced as soon as possi-
ble to adapt to the new available bandwidth. However, as mentioned earlier, the decline in
available bandwidth cannot be known immediately by the sending end, but requires a con-
trol path delay 7 (i.e., control loop) to ultimately reflect the decline in sending rate. In this
case, the reduction of the sending rate of the sending end will be offset to the right by the
reduction of the available bandwidth, as shown by the dashed line in the figure. The solid
line in Figure 3.2 is the available bandwidth of the bottleneck router, the dashed line is the
sending rate of the bottleneck router, and the red shadow is the backlog of the bottleneck
queue. During this time, the bottleneck queue still receives packets at the original send-
ing rate, but its processing rate is greatly reduced due to the drop in available bandwidth.
Therefore, these excessive packets will cause a backlog in the bottleneck queue, as shown by
the red shadow.

What’s worse is that when the control path delay is 7, the time users experience the dete-
rioration of delay is likely to be much more than 7. This is another important observation

about the control path delay in this paper — when the network condition fluctuates, due
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to the fact that the available bandwidth of the network is actually deteriorating, these pack-
ets exceeding the network’s carrying capacity need several times the original accumulation
time to be cleared. Here, we also analyze this example in Figure 3.2 further. Specifically, the
packets arriving at the bottleneck queue need £ times the time (£7) to be sent out during
the control loop 7. This is because the data rate sent before the drop in available bandwidth
is much higher than the new available bandwidth after the drop. Therefore, the data that
may have accumulated in 1 time unit originally takes £ time units to alleviate. This is like
what is shown in the figure, where the area of the two red shadows in the figure is actually
equal. During this time, all sent packets will experience increased delays, thereby reducing
user experience.

Specifically, the delay of the control path is divided into two parts: feedback delay and
decision delay:

Leontrol = tfefdback + Ldecision (31)

Where the feedback delay #7450t refers to the transmission time of the feedback signal from
the sending end to the receiving end, and the decision delay 4., refers to the time for

the sending end to make a decision based on the feedback signal. The jitter of these two
links may cause fluctuations in the final end-to-end delay. This section first introduces the
functions of these two parts and then discusses how they affect the final end-to-end delay

fluctuations.

1. End-to-end performance fluctuations caused by feedback delay jitter. How to ob-
tain feedback information is an important problem that almost all control systems face.

From circuits, signals to coding adjustments, fault tolerance adjustments, and sending rate
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adjustments in real-time multimedia transmission, these are all inseparable from the im-
portant role of feedback in decision-making. This is also reflected in the analysis of many
existing works in the network field. For example, QCN [41] assumes that the QCN sig-
nal sent by the switch in the network needs to be obtained by the sending end after 7 time
when analyzing stability. Therefore, this feedback delay is actually ubiquitous.

End-to-end control algorithms rely on timely access to network status. For example,
TCP congestion control algorithms determine the degree of network congestion based
on packet delay, packet loss, and rate changes over a period of time. When network sta-
tus changes, this change will be immediately reflected in indicators such as packet delay,
throughput, and packet loss rate. However, we find that when the network status fluctu-
ates, these indicators often cannot be immediately known by the sending end. In this in-
stant process, the mismatch between the sending rate of the sending end and the network
status will cause end-to-end performance fluctuations. In this regard, existing work has the
following two shortcomings:

First, existing work generally assumes that the feedback delay is constant. This can greatly
simplify many modeling and analysis. However, an important observation in Chapter 4 of
this paper is that in the tail case, the feedback delay actually expands with the expansion
of the data path delay. This is because, above the network layer, control information does
not have a separate control path, but also needs to be transmitted through the data path.
Therefore, if the data path causes delay expansion due to packet queuing and other reasons,
the feedback delay will also expand with it. This will cause the sending end to know the

network status change later, further worsening the end-to-end delay.
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Second, existing work mainly focuses on stability rather than performance in analyzing
feedback delay. The existence of the feedback loop is essential for many stability analyses:
generally speaking, if the feedback loop is too long, so much so that it is longer than the cy-
cle of network status changes, then the control system is likely to be non-convergent. How-
ever, in the current Internet, the feedback loop is generally much smaller than the network
status change. For example, the general feedback loop is about a round-trip delay, which is
about tens of milliseconds in general real-time multimedia transmission applications. Net-
work status generally does not change dramatically every few tens of milliseconds, so the
usual analysis results are stable [41]. However, when real-time multimedia transmission fo-
cuses on the 99.9th percentile or even later delay requirements, the delay fluctuations in the
convergence process will also affect user performance.

Chapter 4 provides a detailed analysis of this and proposes a mechanism to stabilize feed-
back delay by decoupling the data path and control path. As shown in Figure 3.1, the work
in Chapter 4 will mainly optimize the feedback delay #z.4p. of the control path. The main
approach is to decouple control information from the original data packets, unlike tradi-
tional protocols that carry control information in the original data packets. In this way, no
matter how the data path delay fluctuates and expands, the control path delay can still re-
main relatively stable. In this case, the sending end can always know the current network

status relatively timely and make corresponding adjustments.

2. Rate adjustment lag or error due to unstable decision making. After obtaining net-
work status information, decision-making is another important issue that real-time multi-
media transmission control algorithms face. Signals in the network are often full of noise

and ambiguity. For example, when the sending end observes a packet loss event, it may
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represent that the sending end needs to reduce the sending rate to alleviate network con-
gestion, or it may simply represent a decrease in the channel quality of the wireless link and
in fact, the sending end does not need to reduce the sending rate [99]. Therefore, decision-
making algorithms tend to make decisions only when enough information is collected to
have enough confidence, so that the decisions are reliable enough.

In recent years, due to the continuous pursuit of performance by applications, the de-
cision logic of congestion control, video bitrate adjustment, and other control algorithms
has become more and more complex. Starting from traditional heuristic methods that can
be implemented in just a few lines of code, researchers have gradually turned to using neu-
ral networks [39, 179] or integer programming [269] for decision-making. These attempts
are beneficial: on the one hand, researchers’ understanding of network links is becoming
deeper, and they can make targeted assumptions and modeling for the network. On the
other hand, inspired by the progress of neural networks and other emerging machine learn-
ing technologies in computer vision and natural language processing, researchers tend to
believe that these neural networks have great potential in the field of real-time multimedia
transmission. However, the existing decision-making algorithms currently face some prob-
lems in the following two dimensions:

First, the decision delay of the decision-making algorithm is increasing. The most direct
drawback of using neural networks or integer programming algorithms is their extremely
high decision delay. Traditional heuristic algorithms that can be implemented in just a few
lines of code hardly consume much decision time when running in actual online deploy-
ments. However, even in the forward propagation inference stage, neural networks con-

sume a lot of computing resources. For example, traditional congestion control generally
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updates the congestion window every time a packet is received. In a flow with a throughput
of 30Mbps (this is a common traffic size for high-definition real-time multimedia such as
cloud gaming), this means that the maximum interval between two packets is 0.4 millisec-
onds. However, the forward prediction of neural networks may still consume milliseconds
of delay even if specialized acceleration hardware such as GPUs is used. This phenomenon
is more severe in modeling methods such as integer programming optimization. Com-

plex integer programming may take several minutes or even hours to solve. This creates

a contradiction between the current high decision delay and the need for high-frequency
decision-making in network algorithms.

Second, the decision logic of these algorithms is becoming more and more black-boxed,
making it difficult for network administrators to understand the logic behind their de-
cisions. For example, neural networks usually contain thousands (sometimes even bil-
lions [70]) of neurons and output their decision results through complex calculations. Ad-
ministrators generally have difficulty understanding how a decision is made. This leads to a
potentially frightening fact — decisions may be wrong and not discovered, so how can net-
work administrators trust such a model? This is similar in optimization algorithms such as
integer programming. When the solution result deviates significantly from the administra-
tor’s common sense, the administrator has no way of knowing which constraint or variable
design is problematic. In this case, the wrong decision will also cause end-to-end perfor-
mance fluctuations.

Chapter s also analyzes the above two problems and proposes an algorithm that can
avoid end-to-end performance fluctuations due to unstable decision making by convert-

ing complex algorithms into lightweight, stable decision trees. As shown in Figure 3.1, the
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work in Chapter 5 will mainly optimize the feedback delay 4., of the control path. The
main approach is to decouple offline optimization from online deployment and no longer
bind offline optimization with online deployment as in existing work. Network adminis-
trators can still use the algorithms and models they think have high performance and good
results for optimization when training offline. However, when deploying this optimized
model online, the method can convert it into a decision tree model with low decision delay
and interpretability with low performance loss. In this case, the delay and reliability of the

decision part can be guaranteed in most cases.

3.3 Data PaTH DELAY

In this section, we first qualitatively analyze the components of end-to-end delay in the data

path. Under ideal conditions, the delay in the data path is affected by the following factors:

Lgata = tapp + (1 + RTX) X trTT (32)

Here, 2,45, RTX, and t 77 represent the application layer processing time, the number of
retransmissions, and the round-trip time, respectively. They correspond to the impact of
the application layer, transport layer, and network layer on the end-to-end delay in the data
path. Specifically, we first introduce how the (possible) design flaws in these three layers

affect the end-to-end delay in the data path.

® 4y is the application layer processing time, which is mainly related to the design
of the application layer - for example, if the application layer needs to encode video

frames, the encoding time will increase.
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* RTXis the number of retransmissions, which is mainly related to the design of the
transport layer’s packet loss recovery - for example, if a packet is lost R 7X times, it

will arrive at the receiver on the R7X + 1 transmission.

* tgrris the round-trip time, which is mainly related to the design of the network
layer’s queue management - for example, the longer the queue in the network, the

longer the round-trip time.

For example, suppose a data packet is first processed by the encoder at the sender for sms
(application layer). Then, the data packet starts to be prepared for transmission in the trans-
port layer. The current network RTT is 30ms. Unfortunately, this data packet is always
dropped in the network until the 4th transmission when it successfully arrives at the re-
ceiver and is acknowledged. Assuming that under ideal conditions, the sender can always
determine within 1 RTT that a data packet has been dropped. Therefore, in the transport
layer, the total time consumed by this data packet is 30X 4=120ms. After arriving at the re-
ceiver, there may be some additional delay in the application layer. For example, the decod-
ing of the video may take roms. Thus, according to the formula 3.2, the total end-to-end
delay is approximately 1 sms+120ms=135ms.

Of course, this model has some approximations. For example, in reality, the sender may
not be able to detect the loss of a data packet immediately. In fact, TCP requires waiting
for the successful arrival and acknowledgment of the next three data packets after the first
packet loss to trigger the fast recovery mechanism. After the second loss, it will continue to
retransmit after the retransmission timeout (RTO). The above formula is just an estimate

of an ideal situation - we can always achieve the ideal situation in the estimate by improving

the protocol design, such as the NACK design in the RTP/RTCP of the WebRTC frame-
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work. However, the above estimate provides an analysis of the main components of the
data path delay.

In recent years, some changes have occurred in these components in the new generation
of multimedia transmission. The jitter of these three links will also lead to fluctuations in

the final end-to-end delay.

1. Application layer delay: Increased video quality leads to fluctuations in application
layer encoding and decoding and network collaboration. In the application layer delay,
one significant change we notice is the waiting delay at the interface between the applica-
tion and the protocol stack (e.g., socket buffer). The existing application layer design does
not consider the delay fluctuations that may be introduced by bottlenecks in the applica-
tion - the current socket buffer in the operating system passively waits for the application to
read data from it without actively managing the queue. When the application can handle
the data sent by the network in time, the application will actively read data from the buffer.
When the application is temporarily unable to handle this data, the data will accumulate in
the buffer waiting. As the buffer gradually decreases, the current TCP protocol will adjust
the flow control window (advertised window) accordingly to inform the sender to reduce
the amount of data sent. When the buffer is full, the receiver will no longer receive new
data from the network until the application processes some data to free up space.

However, this design faces an intuitive problem: if the application processing is not
timely, the queue will continue to accumulate until it is full. This is similar to the situation
in the network where the router’s queue, if not actively managed, will accumulate until it
overflows, resulting in high queuing delays. This design is not friendly to low-latency appli-

cations, including real-time multimedia transmission.
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The problem of this queue becomes more severe with the development of multimedia
transmission applications. As the new generation of multimedia demands higher image
quality, the computational complexity of video encoding and decoding also increases. For
example, the resolution has evolved from 2.40p in the past to 1080p today, and in the fu-
ture, there may be real-time multimedia transmissions with even higher resolutions such
as 4K and 8K. The frame rate of the video has also increased from about 24fps for video
calls to 6ofps, 9ofps, or even higher. This will make the burden of processing data in the
application heavier, leading to fluctuations in end-to-end delay.

Based on this, Chapter 6 provides a detailed analysis of the above problem and proposes
an application layer queue management mechanism that can actively control the queue in
front of the application when a bottleneck occurs, thereby avoiding fluctuations in end-
to-end delay. Especially in the increasingly popular high-definition and high-frame-rate
real-time multimedia transmission, the adoption of the mechanism proposed in Chap-
ter 6 becomes more and more urgent. As shown in Figure 3.1, the work of Chapter 6 will
mainly optimize the application layer delay #,,, in the data path. The main method is to
actively manage this buffer queue instead of waiting for it to overflow passively. Like the ac-
tive queue management algorithm on the router, when the bufter queue starts to grow, the
application layer protocol notifies the sender to reduce the sending rate to avoid the bufter
accumulating to a higher position. In this way, the application layer delay can be effectively

controlled, making the end-to-end delay fluctuation less.

2. Transport layer delay: The increased demand for delay fluctuation makes the ex-
isting transport layer packet loss recovery mechanism unsatisfactory. In the trans-

port layer delay, we notice that when the focus on delay percentile increases from soth

53



percentile, 9oth percentile to 99.9th percentile, 99.99th percentile, the existing transport
layer packet loss recovery mechanism can no longer meet this requirement. Many current
transport layer designs do not consider the delay problems that may be caused by small
probability tail events. A typical example is packet loss recovery. When data packets are
not lost, there are no problems with delay. However, if a data packet is unfortunately lost,
the current design of the transport layer is to trigger the fast recovery mechanism after the
first time, but it may have to wait for one second to trigger the timeout retransmission af-
ter the second time. Although many designs try to speed up this process (e.g., TLP [86]),
retransmission is still usually inevitable. One problem with this is that when more extreme
situations occur, the delay of data packets in these extreme situations may be very poor.
For example, if the instantaneous packet loss rate in the network reaches 10%, a data packet
needs to be transmitted 4 times to reach the receiver, then the delay of this data packet will
increase by 4 times. And at a packet loss rate of 10%, the probability of a data packet being
transmitted 4 times (i.e., being dropped 3 times in a row) is as high as one in a thousand.
This will directly affect the user experience at the tail.

It is worth noting that, especially for video frames in real-time multimedia transmission,
for a general decoder, a frame can only be delivered to the application for decoding and
rendering when all data packets of the frame have arrived at the receiver. That is, if a video
frame has so data packets, even if one data packet experiences the above situation, the user’s
experience will be affected by this video frame. Therefore, the existing packet loss recovery
mechanism is difficult to meet the extreme requirements of the new generation of multime-

dia transmission for delay jitter.
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This tail problem also becomes more severe with the development of real-time multime-
dia transmission applications. Game users may be able to tolerate a one-in-a-thousand stut-
ter rate, but applications like remote surgery and remote assisted driving actually require
a one-in-ten-thousand or even lower stutter rate. Imagine a complex surgery or a long-
distance trip that lasts for hours, and even a few seconds of stuttering can be fatal. These
few seconds in ten hours are roughly equivalent to a one-in-ten-thousand or even lower
stutter rate requirement. At the same time, as the video transmission bit rate increases, but
the data unit (Maximum Transmission Unit, MTU) in the network does not increase ac-
cordingly, the phenomenon of a video frame containing multiple data packets and being
slowed down by one of the data packets in the aforementioned problem becomes more se-
rious. Therefore, it is important to reconsider these applications that mainly rely on packet
loss recovery and did not properly consider tail delay fluctuations during design.

Based on this, Chapter 7 also provides a detailed analysis of the above problem, sup-
ported by measurement data, and proposes a transport layer packet loss recovery mecha-
nism. This mechanism can significantly alleviate the end-to-end delay jitter of real-time
multimedia transmission caused by packet loss retransmission, even with reduced band-
width costs. Especially when the pursuit of the tail becomes more and more extreme, the
adoption of the mechanism proposed in Chapter 7 becomes more and more urgent. As
shown in Figure 3.1, the work of Chapter 7 will mainly optimize the transport layer delay
in the data path, that s, its retransmission times R 7X. The main method is to combine two
common packet loss recovery mechanisms (redundant coding and packet loss retransmis-
sion) to increase the intensity of redundant coding when entering the more likely tail situa-

tion (e.g., the 2nd and 3rd transmissions) to avoid extremely adverse situations. In this way,
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the effective control of end-to-end delay fluctuations caused by small probability events can

be achieved.

3. Network layer delay: Diversification of congestion control algorithms leads to per-
formance fluctuations in network layer queue management mechanisms. We notice
that in recent years, the traffic characteristics and application requirements faced by net-
work layer queue management mechanisms have also changed. As mentioned earlier, the
main source of delay in the network layer is queuing. The cause of queuing is generally due
to the mismatch between the arrival rate and the sending rate of the queue. In traditional
network layer queue management, algorithms like CoDel [203] limit the length of the
queue to avoid excessive delay due to long queues and have been widely deployed. How-
ever, these algorithms face the following two problems under the traffic characteristics of
today’s network transmission:

First, the response of queue management algorithms is more focused on packet loss
rather than other indicators. Current queue management algorithms, when designed ini-
tially, targeted more traditional TCP congestion control algorithms, such as Reno [209]
and CUBIC [129]. The most prominent feature of these algorithms is that they rely heav-
ily on packet loss signals (or ECN signals) to adjust the rate. For example, when the sender
does not observe packet loss, it will continue to try to increase the sending rate (or con-
gestion window). When the sender observes packet loss, it will reduce the sending rate.
However, low-latency applications, represented by real-time multimedia transmission, no
longer use packet loss-sensitive congestion control algorithms like Cubic, but use delay-
sensitive congestion control algorithms like GCC to achieve low latency. This means that

existing queue management algorithms may not necessarily be effective in controlling de-
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lay: delay-sensitive congestion control algorithms no longer respond to packet loss signals.
This makes ensuring low latency not so simple.

Second, the design of queue management algorithms focuses more on macro perfor-
mance rather than micro performance. Current queue management algorithms focus more
on macro performance on a long time scale when measuring performance. For example, in
terms of fairness, researchers measure throughput fairness indicators (e.g., Jain’s fairness
index) on a relatively long time scale. However, they do not pay much attention to how
to gradually converge to this fairness in the transient state. In this case, when the focus of
performance shifts to tail delay, as mentioned earlier, the transient performance of this con-
vergence process is equally critical. Especially when some competing traffic in the network
(e.g., web browsing) has also undergone some new changes, the network layer queue man-
agement mechanism can hardly guarantee that the delay jitter of multimedia transmission
is within an acceptable range. If, like existing methods, the performance fluctuations in the
transient state are not considered, users will suffer a poor experience at the tail.

Based on this, Chapter 8 analyzes the transient performance of queue management al-
gorithms and the response signals of congestion control algorithms and proposes an active
queue management mechanism within the network layer that controls performance fluc-
tuations by limiting the instantaneous interference of burst traffic on stable traffic. We find
that as web design becomes more complex and application performance requirements be-
come more diverse, the mechanism in Chapter 8 will play an increasingly important role.
As shown in Figure 3.1, the work of Chapter 8 will mainly optimize the network layer delay
tyer in the data path. The main approach is, on the one hand, to no longer rely on packet

loss signals to convey information to congestion control algorithms, but to use delay; on

57



the other hand, to adopt a smooth transition strategy in transient state transitions, allow-
ing congestion control algorithms to have sufficient time to respond to changes in network
conditions. In this way, the queue management mechanism can effectively control delay

fluctuations when network traffic and other fluctuations occur.

3.4 SUMMARY

This chapter provides a detailed analysis of the architecture of real-time multimedia trans-
mission applications and the components of end-to-end delay. According to the division
of control path and data path in this paper, this chapter introduces the fluctuations of feed-
back and decision-making in the control path and the components of end-to-end delay in
the data path, including application layer, transport layer, and network layer. In each spe-
cific component, this chapter briefly introduces the main existing problems and the solu-

tions to be proposed in this paper.
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Feedback on Control Path:

Early Congestion Feedback

4.1 INTRODUCTION

Transient congestion at wireless links is caused when available bandwidth for a user drops

suddenly, e.g., due to multi-user access and mutual interference. Available bandwidth of
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Figure 4.1: Control loop for rate adaption at the wireless last mile. Compared with existing solu-
tions, Zhuge bypasses the segment (i) - (iii) to achieve the shortest control loop.

wireless networks can drop by 10X at the 9g9th percentile (§4.2.3). After such a sudden
drop, packets quickly begin to queue at the AP, increasing end-to-end latency. Ideally,
senders would react quickly when bandwidth reduction occurs, e.g., by reducing their
bitrate to prevent queue buildup, high latency, and loss. Unfortunately, we observe that
senders are fundamentally limited in how quickly they can react, and it is precisely when
quenes build up that senders react most slowly!

The problem is that congestion signals are carried along the same congested path as data
packets. Put simply, to observe that the bottleneck queue is filling, a sender must first re-
ceive an acknowledgement from a packet that has actually waited in that quene. Hence,
congestion indicators like timestamps or losses take longer to reach the sender when the
sender most needs these indicators. In Figure 4.1, we show the route taken both by data
packets and the control signals they carry, in-band/explicitly (such as timestamps) or out-
of-band/implicitly (such as their RTT).

Our key insight in this chapter is that we can decouple the control loop from the full
path that data packets traverse, hence protecting control signals from experiencing the full

latency of filling, often bufter-bloated [261] queues. A carefully designed AP, on observing
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a filling downlink queue (i in Figure 4.1) can modify or delay packets in the uplink queue
(iv in Figure 4.1), allowing congestion signals to reach the sender without the delay of the
congested bottleneck.

Substantial research literature aims to improve network latency for wireless networks,
but these approaches primarily succeed at improving median rather than z4z/ latencies of
RTC applications in the wireless network. We argue that the problem primarily stems from
the fact that all of these approaches rely on a delayed control loop due to congestion signals
needing to traverse the congested, high-latency path. For example, end-based solutions such
as congestion control algorithms (CCAs) collect end-to-end signals (e.g., per-packet delays)
at the sender to adjust the sending rate. However, one (inflated) control loop is still needed
to collect the signals after sending a packet. Similarly, in-network solutions such as active
queue management (AQM) create signals (e.g., packet drops) but these signals still have to
be bounced by the receiver to the sender, which, again, suffers a long control loop.

While our key insight is straightforward, implementing it successfully in practice is chal-

lenging:

How can an AP predict packet latency for packets which have not yet been transmitted? Naively,
an AP might simply measure the number of bytes queued in the downlink queue and di-
vide by the available link capacity to measure a queuing delay. However, recall that link
bandwidth is fluctuating (hence our problem) and so such an estimator is likely to be inac-

curate.

How should the AP report the message back to the sender in a deployable way? A straight-

forward solution is enabling routers to directly transmit newly defined messages back to
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senders (e.g., XCP [153] or active network [106]). However, coordinating AP and senders
that are usually maintained by different entities (§4.2.3) builds barriers for deployment at
scale. Moreover, for existing deployed protocols at the sender, some use explicit signaling
(e.g., timestamps) while others use implicit or out-of-band signaling (e.g., the RT'T or RTT
gradient). Some protocols react to a weighted moving average of the RTT [75]; some pro-
tocols are concerned with minimum RT'T values over a particular window [47]; and some
protocols react to inter-packet timings and are not concerned with RT'T at all [77]. The AP
must modify or delay upstream packets in a way that faithfully captures all of these factors,
so that neither the sender nor the receiver requires modification.

Addressing these challenges, this paper presents Zhuge” that achieves consistent low la-
tencyT in wireless environments by minimizing the control loop. Zhuge includes a ‘Fortune
Teller’ module that, on packet arrival at the downstream queue, makes a prediction as to
that packet’s delay to the receiver and back to the AP. The Fortune Teller separately esti-
mates two factors influencing queuing delay (§4.4.1) and uses these to derive a combined
prediction for every arriving packet. The second component of Zhuge is a ‘Feedback Up-
dater’ which modifies upstream packets. Depending on the protocol, these modifications
are based on either the raw packet delays recorded by the Fortune Teller, or differences of
packet delays (details in §4.5.2) derived from the Fortune Teller.

We have implemented Zhuge in both simulation and with a WiFi-router based testbed
(§4.7). Evaluation results with real-world wireless traces and configurations for both WiFi

and cellular show that Zhuge improves key metrics on network conditions (e.g., tail latency)

*Zhuge is a famous fortune-teller in ancient China.
TWe mainly focus on recent CCAs that are designed to maintain a low latency, but fail to consistently
achieve a low latency. Buffer-filling CCAs that suffer from a high RTT all the time e.g., CUBIC [129]) are

not our target.
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Figure 4.2: Distribution of wireless available bandwidth reduction ratio.

and application performance (e.g., video frame delay) by 17% to 95%. Further evaluation
also shows that Zhuge is able to achieve satisfactory performance in the real world in differ-

ent scenarios.

4.2 BACKGROUND AND MOTIVATION

In this section, we use real-world statistics to reveal the status of wireless tail latency (§4.2.1).
Next, we analyze why existing solutions fail to achieve consistent low latency (§4.2.2). Fi-

nally, we present our motivation of reducing the control loop to ameliorate tail latency

(§4.2.3).

4.2.1 UNDERSTANDING WIRELESS TAIL LATENCY

We first answer the following one questions: Why does wireless latency fluctuate at the tail?
The outstanding tail latency is caused by the transient mismatch of sending rate at the
sender and available bandwidth (ABW) at the bottleneck queue. As analyzed in §3.2, the

transient increase of latency depends on (i) how violent the ABW fluctuates (&), and (ii)
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how soon the sender reacts (7). As for the ABW fluctuation £, wireless channels are natu-
rally more fluctuating than wired channels due to their variability.

We calculate the available bandwidth every 20oms, during when the CCA should re-
spond to such fluctuations, considering the RTT. Solid lines represent traces from several
open datasets, and dashed lines represent traces from our own measurements in the office
and restaurant (details in §4.7.2). The available bandwidth is the average value of each 200
ms measurement window. Considering the typical RT'T of Internet (tens of milliseconds),
the congestion control algorithms should react to fluctuations in such a time scale.

As shown in Figure 4.2, for all wireless datasets including sG mmWave and s GHz-band
WiFi, 0.6-7.3% of ABW reduction rates are above 10x, which is much higher than the
<0.1% of wired networks. As for the control loop 7, in most cases, the congestion con-
troller needs one RT'T to adjust the sending rate upon receiving the congestion signals (e.g.,
increased delay, packet losses). When the bottleneck queue starts to build up, the end-to-
end RTT also inflates, further preventing the congestion signals from reaching the sender.

Consequently, the end-to-end latency will fluctuate at the tail.

4.2.2  EXISTING SOLUTIONS

The reduction of ABW () is due to contention in the link layer and below [152] and is
unavoidable in most time (e.g., due to wireless interference). Many transport layer innova-
tions have been proposed to improve the steady state median latency of a connection. For
example, BBR [75] moves the working point of congestion control from a full queue in
CUBIC [129] to an empty queue. CoDel [203] queue management also tries to shorten

the queue in the steady state in a variety of network conditions compared with FIFO. Sub-
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sequent research efforts (including congestion control [47, 77, 100] and active queue man-
agement [136]) further provide insightful thoughts of maintaining the optimal working
point with different feedback signals. Standing on the shoulders of giants, the median la-
tency for applications can be nicely controlled. However, they are insufficient to reduce the

tail latency, which we will analyze below.

End host-based solutions. For network layer and above, existing end host-based solutions
fail to quickly adapt to the ABW reduction due to their long and inflated control loops.
Recalling Figure 4.1, when the green shaded packet arrives at the congestion point and ob-
serves a long queue, it first needs to go through the queue (i), transmitted to the receiver
(ii), the corresponding feedback delivered from the receiver to the access point (iii), and fi-
nally sent to the sender (iv and v). Since the shortest time for the sender to be notified is
one full control loop including segments (i)-(v), a pure end host-based CCA cannot timely
adapt to transient bandwidth fluctuation. We further simulate the performance of recent
latency-sensitive CCAs (BBR [75], Copa [47], and GCC [77]) together with AQMs in
Figure 4.3. When the ABW is reduced by 10X or more, all these algorithms, working with
or without latency-aware AQMs, suffer from seconds of RT'T degradation. The inflated

control loop for end host-based solutions results in severe wireless queuing.

In-network solutions. Solutions modifying in-network devices also fail to timely feed back
these signals. For example, AQM such as CoDel [203] drops the packets in the front of

the queue to reduce the downlink queuing latency (i) in Figure 4.1, yet still suffers long
wireless latency (ii) and (iii), which could be more than 10oms [62]. Moreover, AQMs are

mostly designed to drap some packets, while many modern CCAs are designed to be re-
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Figure 4.3: The convergence duration after wireless bandwidth drop for different CCAs and AQMs.
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CCA re-convergence.

sponsive to the increase of packet delay and insensitive to packet drops [47, 75, 77]. This
can also be validated in Figure 4.3(a): CoDel can hardly improve the performance of delay-
based CCAs such as Copa. There are also a line of solutions to co-design the hosts and
in-network routers for decades to achieve better feedback from the network, including
XCP [153], RCP [249], Kickass [112], and ABC [125]. However, their design goals are
getting a precise estimation of network conditions from routers, while the gathered infor-
mation still needs to go through the full control loop. We also compare the performance of
Zhuge against ABC to demonstrate the potential room for improvements with host-router

co-design and our further improvements in §4.7.

4.2.3 OURProPOSAL: REDUCING THE CONTROL LooPr

Our key insight to reduce wireless tail latency is to separate the congestion feedback from

the congestion by sensing the network conditions as early as possible, timely carrying the
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conditions back to the sender to minimize the control loop, and performing the above opera-

tions in a deployable way.

The earliest signal — one packet knows its fortune upon arrival. In most cases, when
one packet arrives at the bottleneck queue, it can predict its delay with visibility of the en-
tire queue. For example, the queuing delay for the packet could be roughly estimated by
dividing the queue length with the dequeuing rate. Therefore, when the dequeuing rate
decreases, we can observe increasing queuing delay upon the arrival of subsequent packets.
Compared with other consequent signals such as the packet loss or the measured queuing
delay, the estimated queuing delay is the earliest signal for the reduction of ABW. There-
fore, we are motivated to utilize this earliest signal to timely control the sending rate and

adapt to ABW reduction.

Quickly delivering the earliest signal back to the sender. Merely finding the ABW re-
duction signal is not enough. We need to quickly carry this signal back to the sender. An
ideal solution is directly zelling the sender from the bottleneck queue about its current sta-
tus. In this way, such a signal could bypass the inflated part of the control loop (downlink
queuing (i), downlink wireless transmission (ii), and uplink wireless transmission (iii) in
Figure 4.1). Meanwhile, the latency of the uplink queue at the AP (iv) and the latency of
WAN (v) is usually stable. The uplink of the AP is often the Ethernet connection to the
Internet, usually with hundreds of Mbps capacity. The WAN latency (v) is the latency be-
tween the last-mile AP and the sender. The Ethernet users will also suffer these two parts
of control loop, which are relatively stable according to our Ethernet measurements in Fig-

ure 1.5.
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Patching the last-mile router only might be deployable. Reviewing the history of trans-
port layer designs, there are a series of excellent efforts that unfortunately are not widely
deployed due to practical issues. For example, XCP [153], RCP [249], Kickass [112],

ABC [125], and active network [106] in recent two decades all require modifications on
both the server and some or all routers. However, servers are usually controlled by content
providers (e.g., Google, Facebook), while routers by vendors (e.g., Netgear for APs). Co-
ordinating all these parties to push a new transport innovation forward is extremely chal-
lenging, if not impossible. Different from above work, Zhuge patches the last-mile AP only,
which could reduce the barrier to deploy at scale. AP vendors could individually implement
and observe the performance benefits without co-operation with content providers. More-
over, from the view of home users, the last-mile AP is the only place they can control if they
seek a better performance. We are thus motivated to limit the modifications to the last-mile

to make Zhuge deployable at scale.

4.3 Zhuge DESIGN

This section presents the design challenges and framework overview of Zhuge to control the

wireless tail latency.

4.3.1 DESIGN CHALLENGES

Zhuge handles wireless tail latency by reducing the control loop. However, Zhuge design

confronts two major challenges.

Timely and precise estimation of packet latency for RTC traffic. Zhuge estimates the

tuture latency of a packet upon its arrival at the wireless last mile to obtain network con-
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ditions as early as possible. A per-packet precise estimation is necessary to properly guide
CCAs in the sender for rate adaption. However, precise latency estimation is challenging
for RTC traffic in wireless environments, as the bottleneck queue is in a transient fluctua-

tion at asub-RTT granularity, due to two reasons.

* Bursty packet arrivals of RTC traffic. RTC applications generate contents in the unit
of a video frame. To reduce the end-to-end latency, senders tend to burstily send
packets of the same frame out [89]. This indicates that the queue might build up

very quickly even in the steady state.

* Bursty packet departures of wireless channel. The sharing nature of wireless networks
results in the contention of wireless channel resources and frequent bandwidth fluc-
tuation. Wireless protocols tend to aggregate several packets into one MAC frame
(e.g., aggregated MAC protocol data unit, or AMPDU, in WiFi) to compromise
wireless contention. In this case, tens of packets might be aggregated into one AM-

PDU and dequeued simultaneously.

A naive estimation approach is simply dividing the queue length by the dequeuing rate.
However, this approach is faced with a transience-equilibrium nexus [171]: The dequeu-
ing rate is usually measured over a sliding window (e.g., 4oms for WiFiin [125]). A short
window would lead to the variability of measurement during the steady state, while a long
window misses transient latency fluctuation at sub-RTT granularity. Thus, it is challenging
to timely and precisely estimate the per-packet latency for RT'C traffic at the wireless last

mile.
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Effective message feedback for various protocols and CCAs. Zhuge notifies the sender
with the estimated wireless network conditions as quickly as possible. A straightforward
solution is constructing a new type of feedback packets to the sender. However, for most
CCAs deployed in the wild, network conditions such as the current available bandwidth
are not explicitly delivered on the Internet. Directly telling the network conditions to the
sender would need modifications at the sender simultaneously to make the message un-
derstandable to the CCA. As mentioned above, we prefer an AP-based solution without
modifying the sender for deployability at scale.

Making this challenging, transport protocols and CCAs adopted by real world applica-
tions are highly diversified. The headers of transport protocols could be unencrypted (e.g.,
TCP) or encrypted (QUIC). To achieve lower latency, RTC applications prefer to cus-
tomize CCAs, which rely on difterent signals to adjust the sending rate. For example, some
of them modify the TCP CCA in the kernel [16]. For WebRTC-based applications, net-
work conditions are periodically summarized into a special feedback packet [229]. Various

CCAs make it challenging to effectively deliver the network conditions to the sender.

4.3.2 FRAMEWORK OVERVIEW

In response to the above challenges, we design two building blocks in Zhuge: a Fortune
Teller and a Feedback Updater.

To achieve timely and precise prediction of packet latency, we introduce the Zhuge For-
tune Teller in §4.4 to tell the fortune (future latency) of each packet upon its arrival. To
overcome the transience-equilibrium nexus and faithfully obtain precise per-packet latency,

we break the latency into different parts and introduce long-term and short-term estima-
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Figure 4.4: The overall workflow of Zhuge at the last-mile AP. Zhuge contributes the Fortune Teller
and Feedback Updater.

tors. We measure the average dequeuing rate to calculate the long-term queuing delay, and
the packet sojourn time at the front of the queue to respond to short-term fluctuations.

To effectively notify the sender with the latest conditions, we present the Zhuge Feedback
Updater in §4.5 to convert predicted network conditions to signals that senders can under-
stand. We categorize existing protocols in RT'C applications into out-of-band feedback and
in-band feedback. For out-of-band feedback protocols, the arrival of feedback packets are
signals to the sender (e.g., ACK packets in TCP). In-band feedback protocols carry network
conditions in the payload of feedback packets, such as the transport-wide congestion con-
trol feedback (TWCC-FB) packets in WebRTC [138]. Accordingly, Zhuge designs different
feedback mechanisms to carry the latency back to the sender for a variety of protocols.

The overall workflow of Zhuge is presented in Figure 4.4. When a packet arrives at the
wireless access point via the Ethernet port, Fortune Teller would predict its fortune and
also forward the packet as usual to the downlink queue. Feedback Updater will then up-
date the estimation into the feedback packets in the reverse direction. If a newly arrived
packet observes a degraded network condition (e.g., increasing queue length), estimated
wireless latency could be immediately applied to feedback packets in the reverse direction

of the same flow. In this way, the earliest signals could be carried back to the sender, bypass-
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Figure 4.5: Different delay components that the Fortune Teller will estimate. gLong and gShort
together form the queuing delay at the network layer. tx is the transmission delay at the link layer.

ing the queuing delay and wireless transmission delay of the control loop (part (i)-(iii) in

Figure 4.1).

4.4 FORTUNE TELLER

Telling the fortune of a packet is to predict when it will arrive at the client, 7., the subse-
quent delay it will experience. In a wireless network, such delay can be decoupled into two
segments [135], including (i) Queuing delay: the delay between the packet arriving at the
access point, and the packet leaving the queue disciplines to the underlying driver (i.c., the
delay in the network layer). (ii) Transmission delay: the delay between the packet being
passed to the wireless driver, to the time it arriving at the receiver (i.e., the delay in the link

layer). Next we introduce how to timely predict these two delays respectively.

4.4.1 QUEUING DELAY PREDICTION

As discussed in §4.3.1, the strawman solution of dividing the queue size by the dequeuing
rate confronts the transience-equilibrium nexus. A short sliding window will lead to dras-

tic fluctuations of the predicted delays due to the bursts of arrivals and departures, and a
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long window will fail to quickly detect the change of network conditions. In response, we

analyze how to capture the latency fluctuation incurred by the two reasons respectively.

* Bursty packet arrival of RTC traffic. The bursty RTC traffic quickly builds up the
wireless queue. Our design choice is to predict the packet fortune for each packet in-
stead of on a periodic basis. In this way, the delay differences within a burst of RTC

traffic can be captured by taking the queue size observed by each packet as input.

* Bursty packet departure of wireless channel. Bursty packet departure introduces tran-
sient glitches to the dequeuing rate at the millisecond timescale, which is easily aver-
aged and therefore missed with existing sliding window-based measurements. Our
main observation is that when the dequeuing rate is suddenly reduced, an instantly
measurable signal is the waiting time of the packet at the front of a quene (denoted as
the front packet). For example, when the channel starts to become busy, the packet

at the front of the queue has to wait for more time to get a chance to be transmitted.

Since the causes of delay are different when the packet is at the front of the queue and is
not, we decouple the queuing delay into two parts: long-term queuing delay (gqLong) and
short-term queuing delay (gShort), as shown in Figure 4.5. Specifically, gLong is defined
as the delay from the time when one packet arrives, to the time when that packet is at the
front of the queue, which is used to cover the latency fluctuation induced by wireless con-
tention and bursty RTC traffic. We could estimate qLong as the ratio of current queue size
over average dequeuing rate since it’s more aftected by the queue dynamics. Short-term
queuing delay is the time from the time one packet is at the front of the queue, to the time

when that packet is finally dequeued. qShort is more related to the sending pattern at the
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Figure 4.6: How qLong and qShort react to the ABW drop at 5ms.

link layer (e.g., the aggregation of MAC data units will lead to fluctuations in qShort). We
therefore individually predict qLong and gShort, and take their sum as the estimation of
queuing delay. In Figure 4.5, 2vg(-) denotes the average value over a sliding window, while
cur(-) denotes the current value measured at the time of calculation. gSize is the size of the
queue, gFront WaitTime is the time that the current front packet of the queue has waited
so far, and #xRate is the dequeuing rate of the queue.

Using the combination of long-term and short-term queuing delay prediction has two
advantages. We illustrate the advantages with an example in Figure 4.6. First, using gShort
can quickly detect the ABW drop. When the ABW starts to decrease, since the queue needs
some time to build up, and the measured txRate also needs some time to decrease due to
the sliding window, qLong increase slowly. Instead, packets have to wait for longer time to
send, which could be immediately observed. As illustrated in s-15ms in Figure 4.6, qShort
would dominate the increase in total queuing delay, quickly reflecting the ABW drop. Sec-
ond, using qLong could provide a stable and accurate estimate of the queuing delay when
the queue has already been built up. For example, when the ABW while the bottleneck
queue is still overloaded (e.g., after 1sms in Figure 4.6), gLong would dominate the queuing

delay, providing a stable and accurate estimation.
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Next, we further introduce how we handle two practical issues in realizing the estimation

of queuing delay.

Adjustments against bursty departure. The bursty departure of the queue due to the
aggregation of packets at the link layer could affect the accuracy of the estimation of gLong:
when there are several packets in the queue, they may be sent out together at once. In fact,
according to our design, fluctuations within a burst should be reflected on qShort. Thus,

when calculating qLong, we estimate ¢S7ze as

gSize = max(sizeOfPacketsInQueue — maxBurstSize, 0) (4.1)

where maxBurstSize is the maximum size of simultaneous packet departures at the resolu-

tion of 1ms.

Calculation with queue disciplines. Another issue in practice is that queues in reality
might not be FIFO as assumed in research papers [125]. For example, the default queue
discipline in systemd has been changed to fq_codel among different flows differentiated
by their s-tuples [8]. For cellular networks, each flow also has its own queue isolated from
competing flows [125]. In these cases, we need to calculate the statistics of the RTC flow’s

corresponding queue.

4.4.2 TRANSMISSION DELAY PREDICTION

In this paper, we mainly target at the estimation of delays in the WiFi network. We refer the
readers to [125] for the estimation on cellular networks. Predicting the transmission delay

for each packet is challenging since it is correlated to the underlying wireless drivers and
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physical channels. Especially for high-performance wireless devices (e.g., 802.112x), criti-
cal features (e.g., bit-rate selection and frame aggregation) are coded in the hardware device
and inaccessible from the access point CPU without significant vendor interaction [62].
For example, many Netgear routers adopt the Qualcomm Atheros hardware [6], where
performance-critical features (frame aggregation, etc.) are hard-coded and inaccessible.
Therefore, it is challenging to predict the transmission delay of the wireless channel.

According to [125], we summarize the following observations of the transmission delay.
First, similar to all link layer protocols, there should be only one data unit in transmission
in the wireless channel. For example, an 802.11ac sender might aggregate several packets
into one data unit (aggregated MPDU, or AMPDU). However, multiple AMPDUs cannot
be transmitted simultaneously since their signals will interfere with each other. Therefore,
the wireless driver will aggregate several packets into one AMPDU, send it out, and wait
for acknowledgment or timeout of that AMPDU. Second, with recent efforts in the Linux
mainline, the queue in the lower layers of the wireless network stack has been exposed to
the queue discipline [135]. In this case, the lower layer queue in the wireless network stack
is only used to aggregate multiple packets into a link layer frame.

Consequently, as shown in Figure 4.5, the transmission delay tx is calculated as the av-
erage interval between packet departures from the network layer queue, with a window
similar to txRate. The sliding window should be long enough to cover at least two bursts
from the sender so that packets are continuously measured. Note that since multiple pack-
ets might be aggregated and dequeued simultaneously, we do not calculate the intervals

that are less than one millisecond.
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Figure 4.7: Out-of-band feedback protocols do not explicitly carry the feedback information in the
payload while in-band ones do. Blue and white blocks denote packet headers and payloads.
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Table 4.1: We categorize the feedback mechanisms of existing RTC applications into out-of-band
feedback and in-band feedback. Protocols of some applications are identified by ourselves.

4.5 FeEEDBACK UPDATER

Zhuge delivers the estimated latency back to the sender in a message that is comprehensi-

ble to the sender. To avoid modifications at end hosts, Zhuge abide by the original feedback
message format of application protocol and CCAs. This section starts by categorizing feed-
back mechanisms of popular CCAs for RT'C applications (§4.5.1), and then introduce our

corresponding solutions (§4.5.2 and §4.5.3).
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4.5.1 FEEDBACK MECHANISM CLASSIFICATION

We investigate popular RT'C applications and summarize their feedback mechanisms in
Table 4.1. They can be categorized into two types, in-band and out-of-band. We present

their behaviors in Figure 4.7.*

* In-band feedback. As shown in Figure 4.7(b), in-band feedback means that the feed-
back information is explicitly written in the payload of a specific type of feedback
packets. For example, the Real-Time Protocol (RTP), together with the Real-Time
Control Protocol (RTCP), follows the in-band feedback. The receiver records the
time of arrival of each data packet and periodically constructs a feedback packet to

carry time intervals back to the sender [138].

* Out-of-band feedback. Out-of-band feedback mechanisms do not explicitly write the
information related to rate control in the payload of feedback packets. In contrast,
the sender calculates all network conditions itself upon receiving the feedback pack-
ets. For example, a TCP client will acknowledge each packet it receives. When the
sender receives the ACK packet, it will then calculate the RT'T, receiving rate, and

other network conditions.

We separately design solutions for the above two different feedback mechanisms. For
out-of-band feedback mechanisms, network conditions are measured at the sender only.
Our observation is that we can deliberately delay the feedback ACK packets to carry the

network conditions back. For in-band feedback mechanisms, as feedback information is

fSome protocols may utilize both feedback mechanisms. For example, the RTP sender also measures
the RTT itself, similar to TCP [229]. This RTT information is not used for rate control, but is only used to
stabilize the control loop in RTP.
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Figure 4.8: Zhuge immediately delays the feedback packets in the reverse direction to carry the
predicted fortunes back.

written in the payload of feedback packets, we need to update the payload of feedback pack-

ets. Next we introduce two solutions in detail.

4.5.2  OuT-0F-BAND FEEDBACK: DELAYING ACKS

ACK packets are used as messages for applications relying on out-of-band feedback, but
are consumed in different ways by various CCAs. For example, BBR counts the receiving
rate and queries the minimal RTT of ACK packets for rate adaption, while Copa [47] is
sensitive to per-packet delay. To satisfy the requirements of different CCAs, our design goal
is to faithfully deliver the estimated latency in the finest per-packet granularity by delaying
ACK packets. CCAs can then aggregate fine-grained information and react in their own
ways.

We present an illustration of how Zhuge carries the predicted packet fortunes back from

the view of AP in Figure 4.8. Blue arrows indicate how network conditions can be sensed
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by the sender without Zhuge. Assume packets with sequence numbers k£ and k£ + 1 arrive at
the AP from the server, and now the available bandwidth drops. Without Zhuge, the packet
behind (seq £ + 1) will be dequeued later than expected, and the queuing delay will grad-
ually increase ((1) in blue). The client will then receive these two packets with an enlarged
interval, and consequently acknowledge them with that interval. The ACK packets will
then arrive at and depart from the AP with an enlarged interval ((2) in blue). As shown in
Figure 4.9, without Zhuge, the sender can only acknowledge increased RT'T when the ACK
of delayed packets arrives at time deltaDelay.

With Zhuge, the latency of packets seq £ and & + 1 could be predicted upon their arrival
((r’) in red). If the Fortune Teller predicts that the delay is increasing, we can immediately
delay earlier ACKs of previous packets that have arrived or will arrive at the access point.

As illustrated by red arrows in Figure 4.8, we can deliberately enlarge the interval between
other ACK packets (ACK 7 + 1and; + 2) to timely notify the sender ((2’) in red). In this
case, the server can detect the available bandwidth drops when packets with the adjusted
delay arrive at the server ((3’) in red). The RTTs of different packets measured by the server
with Zhuge would then be shifted forward as shown in Figure 4.9. Consequently, the con-
trol loop of CCAs is reduced by (£41) — (j41) (counted in ACK number, the green arrow
in Figure 4.8). Also note that, Zhuge does not need to look at and match the sequence and
ACK number - the numbers presented here are for illustrative purpose. Instead, Zhuge
only looks at the s-tuple to identify flows, and views the sequence and ACK streams as

blackboxes. In this way, Zhuge could still work even the transport protocol is encrypted

(e.g., QUIC).
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Figure 4.9: Zhuge shifts the curve of RTT forward by delaying earlier returning ACK packet to
quickly feedback network conditions. The actualDelay is the control loop of Zhuge.

However, downlink data packets and uplink feedback packets arrive at the AP asyn-
chronously. Thus, it is often impossible to one-on-one map the delay predicted by the
downlink data packets to the uplink feedback packets. When packets arrive, the Fortune
Teller will be updated according to current network conditions. The updated queue con-
ditions include the qLong, qShort, and tx, as introduced in §4.4. The final predicted total
delay is calculated as:

totalDelay = qLong + qShort + tx (4.2)

Below we introduce design principles of Zhuge to ensure the precision of latency of pack-

ets.

Delivering precise long-term latency in the steady state. Since Zhuge deliberately delays
the feedback packets in the uplink, a natural concern is whether such a delay will affect the
estimation of network RT T in the steady state. For example, for the packet seq & + 1in
Figure 4.8, it has already suffered a long queuing delay in the downlink direction. If Zhuge
also introduces a non-trivial delay for its feedback ACK packet ACK £ + 2 in the uplink

direction, it will exaggerate the real RT'T and might interfere with the estimation of CCAs.
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To handle this problem, we do not directly add the absolute estimated delays from the
downlink direction into the additional ACK delay in the uplink direction. Instead, we
record the relative delay deltas, i.e. the delay difference between consecutive downlink
packets. When the estimated delay is increasing, we could record a series of positive delay
deltas from the downlink direction and gradually increase the delay in the uplink direction.
When the queue has already been steadily built up (e.g., for packets after seq £ + 1), the de-
lay delta would be around zero, and the feedback packet in the uplink direction would not

suffer from additional delays.

Delivering precise short-term latency fluctuation. Short-term per-packet latency dy-
namics are vital for latency-sensitive CCAs like Copa. These CCAs will utilize the patterns
of packet delays at the sub-RTT level to control the sending rate. However, naively lever-
aging the delay delta mechanism may not faithfully deliver short-term latency fluctuations.
The reason is that short-term latency varies packet-by-packet. Not every delay delta can be
carried in one separate ACK. This might result in the accumulation of multiple delay deltas
into one ACK, which is unfaithful. For example, when three data packets arrive at the AP
with delay deltas of +1ms between each packet, directly delaying the next ACK for +3ms
would introduce a sharper delay increase than the actual value.

To address this problem, instead of delivering per-packet delay delta, our key idea is pur-
suing the distributional equivalence between downlink delay delta and uplink ACK delays.
We maintain a distribution of recent delay deltas of the downlink data packets. Upon the
arrival of a downlink packet, we calculate the delay delta according to the predicted delay by
the Fortune Teller. When an uplink feedback packet arrives at the access point, we sample

the distribution of recent deltas, and use the obtained value to delay the feedback packet. In
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Algorithm 1: On data packets: Out-of-band feedback

1 deltaDelay = curTotalDelay - lastTotalDelay
2 if deltaDelay > o then
3 LdeltaHistory.push_back(deltaDelay)

4 else

5 LtokenHistory.push_back(-deltaDelay)

¢ lastTotalDelay = curtotalDelay

this case, even under bursty packet arrival and departure, Zhuge is able to mimic the delay

distributions to the feedback packets.

Preserving the order of feedback packets. Our approach of applying delay deltas to up-
link feedback packets introduces an additional challenge of order preserving of feedback
packets. For example, if packet ACK 7 + 1 and j + 2 arrive simultaneously, and ACK; + 2
samples a lower delay than ACKj + 1, the AP may send ACK 7 + 2 in front of ACK; + 1,
which leads to out-of-order of feedback packets and confusion at the sender. Clamping the
sending time of the subsequent packets to the precedent ones, such as holding ACK 7 + 2
until ACK 4 1 has been sent, will lead to the overestimation of RT'T.

In response, we introduce a delay token to preserve the order of feedback packets and
also avoid the overestimation of RT'T. When we need to let the subsequent feedback pack-
ets wait for the sending of precedent packets, we store the waiting time as a delay token.
Next time when a positive delay delta is sampled, we will first try to consume the token. In
this case, the average values of actual delays will be maintained the same as the predicted
delays.

We finally present the workflow of how Zhuge Feedback Updater uses the predicted for-

tune to update the feedback packets. As shown in Algorithm 1, upon arrival of each data
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Algorithm 2: On ACK packets: Out-of-band feedback

1 actualDelay = min (o, lastSentTime - curArrvTime)
actualDelay += random(deltaHistory)
while tokenHistory s not empty do

N

3
4 if tokenHistory.front > actualDelay then
s tokenHistory.front -= actualDelay
6 actualDelay = o
7 break
8 else
9 actualDelay -= tokenHistory.front
10 tokenHistory.pop_front

v Schedule to send the current ACK packet after actualDelay
12 lastSendTime = curArrvTime + actualDelay

packet, given the predicated delay of that packet, Zhuge first calculates the delay delta (line
1). If the delta is nonnegative, we store it into a sliding window. Since Zhuge can only delay
the ACK packets with a positive time, if the delta is negative, we need to store it as tokens
(line 4-5). Asynchronously, upon arrival of each ACK packet, Algorithm 2 will be executed
to properly delay ACKs. curArrvTime is the arrival timestamp of the current ACK, and
lastSentTime is the calculated timestamp to send the last ACK packet from the AP to the
server. For order preservation, Zhuge first calculates the minimum delay for the current
ACK packet to make sure that the current ACK packet would be sent after previous ACK
packets (line 1). Zhuge then randomly samples a delay delta from the recent deltas in a slid-
ing window (line 2). Zhuge further checks if there are outstanding tokens and consumes
the tokens if available (line 3-10). Finally, the current ACK packet will be delayed and sent

after actualDelay (line 11).

84



4.5.3 IN-BAND FEEDBACK: UPDATING PAYLOADS

For in-band feedback mechanisms such as RTCP [229], the feedback information (e.g.
per-packet receiving time) is written in the payload of feedback packets. We need to update
their payloads to carry the freshly estimated latency back to the sender. We use the RTP
(data)/RTCP (feedback) protocol pair to introduce how we update the feedback packets

with two steps.

o Step 1: Packet fortune recording. Upon the arrival of each RTP packet, Zhuge will pre-
dict its fortune and then store the predicted delay together with its RTP transport-

wide congestion control (TWCC) sequence number in the RTP header.

o Step 2: Feedback construction. When it’s the time to feedback the current network
conditions back to the sender (e.g., once per RT'T or per frame [138]), Zhuge will be-
have like the RTP receiver and construct a TWCC feedback packet based on stored
delays and sequence numbers. To ensure timestamp consistency, Zhuge will only
send the TWCC packets constructed by itself and drop all TWCC from the client.
For other types of feedback packets (e.g., negative acknowledgement for loss recov-

ery, receiver reports, etc.), Zhuge will forward it from the client to server as normal.

Detailed RTP/RTCP packet formats are presented in RFCs [138, 229]. Meanwhile,
there are two practical concerns regarding the implementation of Zhuge in-band feedback

mechanism.

Time synchronization. Since the timestamps on the AP may not be synchronized with

the receiver, a straightforward concern is whether the time differences between the AP and
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the receiver would affect the estimation of CCAs. In fact, the server is designed to tolerate
the time differences between the server and the constructor of feedback packets (no matter
clients or APs) since the server is not synchronized with the client either. Therefore, the
timestamps of produced TWCC packets are from the same AP clock and consistent with

the server.

End-to-end encryption. In some cases, RTP data packets and RTCP feedback packets
might be end-to-end encrypted [60]. Zhuge could work in such cases due to the following
reasons. First, Zhuge does not need to decrypt the RTP data packet payload. Instead, Zhuge
only needs to record sequence numbers, which are explicitly readable in the header. Sec-
ond, Zhuge does not need to decrypt the RTCP feedback packet payload either. Zhuge only
needs to encrypt the constructed feedback packet so that the server can correctly decode
the packet. Fortunately, in some cases in practice, server and client share the public key in
plaintext with each other at the beginning of the connection [60]. Zhuge might intercept

and save the public key of the server, and use it to encrypt the constructed feedback.

4.6 DiscussioN

Here we discuss some practical considerations in the deployment of Zhuge, as well as the

limitations.

Last-mile v.s. first-mile. We mainly introduce and evaluate the performance of Zhuge in
the direction of downlink, where the wireless network serves as the last-mile. This is be-
cause for many RTC applications such as remote desktop, cloud gaming, and video-on-

demand, videos are disseminated from servers to clients. Remote servers as senders adjust
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the sending rate and suffer from a long control loop. For other peer-to-peer RTC applica-
tions, such as video conferencing, the wireless network as the fist-mile might also intro-

duce tail latency. In this case, queues are built up in the clients. Mechanisms in Zhuge can
also be used to handle first-mile tail latency by manipulating the client-side network stack,

which needs integration with the application and is beyond our scope.

Fairness. Reducing the control loop for a CCA indicates a faster reaction to network con-
ditions, which might imply a greater aggressiveness in both sending rate increase and de-
crease. A natural concern is whether Zhuge impairs the fairness between optimized flows
and other ones. Our answer is 70 because Zhuge does not prioritize target flows by sacrific-
ing others. (1) When sending rate increases, wireless queue should be near empty. In this
case, flows optimized by Zhuge have a similar control loop to those without Zhuge and will
not become more aggressive. (2) Sending rate decrease may be caused by wireless queues
building up. Zhuge merely reduces the control loop and accelerates convergence, while

the converged fairness between different CCAs should be handled during the design of

CCAs [183]. We further evaluate the fairness of Zhuge in §4.7.6.

Scalability to new protocols. In this paper, we propose solutions for a wide range of appli-
cations as long as they use the TCP, QUIC or RTP/RTCP protocols. However, new pro-
tocols may evolve in the future. For new out-of-band protocols, as long as we could identify
the flow information from packets, Zhuge could still work from the network layer. For ex-
ample, since we do not need to know the specific sequence numbers of the packets, even

QUIC encrypts all packets end to end, Zhuge is still able to work with QUIC. For in-band
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protocols, we need operators to release the format of the protocols to accordingly modify

the Feedback Updater in Zhuge.

4.7 EVALUATION

We first introduce our implementation of Zhuge in §4.7.1 and the experimental setup in

§4.7.2. Then, we evaluate the performance of Zhuge to answer the following questions:

* Can Zhuge improve the tail performance under real-world wireless traces? We evaluate
Zhuge over RTCP/RTP and TCP with five real traces. Evaluation shows that Zhuge
can reduce the ratio of long tail latency by up to 75%, and improve the application

performance by up to 91%. (§4.7.3)

* How does the performance of Zhuge vary under different types of wireless competition?
We craft wireless scenarios of bandwidth reduction, flow competition, and wireless

interference. We observe performance improvement of Zhuge under all scenarios.

(54.7.4)

* How much performance improvements Zhuge can bring in the real world? Our pro-
totype deployment of Zhuge in our office environments shows that Zhuge could im-

prove both the network and the application metrics from 17% to 94.7%. (§4.7.5)

* What is the overbead of Zhuge in terms of steady state performance, fairness, and CPU
resources? We find that Zhuge does not compromise the steady-state bitrate of RTC

flows, fairness with other flows, and has acceptable overhead. (§4.7.6)

88



4.7.1  IMPLEMENTATION

We implement Zhuge with both NS-3 simulator and a testbed based on production wireless
APs. In our simulation, we implement a simplified video encoder and decoder according

to reference implementations in WebRTC. We implement both the RTP/RTCP and TCP
protocol stacks, as well as advanced CCAs and AQMs listed in §4.7.2. We construct net-
work layer and link layer wireless queues, and implement Zhuge for simulation. We set the
sliding window to 4oms in the Fortune Teller and Feedback Updater since our video stream
is at 25fps. For testbed experiments, we implement Zhuge in OpenWrt, an open-source op-
erating system for embedded network devices. The Fortune Teller and Feedback Updater
are implemented as user-space features in OpenWrt that use packet sockets to observe and
modify packets. We identify target RTC flows by matching its IP with a configurable IP list
maintained in Zhuge [26, 33]. We use a Netgear WNDR 3800 router [6] that runs Open-
Wrt and supports WiFi 8o2.11n for performance evaluation. We also deploy Zhuge on a

TP-Link router to measure CPU resource overhead.

4.7.2  EXPERIMENTAL SETUP

We produce videos at 108op 24fps with an average bitrate of 2Mbps. Below we present

baselines, traces, and metrics we use.

Baselines. Zhuge can work with advanced CCAs and active queue management (AQM)

mechanisms. In our evaluation over RTP/RTCP, we implement the following solutions:

* Gec+FIFO. Google Congestion Control (Gcece) [77] is the default CCA of WebRTC

and is adopted by many applications such as Google Stadia and Google Meet. GCC
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is sensitive to both packet loss and increased network latency. Thus, we choose Gee
as the CCA for the RTP/RTCP protocol, and use the FIFO scheduler in wireless

queues as a baseline.

* Gcc+CoDel. CoDel [203] is an AQM mechanism designed to handle bufferbloat. It
would drop packets in the front, instead of tail, of queue when the queuing delay

increases to timely deliver the congestion signal to senders.

* Goe+Zhuge (+CoDel). We implement Zhuge over RTP/ RTCP and evaluate the per-

formance when working with Gec.

For TCP evaluation, we implement the following solutions. Note that the CCAs we choose
are loss-insensitive. Thus, to be concise, we evaluate each solution with FIFO and CoDel

respectively, and select the better performer as the baseline.

* Copa. Copa [47] is a latency-sensitive CCA for TCP. It can achieve low latency ac-
cording to many experiments [39, 125] and is already deployed in real streaming

services [122].

* Copa+FastAck. FastAck [62] is a WiFi AP-based optimization that reduces latency
by counterfeiting a TCP ACK packet on receiving the 802.11 ACK from the client

device.

* ABC. ABC [125] optimizes wireless network performance through network-host co-
ordination. It detects the network conditions directly from the access point, and re-
ports them to the sender. However, ABC needs to modify the wireless access point,

the client, and the server simultaneously.
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* Copa+Zhuge. We implement Zhuge over TCP and evaluate the performance of Zhuge

when working with Copa.

Traces. We use five real-world traces with sub-second resolution. Two are from WiFi net-
works and three from cellular. The traces record the bandwidth and delay at each times-

tamp.

* Wi - Restaurant WiFi. We measure the goodput of a public WiFi AP provided by a
crowded restaurant [28] for 3 hours during dinner, and calculate the goodput at the
resolution of 20oms. The WiFi AP operates in 2.4GHz with 8o2.11ac. We leave the

measurement details to Appendix A.1.

* W2z - Office WiFi. We also measure the goodput of the WiFi AP in our office for 10

hours in the office hour. Our office APs operate in the §GHz band with 8o2.11ac.

* Cr1 - Indoor Mixed 4G/5G. Goodput is measured over both 4G and sG cellular net-

works in an indoor scenario [187].

* Cz - City 4G and C3 - City 5G. Literature [264] collects packets over both 4G and
5G in the wild in a metropolis. We separate the traces into 4G and 5G according to

the labels.

Metrics. We use the following metrics for evaluation.

* RTT. We measure the RTT of packets at the network layer. We consider the ratio of

RTT >200ms as tail latency ratio.
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* Frame delay. Frame delay is defined as the time interval between frame encoding
at the sender and decoding at the receiver. One frame can only be decoded until all
packets of this frame have arrived and previously referred frames have already been
decoded. Therefore, frame delay is a direct metric to evaluate latency-related user

experience of videos. We consider a frame with delay of >400ms as a delayed frame.

* Frame rate. Users will also experience stutters if the frame-rate arriving at the client
is too low. Thus, we can also assess video quality according to the frame rate. We

consider a per-second frame rate of <1ofps as low frame rate.

In this paper, we do not adopt the video quality metrics such as PSNR [14], SSIM [258],
and VMATF [166] since they do not reflect the end-to-end interactive delay. Some recent

efforts are focused on subjective experience metrics [81], which is left for our future work.

4.7.3 TRACE-DRIVEN SIMULATION

We use NS-3 for simulation to evaluate the tail network latency and application perfor-
mance of Zhuge under real-world wireless traces. We emulate the bottleneck link in NS-3

with five traces, and evaluate Zhuge over RTP/RTCP and TCP.

RTP/RTCP. As presented in Figure 4.10, for RTP/RTCP, Zhuge outperforms all base-
lines in all traces and achieves consistent low latency. Specifically, Zhuge could reduce the
ratio of long network RT'T by 45% to 75% compared with the best baseline. Consequently,
the delayed frame ratio is reduced by 38% to 92% in different traces, which significantly re-
duces video rebuftering and improves user experience. We also observe that Gee+CoDel

outperforms Gee+FIFO in trace C1 and C3 with respect to frame delay, but falls short in
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Figure 4.10: Results of trace-driven simulations over RTP/RTCP.
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Figure 4.11: Delay distributions of Zhuge and different baselines over RTP/RTCP. Note that all y-

axes are log-scaled.
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Figure 4.12: Results of trace-driven simulations over TCP.
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the other three traces. This is because delay-based CCAs like GCC may not be sensitive to
packet losses unless it’s severe (packet loss rate >10%).

We further present the detailed results of RTP/RTCP based on trace W1 (WiFi) and Cx
(cellular) in Figure 4.11 to better understand the optimization of Zhuge. We observe that
Zhuge could reduce the tail latency, long frame delay ratio, and low frame rate ratio at all tail
percentiles against two baselines. For example, the P99 tail latency is reduced from 40oms
to 170ms, and 4ooms delayed frame ratio is reduced from 1% to o.55% based on trace Wr.

Moreover, Zhuge could also reduce the ratio of low frame rate by at least 50% in two traces.

TCP. Figure 4.12 shows that for TCP, as a pure AP-based solution, Zhuge could outper-

form other AP-based solutions (Copa+FastAck) and achieve comparable performance

with end-AP coordinated solution (ABC) in all traces. In terms of tail latency, Copa+Zhuge
comprehensively outperforms Copa and Copa-+FastAck. We also observe that Copa+FastAck
does not consistently perform better than Copa due to FastAck’s aggressive retransmission
strategy. ABC has a better performance than Copa+Zhuge on trace C3, as ABC could co-

ordinate the AP and end hosts with customized feedback messages, which may not be de-
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ployable at scale as discussed in §4.2.3. For frame delay, Copa+Zhuge achieves the best per-

formance over competitors including ABC in all traces except C1, where Copa+FastAck

is slightly better. ABC does not perform well on frame delay due to its aggressive rate as-

cending design. We further repeat our experiments with the traces used in the ABC paper

in Appendix A.2 and find that Zhuge also achieves comparable performance with ABC.

4.7.4 MICROBENCHMARKS UNDER WIRELESS FLUCTUATIONS

We further simulate the performance of Zhuge under bandwidth reduction, flow competi-

tion, and wireless interference.
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Bandwidth drop. We evaluate the capability of Zhuge to quickly adapt to bandwidth re-
duction and reduce the period of network condition and application performance degrada-
tion. We first simulate a link with soms RTT and 30Mbps bandwidth and start transmis-
sion. When the CCA reaches the steady state, we reduce the bandwidth by a factor of &£ x
from 2 to 50, and measure the duration of RT'T > 200ms, frame delay > 400ms, and frame
rate < 1ofps before convergence.

As shown in Figure 4.13, for RTP/RTCP, Gee+Zhuge reduces the duration of network
degradations and application performance by at least 50% in a wide range of settings. Re-
sults over TCP show similar results as presented in Figure 4.14. Compared with the better
performer of Copa and Copa+FastAck, Copa+Zhuge could significantly reduce the dura-
tion of high network RT'T by 14% to 64.3% when £ < 30. Fork > 30, our observation
is that the degradation duration is mainly bounded by the TCP retransmission timeout
(RTO) due to severe packet loss, and the performance improvement of Zhuge is not as re-
markable. Similarly, Zhuge outperforms ABC when £ < 15 but under-performs ABC
(joint network-host optimization). Nevertheless, according to our measurements in Fig-
ure 4.2, 99% bandwidth drop cases fall into £ < 15, where Zhuge brings good improve-

ments.

Flow competition. We then investigate how would flows with Zhuge behave when con-
fronting competitors on the same bottleneck queue. We start a different number of bulk
transfer flows with TCP CUBIC as competitors and let them compete in the access point.
We measure the duration of network RT'T >200ms, frame delay >400ms, and frame rate

<1ofps. Figure 4.15 shows that compared with FIFO and CoDel, Zhuge could reduce the
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Figure 4.16: Performance comparison over RTP under interference.

duration of performance degradation by up to 40% in all cases. Thus, Zhuge could eftec-

tively ameliorate the performance degradation under competition.

Wireless interference. We measure the duration of performance degradation with dif-
ferent numbers of wireless interferers. These interferers are also bulk transfer applications
based on TCP CUBIC, yet connected to different access points. They compete for the
same wireless channel with the RTC flow optimized by Zhuge. We vary the number of in-
terferers from 5 to 40. Note that in the scenario of wireless interference, the interference in

wireless channels happens all the time, thus we cannot calculate the degradation duration
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Figure 4.17: Testbed experiments of Zhuge with an RTC flow.

for a single event as in previous two scenarios. As shown in Figure 4.16, Zhuge could reduce
the frequency of degradation of both network condition and application performance by
at least 50%. Note that according to a recent measurement by Cisco [62], there could be up

to 29 interferers at the 9oth percentile on a 2.4GHz channel. Therefore, Zhuge could bring

benefits in a noisy wireless environment.

4.7.5 REAL-WORLD EXPERIMENTS

We further evaluate the performance of Zhuge with our OpenWrt-based WiFi AP testbed.
We set up an RTC server and a client with the WebRTC APIs [31] in Microsoft Edge
browsers on two laptops. The server streams a timestamped video to the client through
the peerconnection API over RTP/RTCP and GCC. The server is wire-connected to the
AP, while the client connects to AP through WiFi. We evaluate the performance of Zhuge

in the following scenarios, each lasting for 6 hours.

* scp. This experiment is designed to evaluate the performance of Zhuge over RTC
flows when competing with other flows. We periodically start and stop an scp file

transmission from the server to the client every 30 seconds.
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* mcs. This experiment is designed to mimic fluctuating wireless channels. 802.11
access points will dynamically change the modulation coding scheme (MCS) at the
link layer to adapt to channel conditions. Therefore, similar to [125], we randomly
change the MCS every 30 seconds with the Linux iw command and assess Zhuge’s

reaction to fluctuation.

* raw. We report the results of running the RT'C application in our crowded office

without additional configurations.

We measure the network RT T by analyzing the packet captures, and frame delay by calcu-
lating the timestamp difference between video sent and video received. As shown in Fig-
ure 4.17(a) and 4.17(b), both the network RT T and frame delay of the RT'C flow with
Zhuge has been improved against baselines by 17% to 95% (network RT'T) and 9% to 67%
(frame delay) in all scenarios. This indicates that Zhuge could eftectively reduce the tail la-
tency in real wireless environments.

Meanwhile, we also evaluate the capability of Zhuge to maintain similar performance
in a steady wireless channel compared with the baseline. We evaluate the steady-state per-
formance by measuring the video’s average bitrate based on Microsoft Edge and present
the results in Figure 4.17(c). We observe that Zhuge could maintain similar average bitrate,
demonstrating its maintenance of performance in the steady state. Note that the improve-

ment in tail latency is not reflected in the bitrate results.

4.7.6  Zhuge DEEP DIVE

Finally, we report the fairness and runtime overhead of Zhuge.
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Estimation accuracy. We measure the accuracy in the estimation of packet delay in §4.4.1.

We compare the estimated delay and the real delay measured later for the same packet. We

present the distribution of the prediction error in different traces in Figure 4.18(a). In most

cases, the prediction error is much less than the RT'T in our experiment (soms). We also

put the different results into bins and present the heatmap of the frequency of each bin.

As shown in Figure 4.18(b), when the estimated delay is low (1-64ms), the estimation is

usually accurate. When the estimated delay is high (>64ms), the estimation could be inac-

curate, but the real delays are still high enough (more than one RTT) to trigger the sender

to reduce the sending rate.
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Internal fairness. We analyze whether Zhuge affects the bitrate fairness in the steady state
when optimizing two RTC flows simultaneously. We report the goodput of RTC flows
normalized by the link capacity when they compete for the same AP. Bar 4 in Figure 4.19
reports the goodput of two flows without Zhuge, while Bar ¢ reports the goodput when
both flows are optimized by Zhuge. We discover that the bitrate fairness in the steady state
is not affected by Zhuge with GCC over RTP/RTCP or Copa over TCP. For GCC, Zhuge
even slightly increases the average flow bitrate by 10%. This is because Zhuge enables the

sender to react faster to the situation where the sending rate oversteps the link capacity.

External fairness. We evaluate whether Zhuge advantages optimized flows by compromis-
ing other flows with the same CCAs during competition. We measure the bitrate of two
RTC flows, one of which is optimized by Zhuge and the other one is not. We present the
results in the bar b in Figure 4.19. For both GCC and Copa, the bitrate difference of the
two flows are < 3%. Thus, as discussed in §4.6, the performance improvement of Zhuge is
not built on sacrificing the performance of other flows. Instead, two flows compete fairly,

as intended by CCAs.

CPU overhead. We measure the CPU utilization of Zhuge with our implementation on an
OpenWrt-based Netgear WiFi AP, as well as a TP-Link TL-WDR 4900 [7] AP. We measure
the CPU utilization when processing different numbers of concurrent unencrypted RTC
flows by Zhuge, and present the result in Figure 4.20. These two APs manufactured ten
years ago could still support Zhuge to process 5 concurrent RTC flows, which can cover

many real scenarios (e.g., home WiFi).
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There are several potential directions to optimize the resource overhead of Zhuge. First,
when the CPU utilization is high, instead of estimating all the downlink packets, Zhuge
could selectively update the network conditions. As long as the time interval between esti-
mation is negligible (e.g., several milliseconds), the control loop is still reduced. Moreover,
our prototype implementation of Zhuge is based on user-space packet sockets, which could
be further optimized by inserting Zhuge as a kernel module. Finally, there are also successful

deployment of other per-packet state maintenance features in commercial APs [62, 156].

4.8 SUMMARY

We propose Zhuge, an in-AP solution that reduces the control loop to alleviate tail latency
for RT'C applications in wireless networks. Zhuge predicts the fortune of each packet upon
its arrival with the Fortune Teller, and quickly notify the sender about these fortunes over

a variety of protocols with the Feedback Updater. We evaluate the performance of Zhuge
with both real-world trace-driven simulations and deployments in the testbed. Experiments
show that Zhuge reduces the tail of long latency and RTC application performance degrada-

tion by 17% to 95% in different scenarios.
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Decision on Control Path:

Rule-based Policy Conversion

5.1 INTRODUCTION

Recent years have witnessed a steady trend of applying deep learning (DL) to a diverse set

of network optimization problems, including video streaming [179, 180, 266], local traf-
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fic control [83, 147], and network resource management [226, 263, 278]. The key enabler
for this trend is the use of Deep Neural Networks (DNNs), thanks to their strong ability
to fit complex functions for prediction [160, 162]. Moreover, DNNS are easy to marry
with standard optimization techniques such as reinforcement learning (RL) [248] to al-
low data-driven and automatic performance improvement. Consequently, prior work has
demonstrated significant improvement with DNNs over hand-crafted heuristics in multi-
ple network applications [83, 179, 181].

However, the superior performance of DNNs comes at the cost of using millions or
even billions of parameters [70, 160]. This cost is fundamentally rooted in the design of
DNNs, as they typically require numerous parameters to achieve universal function ap-
proximation [162]. Therefore, network operators have to consider DNN's as large black-
boxes [94, 283], which makes DL-based networking systems incomprehensible to debug,
heavyweight to deploy, and extremely difficult to ad-hoc adjust (§5.2.1). As a result, net-
work operators firmly hold a general fear against using DL-based networking systems for
critical deployment in practice.

Over the years, the machine learning community has developed several techniques for
understanding the behaviors of DNNss in the scope of image recognition [59, 275] and
language translation [218, 252]. These techniques focus on surgically monitoring the ac-
tivation of neurons to determine the set of features that the neurons are sensitive to [59].
However, directly applying these techniques to DL-based networking systems is not suit-
able — network operators typically seek simple, deterministic control rules mapped from
the input (e.g., scheduling packets with certain headers to a port), as opposed to nitpick-

ing the operational details of DNNs. Besides, networking systems are diverse in terms of
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their application settings and their input data structure. The current DNN interpretation
tools, designed primarily for well-structured vector inputs (e.g., images, sentences), are not
sufficient across diverse networking systems. Therefore, an interpretable DL framework
specifically tailored for the networking domain is much needed.

In this chapter, our high-level design goal is to interpret DL-based networking systems
with human-readable control policies so that network operators can easily debug, deploy,
and ad-hoc adjust DL-based networking systems. We develop Metis”, a general framework
that contains two techniques to provide interpretability. To support a wide range of net-
working systems, Metis finds that a common feature shared by video streaming systems is
that they are local systems, which collect information locally and make decisions for one
instance only.

Specifically, we adopt a decision tree conversion method [58, 223] for local systems. The
main observation behind the design choice is that existing heuristic video streaming systems
are usually rule-based decision-making systems (§5.3.1) with a rather simple decision logic
(e.g., buffer-based bitrate adaption (ABR) [141].) The conversion is built atop a teacher-
student training process, where the DNN policy acts as the teacher and generates input-
output samples to construct the student decision tree [223]. However, to match the per-
formance with DNN:s, traditional decision tree algorithms [121] usually output an exceed-
ingly large number of branches, which are effectively uninterpretable. We leverage two im-
portant observations to prune the branches down to a tractable number for network opera-
tors. First, sensible policies in local systems often unanimously output the same control ac-

tion for a large part of the observed states. For example, any performant ABR policies [179]

"Metis is a Greek deity that offers wisdom and consultation.
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would keep a low bitrate when both of the bandwidth and the playback bufter are low. By
relying on the data generated by the teacher DNN, the decision tree can easily cut down
the decision space. Second, different input-output pairs have different contributions to the
performance of a policy. We adopt a special resampling method [58] that allows the teacher
DNN to guide the decision tree to prioritize the actions leading to the best outcome. Em-
pirically, our decision tree can generate human-readable interpretations (§5.5.1), and the
performance degradation is within 2% of the original DNN (§s.5.5).

For concrete evaluation, we generate interpretable policies for DL-based adaptive video
streaming systems with Metis (§5.5.1). For example, we interpret the bitrate adaptation
policy of Pensieve [179] and recommend a new decision variable. We also present three use
cases of Metis in the design, debugging, and deployment of DL-based networking systems.
(i) Metis helps network operators to redesign the DNN structure of Pensieve with a quality
of experience (QoE) improvement by 5.1%" on average (§5.5.3). (ii) Metis debugs the DNN
in Pensieve and improves the average QoE by up to 4% with only decision trees (§5.5.4).
(iii) Metis enables a lightweight DL-based flow scheduler (AuTO [83]) and a lightweight
Pensieve with shorter decision latency by 27 x and lower resource consumption by up to
156X (§5.5.5).

We make the following contributions in this paper:

* Metis, a framework to provide interpretation for two general categories of DL-based

networking systems, where it interprets video streaming systems with decision trees (§s.3).

"Even a 1% improvement in QoE is significant to current Internet video providers (e.g., YouTube) consid-
ering the volume of videos [180].
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* Prototype implementations of Metis over DL-based video streaming systems Pen-
sieve [179] (§5.4), and their interpretations with capturing well-known heuristics

and discovering new knowledge (§s.5.1).

* Three use cases on how Metis can help network operators to design (§5s.5.3), and

debug (§5.5.4), deploy (§5.5.5), DL-based video streaming systems.

To the best of our knowledge, Metis is the first general framework to interpret diverse DL-
based networking systems at deployment. The source code of Metis is available at https:
//github.com/transys-project/metis/. We believe that Metis will accelerate the deploy-

ment of DL-based networking systems in practice.

5.2 MOTIVATION

We motivate the design of Metis by analyzing (i) the drawbacks of current DL-based net-
working systems (§5.2.1), and (ii) why existing interpretation methods are insufficient for

DL-based networking systems (§5.2.2).

5.2.1 DRAWBACKS OF CURRENT SYSTEMS

The blackbox property of DNNs lacks interpretability for network operators. Without
understanding why DNNs make decisions, network operators might not have enough con-
fidence to adopt them in practice [283]. Moreover, as shown in Figure 5.1, the blackbox
property brings drawbacks to networking systems in debugging, online deployment, and

ad-hoc adjustment due to the following reasons.
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Figure 5.1: DNNs create barriers for network operators in many stages of the development flow of
networking systems.

Incomprehensible structure. DNNs could contain thousands to billions of neurons [70],
making them incomprehensible for human network operators. Due to the complex struc-
ture of DNN, when DL-based networking systems fail to perform as expected, network op-
erators will have difficulty in locating the erroneous component. Even after finding the sub-
optimality in the design of DNN structures, network operators are challenged to redesign
them for better performance. If network operators could trace the mapping function be-
tween inputs and outputs, it would be easier to debug and improve DL-based networking

systems.

Heavyweight to deploy. DNNs are known to be bulky on both resource consumption
and decision latency [142]. Even with advanced hardware (e.g., GPU), DNNs may take
tens of milliseconds for decision-making (§s.5.5). In contrast, networking systems, es-
pecially local systems on end devices (e.g., mobile phones) or in-network devices (e.g.,
switches), are resource-limited and latency-sensitive [142]. For example, loading a DNN-
based ABR algorithm on mobile clients increases the page load time by around 10 sec-

onds (§5s.5.5), which will make users leave the page. Existing systems usually provide “best-
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effort” services only and roll back to heuristics when resource and latency constraints can

not be met [83], which degrades the performance of DNNEG.

Nonadjustable policies. Practical deployment of networking systems also requires ad-hoc
adjustments or adding temporary features. For example, we could adjust the weights for
different jobs in fair scheduling to catch up with the fluctuations in workloads [181]. How-
ever, the lack of interpretation brings difficulties to network operators when they need to
adjust the networking systems. Without understanding why DNNs make such decisions,
arbitrary adjustments may lead to severe performance degradation. For example, when
network operators want to manually reroute a flow away from a link, without interpreta-
tions of decisions, network operators might not know how and where to accommodate

that flow.

Discussions. The application of DNNs in networking systems is still at a preliminary stage:
DNNs in Pensieve [179], AuTO [83], and RouteNet [226] (published in 2017, 2018, and
2019) have less than ten layers. As a comparison, a sharp increase in the number of DNN
layers has been observed in other communities (Figure 5.2). Recent language translation
models even contain billions of parameters [70]. Although we are not saying that the larger
is the better, it is indisputable that larger DNNs will aggravate the problems and create

barriers to deploy DL-based networking systems in practice.

5.2.2 WHY NOT EXISTING INTERPRETATIONS?

For DL-based networking systems, existing interpretation methods [101, 127] are insufhi-

cient in the following aspects:
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Figure 5.2: The exponential growth of DNN complexity in ImageNet Challenge winners [93] (Figure
adopted from [103]).

Different interpretation goal. The question of why a DNN makes a certain decision may
have answers from two angles. In the machine learning community, the answer could be
understanding the inner mechanism of ML models (e.g., which neurons are activated for
some particular input features) [59, 275]. It’s like trying to understand how the brain
works with surgery. In contrast, the expected answer from network operators is the rela-
tionship between inputs and outputs (e.g., which input features affect the decision) [283].
What network operators need is a method to interpret the mapping between the input and

output for DNNEs.

Diverse networking systems. DL-based networking systems have different application
scenarios and are based on various DL approaches, such as feedforward neural network

(FNN) [179], recurrent neural network (RNN) [268], and graph neural network (GNN) [181].
Therefore, interpreting diverse DL-based networking systems with one single interpreta-

tion method is insufficient. For example, LEMNA [128] could only interpret the behaviors

of RNN and thus is not suitable for GNN-based networking systems [181]. In Metis, we



observe that DL-based adaptive video streaming systems are actually local systems and de-

velop corresponding techniques.

In response, to interpret DL-based networking systems, Metis introduces a decision tree-

based method for DL-based adaptive video streaming systems.

5.3 DECISION TREE INTERPRETATIONS

In this section, we first describe the design choice for choosing decision trees in Metis (§5.3.1),

and then explain the detailed methodology to convert the DNN's to decision trees (§5.3.2).

5.3.1 DESIGN CHOICE: DECISION TREE

As introduced in §5.1, Metis converts DNNs into simpler models based on interpretation
methods. There are many candidate models, such as (super)linear regression [128, 217],
decision trees [58, 223], etc. We refer the readers to [101, 127] for a comprehensive review.
In this chapter, we decide to convert DNNs to decision trees due to three reasons. First,
the logic structure of decision trees resembles the policies made by networking systems,
which are rule-based policies. For example, ABR algorithms depend on precomputed
rules over buffer occupancy and predicted throughput [245, 269]. Second, as shown in
Figure 5.3, decision trees have rich expressiveness and high faithfulness because they are
non-parametric and can represent very complex policies [65]. We demonstrate the perfor-
mance of decision trees during conversion compared to other methods [128, 217] in Ap-
pendix B.4. Third, decision trees are lightweight for networking systems, which will bring

turther benefits to resource consumption and decision latency (§s.5.5). There are also re-
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Figure 5.3: An illustration of decision tree approximating the original decision boundary.

search efforts that interpret DNNs with programming language [255, 288]. However, de-
signing different primitives for each networking system is time-consuming and inefhicient.
With interpretations in the form of decision trees, we can interpret the results since the
decision-making process is transparent (§5.5.1). Also, we can debug the DNN models
when they generate sub-optimal decisions (§5.5.4). Furthermore, since decision trees are
much smaller in size, less expensive on computation, we could also deploy the decision trees
online instead of deploying heavyweight DNN models. This will result in low decision-

making latency and resource consumption (§s.5.5).

5.3.2 CONVERSION METHODOLOGY

To extract the decision tree from a finetuned DNN, we adopt a teacher-student training
methodology proposed in [58]. Without teacher-student learning, one wrong prediction

may drive the student off teacher’s trajectory in the state space. As shown in Figure 5.4, a
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Figure 5.4: An illustration of how teachers correct students.

wrong decision may bring the decision tree into a region of unexperienced state space. The
decision tree might thus make more mistakes since it has no prior knowledge about that
region of state space. Those mistakes will further drive the decision tree off the trajectory
and worsen the performance. In response, Metis continuously simulates the decision tree
and lets the original ABR algorithm (teacher) correct the decisions made by that decision
tree (student). The decision tree will gradually learn how to make decisions in the whole
state space.

We reproduce key conversion steps for networking systems as follows:

Step 1: Traces collection. When training decision trees, it is important to obtain an ap-
propriate dataset from DNNs. Simply covering all possible (state, action) pairs is too costly
and does not faithfully reflect the state distribution from the target policy. Thus, Metis fol-
lows the trajectories generated by the teacher DNNs. Moreover, networking systems are
sequential decision processes, where each action has long-lasting effects on future states.
Therefore, the decision tree can deviate significantly from the trajectories of DNNs due

to imperfect conversion [58]. To make the converted policy more robust, we let the DNN

policy take over the control on the deviated trajectory and re-collect (state, action) pair to
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refine the conversion training. We iterate the process until the deviation is confined (i.c., the

converted policy closely tracks the DNN trajectory).

Step 2: Resampling. Local systems usually optimize polzcies instead of independent ac-
tions [83, 147, 179]. In this case, different actions of networking systems may have difter-
ent importance to the optimization goal. For example, an ABR algorithm downloading a
huge chunk at extremely low buffer will lead to a long stall, resulting in severe performance
degradation. Meanwhile, downloading a little larger chunk when network condition and
buffer are moderate will not have drastic effects. However, decision tree algorithms are de-
signed to optimize the accuracy of a single action and treat all actions the same. Therefore,
their optimization goals do not match. Existing DL-based local systems adopt reinforce-
ment learning (RL) to optimize the policy instead of single actions, where the advantage of
each (state, action) represents the importance to the optimization goal. Therefore, we fol-
low recent advances in converting DNNs in RL policies into decision trees [58] and resam-
ple D according to the advantage function. For each pair (s, 2), the sampling probability

p(s,a) could be expressed as:

pls,a) (V(”)(J) — min Q(”*)(J,ﬂ’)) -1((s,2) € D) (5.1)

a'ed
where V(s) and Q(s, ) are the value function and Q-function of RL [248]. Value func-
tion represents the expected total reward starting at state s and following the policy 7. Q-
function further specifies the next step action 4. z* is the DNN policy, and 4 is the action
space. 1(x) is the indicator function, which equals to 1 if and only if x is true. We analyze

Equation 5.1 with more details in Appendix B.1. We then retrain the decision tree on the
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resampled dataset. Our empirical results demonstrate that the resampling step can improve

the QoE over 73% of the traces (Appendix B.1).

Step 3: Pruning. As the size of the decision tree sometimes becomes much larger than net-
work operators can understand, we adopt cost complexity pruning (CCP) [121] to reduce
the number of branches according to the requirements from network operators. Com-
pared with other pruning methods, CCP empirically achieves a smaller decision tree with

a similar error rate [192]. Atits core, CCP creates a cost function of the complexity of the
pruned decision tree to balance between accuracy and complexity. Moreover, for the con-
tinuous outputs in networking systems (e.g., queue thresholds [83]), we employ the design
of the regression tree to generate real value outputs [254]. In our experiments, for Pensieve,
the size of leaf nodes may be up to 1000 without pruning (Appendix B.s). With CCP,
pruning the decision tree down to 200 leaf nodes only results in a performance degradation

of less than 0.6% (§5.5.5).

Step 4: Deployment. Finally, network operators could deploy the converted model online
and enjoy both the performance improvement brought by deep learning and the inter-
pretability provided by the converted model. Our evaluation shows that the performance
degradation of decision trees is less than 2% for two DL-based networking systems (§s.5.5).
We also present further benefits of converting DNNs of networking systems into decision

trees (easy debugging and lightweight deployment) in §5.5.4 and §5.5.5.
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5.4 IMPLEMENTATION

In current Internet video transmissions, each video consists of many chunks (a few sec-
onds of playtime), and each chunk is encoded at multiple bitrates. Pensieve [179] is a deep
RL-based ABR system to optimize bitrates with network observations such as past chunk
throughput, buffer occupancy.

We use the same video in Pensieve unless other specified. The chunk size, bitrates of the
video are respectively set to 4 seconds and {300, 750, 1200, 1850, 2850, 4300} kbps. Real-
world network traces include 250 HSDPA traces [219] and 205 FCC traces [9]. We inte-
grate DNNs into JavaScript with tf. js [242] to run Pensieve in the browser. We set up the
same environment and QoE metric with Pensieve.

We then implement Metis +Pensieve. We use the finetuned model provided by [179] to
generate the decision tree. We use five baseline ABRs (BB [141], RB [179], Festive [148],

BOLA [245], rMPC [269]) as Pensieve and migrate them into dash. js [11].

5.5 EXPERIMENTS

In this section, we first empirically evaluate the interpretability of Metis with two types of
DL-based networking systems. Subsequently, we showcase how Metis addresses the draw-
backs of existing DL-based networking systems (§5.2.1). We finally benchmark the inter-

pretability of Metis. Overall, our experiments cover the following aspects:

* System interpretations. We demonstrate the effectiveness of Metis by presenting

the interpretations of Pensieve with newly discovered knowledge (§5.5.1).
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Performance Maintenance. We demonstrate the capability of Metis in maintaining

the performance as the original model (§s.5.2).

Guide for model design. We present a case on how to improve the DNN structure

of Pensieve for better performance based on the interpretations of Metis (§5.5.3).

Enabling debuggability. With a use case of Pensieve, Metis debugs a problem and

improves its performance by adjusting the structure of decision trees (§5.5.4).

Lightweight deployment. For Pensieve, network operators could directly deploy
the converted decision trees provided by Metis online and achieve benefits enabled by

lightweight deployments (§s.5.5).

Metis deep dive. We finally evaluate the interpretation performance, parameter sensi-

tivity, and computation overhead of Metis under different settings (§s.5.6).

SYSTEM INTERPRETATIONS

With Metis, we interpret the DNN policy learned by Pensieve. We present the top 4 layers

of the decision tree of Metis +Pensieve in Figure 5.5. The decision variables of each node

include the last chunk bitrate (), previous throughput (¢), buffer occupancy (B), and

last chunk download time (77). Since we only present the top 4 layers of the decision tree,

we represent the frequency of final decisions of each node with the color on the palette in

Figure 5.5.

From the interpretations in Figure 5.5, we can know the reasons behind the superior

performance of Pensieve in two directions. (i) Discovering new knowledge. On the top two
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Figure 5.5: Top 4 layers of the decision tree of Metis +Pensieve. The color represents the frequency
of bitrate selections at that node. For example, the arrow in the palette represents that 67% states
traversing a node with that color are finally decided as 4300kbps, and 33% states are 2850kbps.
Better viewed with color.

layers, Metis +Pensieve first classifies inputs into four branches based on the last chunk bi-
trate, which is different from existing methods. The information contained in the last
bitrate choice affects the output QoE significantly. Based on this observation, we recom-
mend that network operators could improve ABR algorithms with particular focus on
the last chunk bitrate. We present a use case on how to utilize this observation to improve
the DNN structure in §s.5.3. (ii) Capturing existing heuristics. Similar to existing meth-
ods, Metis +Pensieve makes decisions based on bufter occupancy [141, 245] and predicted
throughput [11, 269]. With the interpretations provided by Metis, network operators can

understand how Pensieve makes decisions.
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Figure 5.6: QoE ratio of Metis on different ABR algorithms and QoE metrics.

5.5.2 PERFORMANCE MAINTENANCE

We demonstrate the performance maintenance of Metis by comparing the QoE of origi-
nal algorithms and decision trees converted with Metis. We thus measure the ratio of QoE
by the Metis-generated decision trees and the original algorithms. A QoE ratio of less than
100% indicates a performance degradation. Since the QoE spans across positive and neg-
ative values, we normalize all the QoE values into a distribution with mean value as 1 and
standard deviation as 1. We first measure the average normalized QoE and average QoE
ratio across three types of QoE metrics and all traces, as shown in Figure 5.6. The average
performance degradation is less than 3% for three algorithms (average QoE ratio of Pen-
sieve is 97% in Figure 5.6), which is negligible compared to the performance improvement

achieved by new algorithms.

5.5.3 GUIDE FOR MODEL DESIGN

We present a use case to demonstrate that the interpretations of Metis can help the design

of the DNN structure of Pensieve. As interpreted in §5.5.1, Metis finds that Pensieve sig-
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(a) Original structure. (b) Modified structure.

Figure 5.7: We modify the DNN structure of Pensieve based on the interpretations in §5.5.1. Al-
though two structures are equivalent for the expressive ability, putting significant inputs near to the
output will make the DNN optimize easier and better.

nificantly relies on the last chunk bitrate (#*) when making decisions. This indicates that
may contain important information to the optimization.

To utilize this observation, we modify the DNN structure of Pensieve to enlarge the
influence of 7 on the output result. As shown in Figure 5.7(b), we directly concatenate the
7 to the output layer so that it can affect the prediction result more directly. Although the
two DNN structures are mathematically equivalent, they will lead to different optimization
performance and training efficiency due to the huge search space of DNNs [104]. After
putting the significant feature nearer to the output layer (thus simplifying the relationship
between the significant feature and results), the modified DNN will focus more on that
significant feature.

We retrain the two DNN models on the same training and test sets and present the re-
sults in Figure 5.8. From the curves of the original model and the modified model, we can
see that the modification in Figure 5.7 improves both the training speed and the final QoE.

For example, on the test set, the modified DNN achieves 5.1% higher QoE on average than
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Figure 5.8: The modification in Figure 5.7 could improve both the QoE and the training efficiency.
Shaded area spans = std.

the original DNN¥. Considering the scale of views (millions of hours of video watched
per day [256]) for video providers, even a small improvement in QoE is significant [180].
Moreover, the modified DNN can save 550k epochs on average to achieve the same QoE,

which saves 2.3 hours on our testbed.

5.5.4 ENABLING DEBUGGABILITY

When interpreting Pensieve, as also reported in [94], we observe that some bitrates are
rarely selected by Pensieve. The frequencies of selected bitrates of the experiments in §s.5.1
are presented in Figures 5.9(a) and 5.9(b). Among six bitrates from 300kbps to 4300kbps,
two bitrates (1200kbps and 28 50kbps) are rarely selected by Pensieve. The imbalance raises
our interests since missing bitrates are median bitrates: the highest or lowest bitrates may

not be selected due to network conditions, but not median ones.

*The offline optimality gap of Pensieve reported in [179] is 9.6%-14.3%.
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Figure 5.9: For (a) and (b), Metis +Pensieve generates almost the same results with Pensieve, where
1200kbps and 2850kbps are rarely selected. (c) On a set of fixed-bandwidth links, 1200kbps and
2850kbps are still not preferred. Better viewed in color.
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Figure 5.10: On a 3000kbps link, BB, RB, and rMPC learn the optimal policy and converge to
2850kbps. Metis +Pensieve (Metis +P) and Pensieve oscillate between 1850kbps and 4300kbps,
degrading the QoE. Better viewed in color.

To further explore the reasons, we emulate Pensieve on a set of links with fixed band-
width ranging from 3o0kbps to 4500kbps. As the sample video used by [179] is too short
for illustration, we replace the test video with a video of 1000 seconds and keep all other
configurations the same with the original experiment. As shown in Figure 5.9(c), 1200kbps
and 2850kbps are still not preferred by Pensieve. For example, on a fixed 3000kbps® link,
the optimal decision of which should always select 2.8 sokbps. However, in this case, only
0.4% of selections made by Pensieve are 28 50kbps, while the remaining decisions are di-
vided between 1850kbps and 4300kbps. As shown in Figure s.10, Pensieve oscillates be-
tween 1850kbps and 4300kbps, which is also mimicked by Metis +Pensieve. However, such
a policy is sub-optimal. In contrast, other baselines learn the optimal selection policy and
fix their decisions to 28 50kbps, achieving a higher QoE. Similar observations can also be
observed on a 1200kbps link (Appendix B.3).

Studying the raw outputs of Pensieve, we find that Pensieve does not have enough con-

fidence in either choice and therefore oscillates between them. The probability of selecting

$The goodput (bitrate) in this case is roughly 28 s0kbps.
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Figure 5.11: When converting DNNs to decision trees in Metis, oversampling the missing bitrates
(Metis +Pensieve-0) improves the QoE by around 1% on average compared to the original DNN in
Pensieve. QoE is normalized by Pensieve.

the optimal bitrate is at a surprisingly low level (Figure B.4 in Appendix B.3). The training
mechanism of Pensieve may cause this problem. At each step, the agent tries to reznforce
particular actions that lead to larger rewards. In this case, when the agent discovers that
four out of six actions can achieve a relatively good reward, it will keep reinforcing this dis-
covery by continuously selecting those actions and finally abandon the others. Making
decisions with fewer actions brings higher confidence to the agent, but also makes the agent
converge to a local optimum in this case.

Beyond discovering the problem as [94], Metis can also help fix the problem. Without
Metis, since Pensieve is designed based on RL, network operators do not have an explicit
dataset of bitrates. Network operators may have to penalize the imbalance of bitrate in the
reward and retrain the DNN model for hours to days, without knowing whether the RL
agent can learn to escape the local optimum itself. With Metis, the conversion from DNN
to decision tree exposes an interface for network operators to debug the model. Since the
dataset D to train the decision tree is highly /mbalanced, as a straightforward solution, we

oversample the missing bitrates to make sure their frequencies after sampling are around
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Figure 5.12: Compared to the original Pensieve model, Metis +Pensieve could reduce both page size
and JS memory.

1%. As shown in Figure 5.11, the oversampled decision tree (Metis +Pensieve-O) outper-

forms DNNs by about 1% on average and 4% at the 75" percentile on HSDPA traces.

5.5.5 LIGHTWEIGHT DEPLOYMENT

Decision trees provided by Metis are also lightweight to deploy. We first demonstrate that
the performance degradation between the decision tree and the original DNN is negligible
(less than 2%). Therefore, directly deploying decision trees of Pensieve and AuTO online

will reduce the resource consumption and bring further performance benefits.

Resource consumption. We evaluate the resource consumption (specifically, page load
time and memory consumption) of Metis +Pensieve. To eliminate the influence of other
modules in the DASH player, we compare these ABR algorithms with a fixed algorithm,
which always selects the lowest bitrate.

For page load time, if the HTML page size is too large, users have to wait for a long time
before the video starts to play. As shown in Figure 5.12, Fixed, BB, RB, and BOLA have
almost the same page size because of their simple processing logic. Pensieve increases the

page size by 1370KB since it needs to download the DNN model first. In contrast, Metis
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+Pensieve has a similar page size with the heuristics. When the goodput is 1200kbps (the
average bandwidth of Pensieve’s evaluation traces), the additional page load time of ABR
algorithms compared to fixed is reduced by 156 x: Pensieve introduces an additional page
load time of 9.36 seconds, while Metis +Penseve only adds 6oms.

We then measure the runtime memory and present the results in Figure 5.12. Due to the
complexity of forward propagation in the neural networks, Pensieve consumes much more
memory than other ABR algorithms. In contrast, the additional memory introduced by
Metis +Pensieve is reduced by 4.0x on average and 6.6x on the peak, which is at the same

level as other heuristics.

5.5.6 Metis DEEP D1vE

Finally, we overview the experiments that benchmark the interpretability of Metis. The

detailed experimentation setup and more empirical results are deferred to the appendix.

Interpretation baselines comparison. We compare the performance of the decision tree in
Metis against two baselines in the DL community. We implement LIME [217], one of the
most typical blackbox interpretation methods in the DL community, and LEMNA [128],
an interpretation method specifically designed for time sequences in RNN. We measure the
misprediction rate and errors of three interpretation methods. The misprediction rates on
two systems with Metis-based methods are reduced by 1.2X-1.7 X compared to two base-
lines. Experiments are presented in Appendix B.4 in detail. The decision tree outperforms

the other two interpretation methods, which confirms our design choice in §5.3.1.
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Sensitivity analysis. We test the robustness of hyperparameters of Metis in Appendix B.s.
For decision tree interpretations, we test the robustness of the number of leaf nodes. Re-
sults show that a wide range of settings (from 1o to s000) perform well for Pensieve (accu-

racy variations within 10%).

Computation overhead. In Appendix B.6, our evaluation shows that converting fine-
tuned DNNs into decision trees for Pensieve takes less than 40 seconds under different

settings.

5.6 DiscussioN

In this section, we discuss some design choices, the generalization ability, limitations, and

potential future directions of Metis.

Why not directly train a decision tree? Asshown in §s.5.5, converted decision trees ex-
hibit comparable performance to larger models. However, dzrectly training the simpler
model from scratch is difficult to achieve the same performance. We hypothesize that the
first reason is that decision trees are non-parametric models, which are not designed for
continuously parameter updating and structure adjusting. Even with recent advances in
decision tree adjusting [178], the efficient adjustment relies on massive amount of training
data. Another possible explanation behind this phenomenon is the lottery ticket hypothe-
sis [120, 270]: training deep models is analogous to winning the lottery by buying a very
large number of tickets (i.e., building a large neural network). However, we cannot know

the winning ticket configuration in advance. Therefore, directly training a simpler model is
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similar to buying one lottery ticket only, which has little chance to achieve satisfying perfor-

mance.

Can Metis interpret 4/l types of networking systems? Admittedly, Metis cannot inter-
pret all DL-based networking systems. For example, network intrusion detection systems
(NIDSes) are used to detect malicious packets with regular expression matching on the
packet payload [198]. Prior DL-based methods introduced RNN to improve the perfor-
mance of NIDSes [268]. However, since RNN (and other DNNs with recurrent struc-
tures) fundamentally contains zmplicit memory units, decision trees cannot faithfully cap-
ture the policy with only explicit decision variables. In the future, we aim to combine Metis

with recurrent units, e.g., employing recurrent decision trees [80].

How to interpret deeper DNNs? Although our evaluation shows satisfying performance
on three DL-based networking systems, compare to the applications of DNN in other
communities (Figure 5.2), those in networking systems are still at a preliminary stage:

both Pensieve and AuTO have less than 10 hidden layers. Whether current approaches
could scale to network systems with more complicated neural networks remains unknown.
Nonetheless, on one hand, Metis might be scalable to deeper neural networks because
deeper neural networks (regardless of training difficulty) sometimes have the same level

of expressiveness compared to shallower ones [50, 131]. On the other hand, as a prelimi-
nary attempt, we adopt the traditional CART algorithm in decision tree training. More
optimized decision tree representations [202] with tree-based regularization [262] during

the training process of DNNs might interpret the policies more faithfully.
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Will the generalization ability of DNNs be impaired? Although the generalization abil-
ity of DNNSs is still under exploration, it is indisputable that the generalization ability of
DNNs roots in the massive amount of parameters [206]. Despite that Metis performs well
in our experiment settings as demonstrated in §5.5, the generalization ability of interpre-
tations still needs investigation. There are two ways to further address the generalization
ability of interpretations on different traces. On one hand, researchers can analyze the the-
oretic performance bounds of the interpretation [185]. On the other hand, network oper-
ators can deploy the interpretation results into the production environments and evaluate
the online performance. We call on the community to devote more research efforts in this

direction.

Will interpretations always be correct? Metis is designed to offer a sense of confidence
by helping network operators understand (and further troubleshoot) DL-based network-
ing systems. However, the interpretations themselves can also make mistakes. In fact, re-
searchers have recently discovered attacks against the interpreting systems for image classifi-
cation [134, 281]. Nonetheless, interpretations from our experiments are empirically sane
(§5.5). Since the interpretations are concise and well understood, human operators could

easily spot the rare case of erroneous interpretation.

5.7 SUMMARY

In this paper, we propose Metis, a new framework to interpret DL-based adaptive video
streaming systems. We apply Metis over a typical DL-based adaptive video streaming sys-

tems. Evaluation results show that Metis-based systems can interpret the behaviors of DL-
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based networking systems with high quality. Further use cases demonstrate that Metis

could help network operators design, debug, and deploy DL-based networking systems.
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Application Layer on Data Path:

Adaptive Frame-Rate

6.1 INTRODUCTION

Emerging network technologies like §G have gotten both academia and industry excited

about high-quality real-time communication (RTC) applications with ultra-high definition
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Figure 6.1: Comparison of the decoder queue between traditional and high-quality RTC applica-
tions. Due to the high frame rate and resolution, when network condition or decoder capability
fluctuates, high-quality RTC applications may overload decoder queues, leading to high delay at the
tail.

(UHD), high frame rate (HFR), and reduced delays. Examples include cloud gaming [1 40,
272], virtual reality [126, 213, 284] and 4K video conferencing [139, 163]. Some high-
quality RTC services have already been deployed in production (e.g., cloud gaming from
Google [15], Microsoft [19], Nvidia [12]). For example, the market share of cloud gaming
reached one billion dollars in 2020, with an expected growth rate of 30% [63].

To achieve a satisfactory user experience, those applications need to stream with high res-
olution, high frame rate, and a low delay (§6.2). For example, cloud gaming services deliver
content with a resolution of >1080p [15] and frame-rate of 6ofps [207], while requiring
a tail end-to-end delay of less than rooms [143]. Streaming like this significantly improves
users’ experience and enables new applications.

This paper argues that, in addition to modulating bitrate to match network capacity, a
high-quality RTC system must regulate the queuing at the decoder queue. For traditional

standard quality RT'C, the time required to decode a frame is much shorter than the in-
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terarrival time of frames. Thus, the decoder queue is not a bottleneck and a traditional
RTC service only needs to adjust the bitrate to match the network bandwidth. However,
in high-quality RTC, the high frame rate reduces the time between the arrival of frames at
the client, while the high resolution increases the decoding delay for each frame. At the de-
coder queue, the frame arrival rate frequently exceeds the departure rate, leading to a long
queue, as shown in Figure 6.1. The video delivery is required to not only adapt the bit-rate
to the network bandwidth but also coordinate with the decoder queue capacity. From mea-
surements of our production cloud gaming service, Tencent Start [16], we find that video
delivery without coordinating the queue capacity could introduce a non-negligible queuing
delay at the client-side decoder queue. Moreover, such a queuing delay accounts for a large
proportion of delayed frames in satistying the much tighter delay requirement of high-
quality RTC, especially when the network delay has been reduced with recent infrastruc-
ture developments (e.g., edge computing [197]). According to our measurements, among
all frames with a total round-trip delay of >10oms, 57% of them have been delayed at the
decoder queue for >soms (§6.3.1). Our survey finds that the future demands of UHD
and HFR video will further exacerbate the problem, even with the evolution of decoding
hardware (§6.3.1). Therefore, for high-quality RTC, to reduce the end-to-end delay, it is
essential to reduce the queuing delay at the decoder.

Not all interventions are effective at regulating the queuing at the decoder queue (§6.3.2).
For instance, decoding delay is not affected much by bitrate. It is affected by resolution,
but adjusting the resolution requires the client to request a new key frame. This consumes
bandwidth and incurs several extra frame intervals of delay. Discarding a frame at the client

also requires a new key frame, which incurs the same cost. Hence, we introduce an adaptive
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frame-rate (AFR) controller, which controls the frame rate at the encoder. Reducing frame
rate gives the decoder more time to process frames. Hence, it is effective at reducing the
queue length. Further, edge streaming services ofter short RT'Ts, which means the control
loop to adjust the encoder’s frame rate is short.

Note, there have been previous efforts to adapt the frame-rate (e.g., CU-SeeMe [130]
decades ago). However, the development of decoding hardware had made it redundant in
the recent decade, and traditional RT'C in the recent decade is mostly bottlenecked in the
network. In this paper, we show how high-quality RT'C, with UHD resolution, HFR, and
stringent delay requirements, has changed this. We further improve upon these proposals
in two ways. First, existing control mechanisms are based on delay or queue length [119,
205, 260], which are slow to react since they need to wait for the queue to build up. AFR
instead relies on the arrival and service processes in addition to the queue length to adjust
the frame rate. Second, not all increases in decode queuing delay need to reduce the frame
rate. For instance, when queuing delay increases due to a transient burst of arriving packets.
Hence, AFR uses two control loops that adjust the frame rate at different time scales.

We implement the AFR controller on both simulators and the production of the cloud
gaming service from Tencent Start [16]. Trace-driven simulations and deployments in the
wild demonstrate that AFR could effectively reduce the tail queuing delay by up to 7.4 x,
and consequently reduce the ratio of frame stutters measured by total delay by up to 2.2
(§6.6.1 and §6.6.5) with negligible overhead. AFR has been deployed on Tencent Start since
February 2021, serving millions of sessions. We will release the collected traces and the sim-
ulation code.

We make the following contributions:
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* We carry out a month-long measurement campaign to motivate the significance of
controlling queuing delay at the decoder queue, and identify the unique challenges

from high-quality RT'C with stringent delay requirements (§6.3).

* We design a hierarchical frame-rate controller, AFR, to control the decoder queue

towards an ultra-short delay under different scenarios for high-quality RTC (§6.4).

* We evaluate AFR with both trace-driven simulations and large-scale deployments in
production in the wild (§6.5). Our evaluation shows that both queuing delay and
total end-to-end delay could be significantly improved (§6.6). AFR has been used in

deployment for over one year.

6.2 BackGROUND: HicH-QuaLIiTYy RTC

High-quality RT'C applications are attracting attention from the industry and academia.
A series of high-quality RT'C products have been released recently, including cloud gam-
ing [12, 15, 19], virtual reality (VR) [20, 25, 32], and 4K videoconferencing [24]. For ex-
ample, by generating high-quality content and streaming to the user via Internet, users can
enjoy better video quality with low-cost devices. Specifically, the high-quality RT'C has the

following features standing out from traditional RT'C applications:

* High frame-rate. Traditional RT'C usually delivers content with a low frame rate
(LFR) of 24fps [30]. However, high-quality RTC requires a frame rate of up to

6ofps, some of which even require a frame-rate of 240fps [247].
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Figure 6.2: A general delivery pipeline of RTC services. We highlight the major contributing compo-

Network

nents in the tail end-to-end delay of high-quality RTC according to our measurements in red.

* High resolution. Most existing RTC applications are delivered at SD resolutions by
default (e.g., 360p for Google Meet [23]). In contrast, high-quality RT'C applica-

tions require a resolution of 108op to 4K or higher [212].

* Stringent delay requirement. Furthermore, high-quality RT'C applications also have
stringent latency requirements. For example, videoconferencing requires a round-

trip interaction delay of 15oms [30] and gaming for 1ooms [143].

Existing delivery pipeline. To better understand the bottleneck of high-quality RTC, we
present the key components of the existing RT'C delivery pipeline in Figure 6.2. First, the
video encoder captures the contents generated from video sources (e.g., gaming applica-
tions [73, 197]) and encodes them into video frames. Then, encoded frames are sent over
the network from the streaming server to user clients. After that, on the client side, upon
receiving new frames from the network, the decoder will decode those frames. Finally, de-

coded video frames will be displayed on users’ displays.

Optimization goal: low tail delay. With the intelligence from each community, the delay

of each component has been intensively optimized in recent research efforts. To reduce the
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network delay, existing providers either deploy stream servers at the edge [197, 250], intro-
duce low-latency congestion controllers [47, 77], or suggest users use wired connections.
For example, recent measurements unveil that cloud gaming services could deliver the RTC
streams with an average round-trip network delay of 2oms [78, 197]. Similarly, streaming
encoders are optimized for low latency to satisfy the stringent delay requirements in high-
quality RTC services [119, 200, 234].

Meanwhile, optimizing the za:l performance is also critical for user’s experience for high-
quality RTC [188]. The increase in tail delay will result in frame stuttering or freezing,
degrading the user’s experience. Quality of experience assessment frameworks in video
streaming usually individually calculate the stuttering time as a penalty to the user’s experi-
ence [98, 267]. Considering the high frame rate of high-quality RTC, further tails of 99th
or 99.9th percentiles need to be focused on. For example, at the frame rate of 6ofps, even
the 99.9th percentile delay could happen every 16 seconds. Especially for applications such
as cloud gaming, such a delay might lead to the loss of the game (e.g., stalls when the gamer
is discovered by the opponent in a shooting game) [143, 227]. Therefore, it is essential to

control the tail delay and reduce frame stutters for high-quality RTC.

6.3 MOTIVATIONS AND CHALLENGES

In this section, we first explain the formulation of drastic queuing delay in high-quality
RTC (§6.3.1). We then present our thinking over the design choice of adjusting frame rate

(§6.3.2). We further analyze the unique challenges of effectively achieving an ultra-short

queue (§6.3.3).
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Figure 6.3: Release year and benchmark score distribution of user devices in production. We use
the single-core score in GeekBench [37] for the CPU benchmark and Aztec Ruins Normal Tier score
in GFXBench [38] for the GPU benchmark.

6.3.1 MoOTIVATION: DRASTIC QUEUING DELAY

Observation: decoder queuing delay is a critical contributor to the total delay at the
tail. We profile the delay of each frame at each stage in the delivery pipeline in Figure 6.2.
We measure the Tencent Start cloud gaming service for a month in 2021, containing tens
of thousands of users, with thousands of different CPU and GPU models. We present re-
lease dates and benchmark scores of CPU and GPU in Figure 6.3 and list top models in
Appendix C.2.1. Unless other specified, all measurements in this paper are analyzed from
this dataset.

According to our measurements, among all components in the pipeline, the network,
queuing (at the decoder queue), and decoding delay are >roms at the 99th percentile. We
highlight them in red in Figure 6.2. The tail of the application and encoding delay is light

since they are processed on commercial servers, which are stable compared to networks and
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Figure 6.4: While network delay should usually be blamed when the total delay is above 200ms,
queuing delay plays a dominant role among all frames with a total delay of more than 100ms. The
color indicates the conditional probability P(X > X,,|T" > Ty,) for X € {N, Q}. Stars denote
X,,=50ms, 1,,=100ms.

heterogeneous clients. Therefore, we focus on the network, queuing, and decoding delay in
the following discussion. We leave the measurement results to Appendix C.2.2.

We investigate how these three components contribute to the increase of total delay at
the tail. For each frame, we denote NN, Q, D, and T as the network, queuing, decoding, and
total end-to-end delay. We then calculate the conditional probability of P(X > X,,|T" >
T,) foreach X € {Q, D, C} from our measurements, where X,;, and 7}, are thresholds
for statistics. A high conditional probability suggests that the component is more likely the
cause of 7" > T,,. We calculate the conditional probability with different thresholds, and
present the results for network delay and queuing delay in Figure 6.4.

As we can see, when analyzing the root causes of frames with T>200ms for traditional
RTC services, network delay has a high probability (shaded red) to be blamed. However,
when analyzing the frames with T>100ms, queuing delay dominates the increase of to-

tal delay. Our measurements show that among all frames with an end-to-end total delay
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Figure 6.5: lllustration of the 99th percentile of the utilization p of the decoder queue. For high-
quality RTC applications (in the top-right corner), the decoder queue is heavily loaded at the tail
(shaded red), resulting in an increase of queuing delay at the tail.

of more than 1ooms, queuing delay increase happens more frequently than all other com-
ponent delays: 57% of them have a queuing delay of more than soms (stars in Figure 6.4).
Considering the stringent delay requirement of ~1ooms for high-quality RT'C, the in-

crease in queuing delay plays a dominant role.

Root cause: The UHD resolution and HFR jointly contribute to the increase in
queuing delay. Compared to LFR streaming, HFR increases the arrival rate of the de-
coder queue by reducing the interarrival time between frames. Also, UHD decreases the
departure rate compared to SD streaming by increasing the decoding delay of each frame.
Specifically, we illustrate how the frame rate and resolution could affect the load of the
decoder queue by presenting the 99%ile queue utilization in Figure 6.5. We scale the distri-
bution of interarrival time and decoding delay from our measurements to other frame rates
and resolutions. As we can see, for traditional RT'C services (the down-left corner), due to

their low frame rates and resolutions, the decoder queue still has a utilization of p < 1
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Figure 6.6: A trace for the accumulation of decoder queue. Note that this is an illustrative example -
the distribution of all traces can be found in Appendix C.2.4.

at the tail. However, for high-quality RTC applications (the up-right corner), the decoder
queue would be heavily loaded, leading to a drastic queuing delay.

The issue is the inconsistency of the decoder’s performance o7 average and at tail. In
fact, many of the hardware decoders that we measured claim to support UHD and HFR
videos (e.g., Nvidia GTX series in Table C.2). However, according to our measurement,
supporting UHD and HFR does not really mean consistently supporting. For example,
the decoding delay can fluctuate due to numerous reasons including overheating at the
client [214], CPU scheduling (§6.5.1), and the prediction errors [161], all of which are dif-
ficult to control for an application. From our measurement with devices in production,
the decoding delay is 18ms at the 99th percentile even with hardware acceleration (Ap-
pendix C.2.2). Note that at the frame rate of 6ofps, the interarrival time between frames is
16.7ms, resulting in a heavily loaded decoder queue at the tail.

We further analyze the necessity and sufficiency between the increase of other compo-
nents and total delay in Appendix C.2.3 and figure out that the minor fluctuation of de-

coding delay leads to the increase of queueing delay. From the queuing theory, when the
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Figure 6.7: Decoding hardware cannot keep pace with the rapid increase of demands of videos with
high resolution and frame rate. Note that the required decoding speed from demands is the frame
rate times the square of resolution times the aspect ratio.

queue is heavily loaded, the queuing delay will drastically increase [97]. This is because
while the decoding delay is continuously fluctuating, the queuing delay is accumulating all
the fluctuations of precedent frames. Especially in heavy traffic, a minor fluctuation of the
decoding delay could result in a magnitude increase in queuing delay. We refer the readers
to [97] for more theoretical analysis. Illustratively, we present a trace from our production
service in Figure 6.6. In the trace, the interarrival time is 16ms, and the decoding delay is
18ms, while the queuing delay is s 4ms on average. The continual increase of the decod-
ing delay, although not much by magnitude (18ms) and not long by duration (20 frames,
approximately 0.3s), leads to a drastic queuing delay. If such a trace happens with a prob-
ability of 1%, we will have a 99th percentile decoding delay of 18ms, and a 99th percentile
queuing delay of s sms. In this case, the tail queuing delay is much higher than the decod-
ing delay, which also contributes to more than half of the end-to-end stutters as analyzed in

§6.3.1.
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Trend: hardware decoders cannot keep pace with the increasing demands of UHD
and HFR video. User demands for video have increased sharply, as shown in Figure 6.7(a).
For example, the highest supported resolution and frame rate of YouTube have increased
from 36op@3ofps (7Mpx/s) in 2005 to 8K@6ofps in 2015 (2Gpx/s), doubling every 14
months on average. Emerging services at 16K [212, 280] or 240fps [247] further indicate
the future demands of UHD and HFR streaming.

However, the decoding speed of the hardware is not increasing as fast. We summarize
the decoding speed of state-of-the-art video decoders from recent academic papers [88, 167,
280, 285, 286, 287]. As shown in Figure 6.7(b), the decoding speed of the state-of-the-art
decoding hardware doubles only approximately every 27 months (blue dotted line). Mean-
while, we also calculate the required decoding speed from the existing demands of videos by
multiplying the estimated resolution and frame rate from Figure 6.7(a) and plot the estima-
tion in red in Figure 6.7(b). The required decoding speed from demands, doubling every
20 months, (red dashed line) increases much faster than the development of decoding hard-
ware (blue dotted line), indicating the continuous incapability of decoding hardware for
UHD and HEFR videos.

In addition to the state-of-the-art hardware, there are still a considerable number of low-
end and mid-end devices in our users. User devices, even in the same generation, could
also be very heterogeneous. For example, in Figure 6.3, notice that the performance of In-
tel Iris Xe is 2 X better than Intel UHD 770 even though the latter is more recent. Thus,
there is heterogeneity in user devices even in the same generation. Moreover, new video
codecs (e.g., H.265), although with a higher compression ratio, even slow down the de-

coding speed by up to 60% [71, 74, 174]. In this case, the mismatch between the decoder
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and UHD and HFR videos will further exacerbate, making the queuing delay at the tail a

lasting issue.

6.3.2 CHOICE: CONTROLLING PROPER PARAMETERS

We motivate the need to adjust the frame rate. For an encoder, there are three parameters
that could be independently set, including the frame rate, bit rate, and resolution. The en-
coder will automatically optimize other parameters (e.g., quantization parameters) based on
current contents to achieve the target frame rate, bit rate, and resolution. We refer readers
to [49] for more details on video codec.

We first analyze how these parameters could affect the delay of different components.
When the bit-rate increases, the network delay will increase due to the congestion. When
the resolution increases, since the decoder needs to decode frames with larger pixels, it
needs a longer time to decode. The queuing delay depends on the enqueue rate (i.c., frame-
rate) and the dequeue rate (i.c., decoding delay). In contrast, for example, if the bit-rate de-
creases, yet the resolution is kept the same, the decoding delay for each frame will hardly de-
crease due to the hardware design of the codec, which we further measure in Appendix C.2.4.
Thus, relying on the total delay (e.g., Salsify [119]) would lead to ambiguity in taking effec-
tive actions to reduce the delay.

Therefore, we need to individually control respective parameters to reduce different de-
lays. In response, we adjust the frame rate to control the queuing delay for high-quality
RTC. When the fluctuations of the decoder and network result in an increase of queuing
delay, it is essential to adjust the encoding parameters to reduce the queuing delay. In this

case, after collecting measurements from the client and network, the encoder at the server
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could accordingly adjust the frame rate for the following frames. We could dynamically
specify certain timestamps where new frames are encoded.

We further discuss several potential solutions and concerns of adapting frame rates in
Appendix C.1. In summary, adjusting the resolution or dropping frames is impractical due
to the significant overhead of bandwidth. Statically choosing the frame rate based on the
client model is also insufhicient due to the fluctuation of decoding delay in the runtime.
Moreover, since applications have limited control over users’ systems, it is also impractical
to control the user’s system (e.g., pinning the application to a CPU core) for a large-scale
production-level service [36]. In terms of frame-rate adaption, note that there are previous
efforts in the adaption of frame-rate (e.g., CU-SeeMe [130] decades ago). However, as we
discussed in §6.3.1, with the increase in resolution and frame-rate, and the stringent delay
requirements, we need to reemphasize the significance of adapting frame rate now. We also

show that it is timely enough to control the frame rate over the Internet.

6.3.3 CHALLENGES

Achieving an ultra-short queue. To achieve an ultra-short queuing delay for the decoder
queue, it is challenging to pick the appropriate indicator to inform the controller when it
needs to take action. Existing signals (queue length [205] or queuing delay [119, 260]) fail
to achieve an ultra-short queuing delay. Since the accumulation of the decoder queue is the
consequence of the fluctuation of the arrival or departure process, both the queue length
and queuing delay can only be observed when the queue has already been built up. For the

example in Figure 6.6, while the decoding delay starts to increase at the 3rd frame, a non-
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Figure 6.8: Two traces of transient fluctuations of the decoder queue from online traces. Legends
are the same as Figure 6.6.

zero queue length can only be observed by the 9th frame. We also evaluate baselines based
on queue length and queuing delay in §6.5.2.

In response, we want to capture the earliest signal to perceive the potential queuing de-
lay. Therefore, instead of measuring the queuing delay, we want to estimate the potential
increase of queuing delay predictively. For example, inspired by recent advances in con-
gestion control [125, 164], a straightforward way is to measure the dequeue rate of the de-
coder queue to estimate the potential increase of the queuing delay.

However, in terms of tails, the arrival process is also fluctuating, which could also lead to
an increase in queuing delays. For example, the network delay might increase by ten times
at the 99th percentile than the median [77]. In response, to precisely avoid queue accumu-
lation, we extend the designs of [125, 164]: AFR comprehensively measures the arrival and
departure process and controls the queuing delay based on queuing theory. We introduce

the design in §6.4.2, and evaluate the necessity of measuring the arrival process in §6.5.2.

Handling various events. Furthermore, the reason behind the formulation of the decoder

queue in high-quality RTC is complex. As we introduced in §6.3.1, the stationary degra-
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dation of decoding capacity could lead to the accumulation of the decoder queue, e.g., the
traces in Figure 6.6. Besides, the decoder queue could also be accumulated due to tran-
sient contingencies. For example, from our experiences in production, the decoder might
contingently experience a sudden decoding lag of ~ 100 milliseconds (e.g., the 3™ frame in
Figure 6.8(a)). The sudden interference in wireless channels might also lead to the bursty
arrival of several frames (e.g., the 4™ to 8 frames in Figure 6.8(b)). In both cases, the de-
coder queue will be accumulated. Since these transient fluctuations happen suddenly, it is
challenging for the controller to react by measuring enqueue and dequeue rates.

Thus, AFR differentiates the causes of queue accumulation and reacts respectively to
fluctuations at different time scales. We design a stationary controller to avoid queue accu-
mulation in heavy traffic (§6.4.2), and a transient controller to reduce the queuing delay in

contingencies (§6.4.3).

6.4 DESIGN — ADAPTIVE FRAME-RATE (AFR)

We first analyze the overall workflow of AFR in §6.4.1, and then present the two controllers

of AFR (§6.4.2, §6.4.3).

6.4.1 WORKFLOW OVERVIEW

The workflow of AFR is presented in Algorithm 3. Specifically, the stationary controller
(§6.4.2) maintains the queue around an ultra-short target based on dynamics of enqueue
and dequeue processes. By measuring the statistics of both processes, AFR calculates the
expectation of the queuing delay based on queuing theory. The frame rate can therefore be

optimized towards a given queuing delay target (line 1). The transient controller observes
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Algorithm 3: Hierarchical AFR control.

Input: Enqueue process {4, }, dequeue process {5, }, queue states Q. (A4, denotes the
interarrival times, and S, denotes the decoding delays of frames {7}.)
Output: Target frame rate f.
1 fo = StationaryController({4, }, {S,})
2 a = TransientController(Q)

s f=afi

the queue states Q (queue length and queuing delay) and calculates the discounting factor
a < 1(line 2) to further decrease the frame rate when the queue formulates. The final
frame-rate is the stationary frame-rate f; discounted by « (line 3). In this case, AFR can

react to various scenarios of queue accumulation.

6.4.2 STATIONARY CONTROLLER

As introduced above, we measure the arrival and service processes and control the expected
queuing delay of the queue. Specifically, we use the Kingman formula as an approximation
of the expectation of queuing delay. Kingman formula is a widely adopted approximation
formula of queuing delay [154] for G/G/1 queues. Compared to other approximation
methods, in this paper, we adopt the Kingman formula to estimate the queuing delay since
its estimation is from both arrival and departure processes without relying on queue states,
which could provide the earliest signal for the potential queuing delay. According to the

Kingman formula, the expectation of queuing delay 7,,.,. follows:

E (rguee) ~ (1) (43%) &, (6.1)

where

G=oalu,, =0/, p=plu (6.2)

148



(#,,7.) and (¢, ;) are the mean and standard deviation of the arrival and service processes:
w, =E{d,}, 0, = \Jvar(d,),p, = B{Sp}, 00 = \/var(S,) (6.3)
From Eq. 6.1, the queuing delay is related to the following factors:

* Queue utilization p. The queuing delay will increase when the queue is overloaded

(p — 1). The current frame rate and decoding delay determine the queue utilization.

* Arrival and service fluctuations ¢, and ¢,. When the arrival or the service processes

fluctuate, the queuing delay will also increase.
* Service time x . Finally, the queuing delay scales with the average decoding delay.

Therefore, we control the expected queuing delay by controlling the right-hand side (RHS)
of Eq. 6.1. We set E{ 7, } to a pre-defined queuing delay target 17. Consequently, the

target frame-rate f; could be calculated as:
fo=rle=1/ (& (14§ -%5%)) ©)

Discussion: Approximation method. The AFR mechanism supports any approximation
formula by design. There are other research efforts to control the queue. For example, re-
cent efforts in congestion control [125, 164] directly set the target utilization (e.g., setting
p = 0.95) and calculate the enqueue rate. In this paper, we adopt Kingman formula to
capture both the arrival and departure processes, as discussed in §6.3.3. We also evaluate the

performance of other baselines in §6.6.1.

Measurements of queuing dynamics. According to Eq. 6.4, we need to measure the

mean and variance of the arrival and service processes. Similar to the RT'T measurements
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in TCP [145], we adopt the exponentially weighted moving average (EWMA) and expo-
nentially weighted moving variance (EWMYV) to estimate the ¢ , o;, # , 7, in Eq. 6.1 and

6.2.
o=+ (1-8) 2,

o — A (6.5)
Tn = \/Stg' (xn _1“”) + (1 - fzr) 0%71

where x, denotes interarrival time 4, or service time S,. £ and &, are the EWMA and
EWMV. f# and £_ are the discounting factors for the measurement of mean and standard
deviation, trading off between precision and sensitivity.

However, due to bursty arrival or stalled services (§6.4.1), both the arrival and service
processes could have significantly deviated value. For example, the 3™ frame in Figure 6.8(a)
has a decoding time of 82ms while other frames are below 4ms. Such outliers will signif-
icantly deviate the estimation of stationary statistics for a long period. In fact, as we dis-
cussed in §6.4.1, these contingent events are designed to be handled by the transient con-
troller. Therefore, we need to filter those outliers out to precisely estimate the stationary
status of arrival and service processes. Due to the highly skewed distribution of decoding
delay, existing outlier removal mechanisms based on standard deviation (e.g., the three-o
rule [215, 228]) suffer from differentiating stationary state transitions from outliers.

To capture the transitions of the status of decoders while eliminating the influence of
the contingent outliers, we introduce an outlier removal mechanism based on priori knowl-
edge from measurements in production. The key intuition is that decoding delay differences
(S, — S,—1) are related to the probability of being outliers. For example, an increase of 2oms
on decoding delay is probably the transition between stationary states (Figure 6.6). How-

ever, a sudden increase of 8oms on decoding delay is likely to indicate that decoding delay is
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Figure 6.9: Reflection in outlier removal. Figure 6.9(b) presents the frequency of frames with » &
[%, C]. Measurement details in §6.5.2.

an outlier, which is usually the scenario of contingent stalls in Figure 6.8(a). This is because
commercial decoders are usually able to decode frames at the frame rate of 24fps on aver-
age. According to our measurements, when the decoding delay difference is above soms,
the possibility of being an outlier for that frame is 95%. Thus, we remove frames with a de-
coding delay difference of >soms in the stationary controller, and leave the control of those
frames to the transient controller.

We further characterize our observation based on measurements in production. As
shown in Figure 6.9(a), we quantify the outlier with reflection ratio r, which illustrates the
recovery of decoding delay before and after the potential outlier. The numerator is the dif-
ference between the current decoding delay (7,) and the average decoding delay of the pre-
vious 10 frames (7_19._;), and the denominator is the difference between 7, and future de-
coding delay. For outliers of contingent stalled service (e.g., the 3™ frame in Figure 6.8(a)),
their reflection ratios would approach -1. This is because previous frames and subsequent
frames have similar decoding delays, while the outlier has a much higher decoding delay

(70 > 7_10.-1 = T1:00)-



We then plot the relationship between the difference of decoding delay (7, —z_;) and the
average reflection ratio (7) of all frames with the same difference from our measurements in
Figure 6.9(b). When the decoding time difference is larger than soms (marked with a red
arrow), the average reflection ratio is less than -0.95, indicating that most frames in this
scenario are outliers. Therefore, the stationary controller in AFR does not calculate the

frames with a decoding delay difference larger than soms.

Convergence time analysis. To help operators to better understand the behavior of the
stationary controller, we investigate the convergence of the stationary controller during
state transitions of the service process. We want to answer the following question: During
the transition from stationary state (¢, 71) to (¢,, ), how long will the stationary con-
troller take to converge to the new frame-rate and drain the potential accumulation of the
queue due to the transition?

We outline the main conclusion here and leave the detailed analysis in Appendix C.s.
When the control loop (round-trip delay) of AFR is 7 frames, the convergence time 7§ is
bounded w.r.t. 7and I, and is acceptable for most scenarios. For example, when the aver-
age control loop of AFR is the interarrival time of one frame (7=1), and I#;=2ms, the sta-
tionary controller could converge to the new stationary state within 2 frames. We illustrate

the convergence time of the stationary controllers with more settings in Appendix C.s.

6.4.3 TRANSIENT CONTROLLER

The transient controller is designed to handle the contingent queue accumulations (§6.4.1).

Therefore, we need to first understand how we should react to these queue contingencies.
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Figure 6.10: Differences between bursty network arrivals and stalled decoder services. The y-axis
is the accumulated enqueue/dequeue frames. For example, the enqueue curve in Figure 6.10(b)
increases from 1 to 2 at 1ms, indicating that frame #2 enqueues at 1ms.

Understanding queue contingencies. As shown in Figure 6.8(a) and 6.8(b), both stalled
decoder services and bursty network arrivals will cause a sudden increase in queue length.
We illustrate the enqueue and dequeue events of two contingencies in Figure 6.10. In Fig-
ure 6.10(b), 5 frames arrive at the client together within 4ms, resulting in a queue length of
4 when the sth frame arrives and observes, as illustrated with the Ly (blue arrow). In Fig-
ure 6.10(c), the decoder takes 8oms to decode the oth frame, when queued frames cannot
be dequeued to the decoder. Therefore, upon the arrival of the sth frame, it also observes a
queue length of 4.

However, the bursty network arrivals and stalled decoder services should be handled
separately. In the scenario of bursty network arrivals, the bottleneck of total delay is still
in the network due to its long network delay. As long as the decoder is functional, even
if multiple frames arrive at the queue simultaneously, they could be processed efficiently
(Figure 6.8(b)). In this case, the queue will be drained in a short time, and we do not need

to reduce the frame rate. In contrast, the stalled decoder service will drastically increase the

I53



queuing delay of subsequent frames and needs adaption (Figure 6.8(a)). Thus, we need to
differentiate between the two scenarios.

Since both scenarios result in an increase in queue length, they cannot be effectively dif-
ferentiated with queue length only. Our insight is that we can differentiate them with the
sojourn time of the first frame in the queue. As shown in Figure 6.10(a), at the arrival of
frame K5, the sojourn time 7 of the first frame K and queue length L, observed by K,

are:

=28 KD =K - K (6.6)

eng eng

(

where tef;)q is the enqueue timestamp of frame #i, and frame #Kj is the frame at the head of
the queue. For bursty network arrivals, since frames arrive at the decoder queue simulta-
neously, when the last frame of the burst arrives, the first frame has only been queued for
a short time. For example, 7y in Figure 6.10(b) is 4ms (marked red). In contrast, for stalled
decoder service, the head frame has been blocked for a long time, leading to a high 7 of
66ms in Figure 6.10(c). Therefore, we use 7 to adjust the frame rate in the transient con-

troller.

Feedback control. For the transient controller, the design space is to find out a mapping
between the discounting factor « and the queuing delay 7. Since the transient controller
is designed to reduce the frame rate based on the results of the stationary controller, the

possible range of « satisfies:

fmz’n/fmﬂx =ty S <1 (67)

where f,,;, and f,,.. are the lower and upper bounds for frame rate required by the appli-

cation. Since longer 7 indicates a more severe load of the queue, the discounting factor
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Figure 6.11: lllustrations and measurements of the transient controller. A series of linearly dis-
tributed dark blue clusters in Figure 6.11(b) indicate that LQ and T are linearly correlated.

should decrease with the increase of 7. Besides, the 2-7p mapping should also have the
following properties:

First, avoid overreactions. As we discussed above, for bursty network arrivals, 7 will
also slightly increase due to the volumetric arrived frames. However, since such a tran-
sient queue accumulation will be cleared quickly as long as the decoder is functional (Fig-
ure 6.10(b)), we should not decrease the frame rate. Therefore, we need to introduce an
upper reservoir (as shown in Figure 6.11(a)) to avoid overreactions. In the upper reservoir,
when a non-zero but small 7 is observed (0 < 7p < Q), the transient controller will not
decrease the frame rate. The reservoir threshold Q; should be set based on measurements.
We measure the observed Ly and 7 from frames and present the results in Figure 6.11(b).
Peaks near the left axis (marked by red dashed arrows) represent frames with a long L, yet
with a short 7, which are due to the bursty network arrivals. Therefore, we set Q; to fil-

ter out those bursty arrival-related peaks (e.g., Q;=14ms in our deployment, the red line in

Figure 6.11(b)).
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Second, respond timely. Due to the stringent delay requirements of high-quality RTC
applications, a long queuing delay will drastically degrade the users’ experiences. There-
fore, we need to control the slope of the mapping in Figure 6.11(a) to effectively reduce the
queuing delay. Since « is lower bounded, we could control the slope of the mapping by in-
troducing a lower reservoir, as shown in Figure 6.11(a). We set Q, as the maximum tolerable
queuing delay:

Q> = max (Qy, Deadline — Tperork — Tiecode) (6.8)
where 7,04 15 the round-trip network delay, and 7cq. is the decoding delay p.. Deadline
is the requirement for the total delay of the application. Based on users’ experiences in the
human-machine interaction and our operational experiences, we set Dead/ine to 1ooms in

our deployments [143].

6.5 IMPLEMENTATION

We implement the AFR with a frame-level trace-driven simulator, and deploy the AFR
onto a production high-quality RTC service in the wild. In this section, we present the de-

sign of our simulator (§6.5.1), introduce the simulation setup (§6.5.2) and the deployment

setup (§6.5.3).

6.5.1  SIMULATOR DESIGN

To faithfully compare and replay the traces for different queue control algorithms, we de-
sign a simple simulation environment that models the dynamics of RTC. The simulator
maintains the decoder queue and replays the traces collected from online services, where

the traces contain the decoding delay, network delay, original queuing delay, and also the
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Category Session  Frame Playtime
(1) Windows+Ethernet 29.7k  6.35 B 34.2khours
(2)  Windows+WiFi 6.4k 1.12B 6.2k hours
(3) MacOS+Ethernet o.4k  40.9M o.2khours
(4) MacOS+WiFi 2.1k 216 M 1.1k hours
Total 38.1k 773 B 41.7k hours

Table 6.1: Distribution of our traces on the client type.

arrival timestamp for each frame. Specifically, frames arrive at the decoder queue according
to timestamps in traces, wait in the decoder queue for dequeuing, and are decoded accord-
ing to decoding delays in traces. To avoid frequently sending frame-rate adjustment re-
quests to the servers, frame rates are quantized at the level of sfps, which is also followed by
our online deployment. We implement the potential interference from CPU time-slicing:
since the fetching of frames to decoders depends on the CPU, there are possible cases where
fetching the frame from the queue to the decoder needs waiting to be scheduled by the
CPU by up to several milliseconds [68]. Therefore, we further profile such a delay in the
traces and introduce the scheduling waiting time in our simulator. We also implement the
response time of the encoder between the new frame-rate actions and new frames gener-
ated with the updated frame rate, according to our measurements in §6.6.4. Please refer to

Appendix C.3 for implementation details.

6.5.2 SIMULATION SETUP

Traces. We measure the frame-level statistics of our cloud gaming service (introduced in
§6.3.1) on two types of clients (Windows and MacOS) and access networks (Ethernet and

WiFi). We profile each step of received frames in one of our production clusters for 24 days
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in December 2020. This results in a dataset with 7.73 billion frames and 41.7k hours of
playtime (Table 6.1), which is the largest frame-level dataset for interactive streaming to the

best of our knowledge.

Parameter settings. There are several parameters in AFR to be determined. Except for
the parameters related to the transient controller (§6.4.3), we set 7, in the stationary con-

troller to 2ms and the discounting factorsin EWMA £, = 0.033and ¢, = 0.25. We

cry

discuss the sensitivity of those settings and their influence on the performance in §6.6.3.

Metrics. In the evaluation, we mostly measure the delays (including the queueing delay
and the end-to-end total delay). As we discussed in §6.2, the delay in interactive streaming
is orthogonal to other video quality metrics (e.g., PSNR [14] or SSIM [258]). The delay,
which represents interactivity, is the main optimization goal in this paper. We demonstrate

that AFR has negligible degradation on the video quality in §6.6.4.

Baselines. To evaluate the performance of AFR, we implement existing frame control

mechanisms as follows:

* DropTail is the frame control mechanism in WebRTC [205]. When frames overflow
the queue, the client will first clear the queue, then request a new key frame, and
finally drop all frames until the next key frame arrives. We set the queue capacity to

16 frames.

* QLen-S observes the current queue length, skips frames from the content generator

before the encoder if the queue length is >1, and resumes if the queue length is <1.



* QWait-S. We migrate the frame control mechanisms from existing academic efforts
in our simulator [119, 260], and replace the signal from total delay to queuing delay
to better reduce the queuing delay. Since these baselines are not designed for strin-
gent delay requirements of 1ooms, we also finetune their parameters with our traces.
QWait-S skips frames before the encoder if the queuing delay is >>32ms, and resumes

if the queuing delay is <4ms.

Besides, to evaluate the effectiveness of different components in AFR, we also different

variants of AFR:

* AFR-QLen. We demonstrate the insufficiency of controlling the frame rate with queue
states with a feedback algorithm based on current queue length: it observes the cur-
rent queue length at the arrival of each frame, and maps the queue length of {o, 1+}

to frame-rate {6o, 24 }ps.

* AFR-QWait. A feedback algorithm maps current queuing delay of {(o, 4), (4, 8), (8,
12), (12, 00)}ms to frame-rate of {60, 48, 36, 24}fps. The parameters have also been

finetuned with our traces.

* AFR-TX. To demonstrate the effectiveness of measuring both the arrival and service
process, we further implement a dequeue rate-based algorithm. AFR-TX measures the
dequeue rate and sets the target frame-rate with p = 0.8, where p has been tuned

with our traces. The dequeue rate is the reciprocal of decoding delay.

* AFR-Kingman. Moreover, we individually evaluate the stationary controller of AFR

to further illustrate the effectiveness of the transient controller.
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* AFR. Finally, we put all optimizations in this paper (both the stationary and transient

controller) together.

We present how we tune the parameters, and evaluate the trade-offs between frame rate and

queuing delay in §6.6.3.

6.5.3 DEPLOYMENT SETUP

We finally deploy AFR onto our cloud gaming service. The gaming service X employs the
H.264 codec to increase the coverage of hardware decoding and adaption towards hetero-
geneous clients’, and customizes the codec performance for the optimization of gaming.
Tencent Start currently supports 13 production-level games, including action-adventure,
first-person shooter, and real-time strategy games. To optimize the network delay, the ser-
vice is accelerated with multi-access edge computing similar to [197, 250, 282]: Users are
split into tens of operation regions with a geographical diameter of hundreds of kilome-
ters. Cloud gaming servers are deployed on clusters in each operation region, resulting in an
average round-trip network delay of 15ms (Appendix C.2.2).

The frame-rate adaption algorithms are implemented on the client side. The AFR con-
troller continuously measures the statistics of the decoder queue, and sends requests to
edge servers to adjust the frame rate when necessary. The edge server then forwards the
frame-rate adjustment requests to both the video encoder and the gaming application.
New frames will be generated following the new inter-frame interval. We evaluate the re-

sponse timeliness and overhead of video encoder and gaming application in §6.6.4.

"Hardware decoding has a shorter decoding delay than software decoding and supports higher frame
rates. H.264 has a higher coverage of hardware decoding support compared to other advanced codecs [169].
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6.6 EVALUATION

We evaluate the AFR controller in the following aspects:

* Delay improvements. We present the performance improvements: The ratio of
frames with long queuing delay and total delay of AFR has been improved by 2.1 -

26X and 13%-2.2 X against existing baselines (§6.6.1).

* Frame-rate maintenance. We then demonstrate that AFR introduces negligible

impacts on the metrics related to frame-rate (§6.6.2).

* Parameter sensitivity. Our evaluation shows that parameters in AFR have a wide

range of settings to gain performance improvements against finetuned baselines

(§6.6.3).

* Microbenchmarking. We further demonstrate that the timeliness, overhead, and

image quality of frame-rate adjustments are satisfactory for online deployment

(§6.6.4).

* Deployment in the wild. Finally, we report the A/B test results and the deployment

progress of AFR on our cloud gaming service online (§6.6.5).

6.6.1 DELAY IMPROVEMENTS

We compare the queuing delay and the total delay of each frame with AFR and baseline
algorithms in four sets of traces (Table 6.1). We measure the queuing delay in two dimen-
sions: we present the 99th percentile queuing delay and the ratio of frames with a queu-

ing delay >soms in Figure 6.12. We first analyze the results of AFR against three existing
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mechanisms (DropTail, QLen-S, and QWait-S). AFR could reduce the 99%ile queuing delay
by 1.9 t0 7.4 X, and the ratio of severely queued frames by 2.1 X to 26 on different sets
of traces against three baselines. In this case, the 99%ile queuing delay could be squeezed
to 6.9ms. This indicates that AFR could effectively achieve an ultra-short queuing delay.
AFR also demonstrates satisfactory performance improvements on the zotal end-to-end de-
lay, which is directly related to users’ experiences. AFR improves the 99%ile total delay by
27% to 36%, and the ratio of severely delayed frames (total delay >100ms) by 1.6X to 2.2
in all traces. We also measure the session stutter ratio, i.e. the ratio of frames with a total de-
lay of >100ms in a session, for each session. We then measure the ratio of sessions with a
session stutter ratio of >5% and >10%, which indicates how many users suffer from un-
satisfactory experiences and present the results in Figure 6.14. For the major population of
our service (Cat. (1), Table 6.1), AFR reduces the stuttered sessions by 17% and 21% com-
pared to the best of the three baselines. For other categories, the ratio of stutter sessions has
also been reduced by 5% to 37%. AFR could significantly improve experiences for high-
quality RTC.

We further understand the performance improvements with the comparisons among dif-
ferent variants of AFR. Compared to DropTail, baselines based on queue states (AFR-QLen,
AFR-QWait) could effectively reduce the queuing delay, indicating the necessity of actively
controlling the queuing delay (§6.3.1). Compared to QLen-S and QWait-S, controlling the
frame rate achieves better performance than skipping frames from the encoder. This is be-
cause skipping frames would drastically degrade the tail frame rate, for which the param-
eters of baselines are tuned (§6.6.3). AFR-TX could further reduce the queuing delay than

the queue state-based baselines, indicating that observing the service process could know
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the potential degradation in advance and effectively take actions, validating our analysis in
§6.3.3. AFR-Kingman further improves the performance by 10% against AFR-TX, demonstrat-
ing that the fluctuating arrival of the high-quality RT'C could also affect the estimation of
the decoder queue. AFR finally reduces the tail queuing delay by 2-4% against AFR-Kingman,
indicating the necessity of the transient controller to handle contingencies.

Besides, we also find that AFR has larger performance improvements when the network
is better. The performance improvements on two sets of Ethernet traces (55% and 37%
for Cat. (1) and (3)) are larger than the on WiFi traces (3 5% and 27% for Cat. (2) and Cat.
(4)). Considering the ongoing deployment of next-generation access networks with better
network conditions (e.g., sG and WiFi 6), the necessity of controlling the decoder queue

would be more significant.

6.6.2 FRAME-RATE MAINTENANCE

Besides, we also measure the effect of AFR on the frame rate. We first measure the interar-
rival time between frames at the arrival of each frame on the client. For example, a frame
rate of 6ofps should result in an interarrival time of around 16.7ms. We tune the param-
eters of each algorithm to keep the 99th percentile of their interarrival time at the same
level (details in §6.6.3). Therefore, for 10-9oth percentiles, as shown in Figure 6.15(a), most
algorithms except for DropTail are comparable. Compared to the existing deployed mecha-
nism DropTail, AFR even improves the tail user-perceived frame rate due to its better man-
agement of frame drops. AFR slightly decreases the median frame rate by 3%-9%, which
brings the negligible quality of experience (QoE) degradation to users considering the im-

provements on delay [241, 271].
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Figure 6.15: Frame-rate maintenance. Better viewed in color.

We further measure the smoothness of frame-rate, which might also have potential ef-
fects on users’ experiences [98]. We measure the differences of interarrival time as an in-
dicator of the smoothness of frame rate and present the results in Figure 6.15(b). Except
for DropTail, all baselines and AFR have similar interarrival differences and are better than
DropTail. This is mainly because that frame drops in DropTail will introduce a sudden in-
crease of interarrival differences. Moreover, we also measure the frame adjustment interval
and present the distributions in Figure 6.15(c). The median adjustment interval of AFR is
hundreds to thousands of frames, which is much longer than the response time of frame-

rate adjustment (§6.6.4).
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Figure 6.16: The trade-off between the tail interarrival time and queuing delay. We tune the param-
eters for baselines and AFR to illustrate the capability of each algorithm in the trade-off.

6.6.3 PARAMETER SENSITIVITY

We then evaluate the sensitivity of parameters in AFR and other baselines. We tune pa-
rameters of all baselines in §6.5.2: thresholds for skipping frames for QLen-S and Qwait-S,
mappings for AFR-QLen and AFR-QWait, p for AFR-TX, and ¥, for AFR-Kingman and AFR.
We present the ratio of frames with queuing delay >soms (P(Q>soms)) and the 99th per-
centile of interarrival time on Cat. (1) traces in Figure 6.16. The down-left corner indicates
the algorithm has a satisfactory trade-off between the queuing delay and the frame rate.

As we can see, AFR outperforms all other baselines in a wide range of settings, achiev-
ing a better trade-off between the queuing delay and frame rate. QLen-based algorithms are
challenged in achieving ultra-short queuing delay: with the extremest parameters (skip-
ping/decreasing frame-rate as long as queue length is non-zero), QLen-S and AFR-QLen could
only achieve a P(Q>soms) of 2.2%o0 and 1.7%o, much higher than other baselines. This fol-
lows our analysis in §6.3.3 that queue length is too coarse-grained as a signal to control the
queue with an ultra-short target. Meanwhile, skip-based algorithms could achieve lower

queuing delay compared to frame-rate-based algorithms, yet with higher interarrival time.
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Figure 6.17: Effectiveness of frame-rate adjustment.

The parameters of all algorithms are tuned according to Figure 6.16 by aligning the 99th
percentile interarrival time.

We also evaluate how different percentiles of queuing delay and total delay are affected
by the setting of W, in Appendix C.4.3. The performance of AFR reacts sensitively to the
setting of 1), indicating that operators could effectively balance the total delay and frame
rate by adjusting 7. We further evaluate the sensitivity of the discounting factors £ of the
EWMA and EWMYV in the transient controller (§6.4.3) in Appendix C.4.3, demonstrating

how operators should set these parameters to balance between the precision and sensitivity.

6.6.4 MICROBENCHMARKING

We also benchmark AFR in a testbed of our cloud gaming service.

Effectiveness of frame-rate adjustment. We first measure the responsiveness and preci-
sion of frame-rate adjustment at the video encoder. We enumerate all frame-rate switch-
ing within {25, 30, - - -, 6o}fps, and measure how many frames the encoder needs to take

to steadily output video streams at the new frame rate. The response time measured by
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Figure 6.18: Frame-rate adjustment overhead.

the unit of frame (i.e. response frame) is presented in Figure 6.17(a). For each group of set-
tings, we repeat the experiments 100 times to eliminate the randomness. When decreasing
the frame rate, the 9o%ile response frames is less than 3 frames, indicating the encoder and
gaming application could decrease the frame-rate timely. This could eftectively alleviate the
overload of the decoder queue. When significantly increasing the frame rate, the frame rate
might be slightly delayed to change. This is because the frame rate at the client side follows
the bucket effect. Either encoder or the gaming application decreases the frame rate will
lead to a decrease of the final frame rate, while the increase of frame rate needs an increase
from both components. Even so, the tail response frame is <10 frames, which is much less
than the adjustment interval (Figure 6.15(c)).

We then measure the fluctuation of the frame rate of the output of the streaming en-
coder. We set the frame rate to several levels as above, and measure the interarrival time be-
tween each frame. For each frame rate, we measure the interarrival time for 30,000 frames
and present the distribution in Figure 6.17(b). The interarrival time between frames largely
falls around the target frame rate. Therefore, unlike the fluctuating bit-rates in video stream-

ing [141], frame-rate could be precisely controlled by the encoder.
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Figure 6.19: The image quality differences of AFR and the original video tested in a running scene
(R) and stable scene (S). The error bar represents the standard deviation.

Frame-rate adjustment overhead. We further measure the potential processing overhead
of frame-rate adjustment at the edge server. To magnify the overhead, we change the frame
rate from Gofps to 30fps and back to 6ofps every 6 frames, which is much shorter than the
usual adjustment interval. We then measure the CPU and memory utilization of the cloud
gaming application and encoder by sampling the CPU processing time and application pri-
vate bytes with the typeperf [222] every 1 second. We measure for 30 minutes to eliminate
the randomness. We compare the scenario with a stable frame-rate of 6ofps (stable) and

a frequently switching frame-rate (switch) in Figure 6.18. For CPU utilization, both sce-
narios have a similar distribution from 0% to 20%. switch is a little better than stable since
producing a lower frame rate takes fewer CPU resources for the gaming application. As

for memory utilization, the major memory consumption is from the gaming application.
Frame-rate switching slightly increases the utilization of private bytes since frequently re-
setting the encoder requires allocation of memory. Nonetheless, the increase of memory
utilization is less than 1.8% even at the 99%ile, which is negligible and could be even lower

in the case of normal frame-rate adjustments.



Image quality degradation. We also investigate the potential image quality degradation
caused by AFR. We record two raw videos from games, one in a running scene (R) and
another in a standing scene (S). For each video, we switch the frame rate every roo frames
15 times and measure the video quality for the following 400 frames. We investigate three
video quality metrics, peak-signal-to-noise-ratio (PSNR) [14], structural similarity index
(SSIM) [2538], and video multimethod assessment fusion (VMAF) [166], and present the
results in Figure 6.19. stable and switch denote the scenarios where the frame-rate re-
mains unchanged or frequently switched. Results demonstrate that frequently switching
the frame rate will not affect the video quality: the video quality of two videos on three

metrics are comparable in all cases.

6.6.5 DEPLOYMENT IN THE WILD

Finally, we evaluate the performance of AFR by deploying it onto Windows clients of our
cloud gaming service, Tencent Start, in one of its production clusters. Before the deploy-
ment of AFR, our cloud gaming service follows the frame control strategy in WebRTC
(i.e., DropTail). To make a clean and controlled comparison, we only present the results
from online A/B tests in our production clusters, when all other implementations and set-
tings are kept the same. The A/B test is conducted from January 8, 2021, to January 14,
2021, resulting in 5369 Ethernet sessions and 1467 WiFi sessions. The parameter settings
of AFR remain the same as the simulation (§6.5.2). We randomly enable (or disable) AFR
with a probability of 50% for each session, and present the results in Table 6.2. Similar to
the simulation results, the ratio of stuttered frames measured by total delay (P(T>100ms))

in both categories has been improved by 34% and 30%, which significantly improves users’
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Cat. (1) Q99 Q>soms Tg99 T>100oms Session
DropTail s4ms  1.11%  101mSs 1.03% 7.30%
AFR 22ms  0.51% 8oms 0.68% 5.82%
Cat. (2) Q99 Q>soms Tg9g9 T>100oms Session
DropTail 64ms  1.83%  174ms 3.00% 24.00%
AFR 37ms  0.54%  160ms 2.11% 21.17%

Table 6.2: Performance of deployment in the wild. Metrics are the 99%ile of queuing delay (Q99),
the ratio of frames with Q>50ms, the 99%ile of total delay (T99), and the ratio of the stuttered
frame (T>100ms). Session is the ratio of sessions with stutter ratio >5%. Cat. (1) and (2) are Eth-
ernet and WiFi on Windows clients.

experiences in interactive streaming. The stuttered sessions (with the same metric as Fig-
ure 6.14(a)) have also been reduced by 17% on average, indicating these users could be
alleviated from stuttering streaming experiences. Therefore, the online deployment also
demonstrates significant benefits of AFR for high-quality RT'C users. AFR has already
been deployed onto all production clusters of Tencent Start for over one year, serving thou-

sands of users each day.

6.7 DIsCUSSIONS
In this section, we discuss the potential limitations of AFR.

Application scenarios. In this paper, we mainly evaluate the performance of AFR on
traces or production clusters of our cloud gaming service. However, as we introduce in §6.1
and §6.2, the overload of decoder queue generally exists in many high-quality RT'C scenar-
ios, such as VR streaming or 4K live streaming, as long as they stream high frame-rate and

high bit-rate video onto commercial clients. We evaluate AFR with cloud gaming due to
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access to the real-world traces and production services X. We leave the deployment of AFR

over other scenarios as our future work.

Coexistence of multiple control loops. There are other control loops that work simul-
taneously in the RTC system. For example, the underlying congestion controller will also
control the bit-rate of the video based on network conditions [77]. The video codec will
also adjust the quantization parameter based on the scenes to encode [49]. As we discussed
in §6.3.2, these parameters are affected by different causes (network congestion, decoder
degradation, scene variation), which are orthogonal to each other. Therefore, the adaption
of the frame rate is orthogonal to the other controllers in the RTC system. In §6.6.5, we
evaluate the performance of AFR with all these controllers in our real production in the
wild. We leave the coordination of different controllers on the joint optimization over the

user’s experience for the future.

6.8 SUMMARY

In this paper, we propose AFR to reduce the queuing delay of the decoder queue for high-
quality RTC by dynamically adjusting the frame rate. AFR introduces a stationary con-
troller and a transient controller to respectively mitigate the stationary heavy traffic and
contingent arrivals and services. We further evaluate the performance of AFR with trace-
driven simulations and deployments in the production clusters. Experiments demonstrate

that AFR could significantly reduce the stuttering ratio and tail total delay.
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Transport Layer on Data Path:

Discriminating Retransmissions

7.1 INTRODUCTION

A major challenge to control the deadline misses comes from the high instantaneous loss

rate on the Internet. Due to the spatial dependency within video frames and temporal de-
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Figure 7.1: An illustration of the design space of existing solutions and Hairpin. By co-designing the
redundancy and retransmission at the transport layer, Hairpin is able to break the existing trade-off
between bandwidth cost and deadline miss rate.

pendency between video frames, interactive streaming expects packets to be reliably deliv-
ered [190]. However, from our measurement of our edge-based cloud gaming service in
production with O(10,000) users, sessions can experience a drastically high instantaneons
loss rate. Although the average loss rate is considerably low by mechanisms such as proper
rate control, our measurement observes that more than 2% of video frames suffer from an
instantaneous loss rate of 20% or higher (§7.2.1). It indicates that those lost packets are con-
centrated on a few frames. Thus, although the network RT'T can be very low with edge
deployments, retransmissions of lost packets take additional time and will consequently vi-
olate the deadline. Thus, it is essential to optimize the loss recovery mechanisms to control
the deadline miss rate (DMR) of video frames.

Unfortunately, existing solutions to recover packet losses cannot meet the stringent
DMR requirements with a reasonable bandwidth cost. As shown in Figure 7.1, one line
of research efforts (the vertical dimension) is devoted to quickly retransmitting lost packets,
such as probe timeout (PTO) [86], from the transport layer. However, merely retransmit-

ting lost packets cannot meet the requirement of interactive streaming — the DMR is much
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higher than 0.1% (§7.4.3). Another line of effort (the horizontal dimension) is devoted to
adaptive forward error correction (FEC) so that the client might be able to recover packets
based on redundant packets without retransmission [17]. Yet, redundancy-based solutions
come with the price of a considerable bandwidth cost of 20% or more due to the high in-
stantaneous loss rate. For content providers, such a high bandwidth cost will drastically
increase operating expenses and degrade users’ video quality. To the best of our knowledge,
none of the existing solutions jointly optimized retransmission and redundancy. Such an
orthogonal design of redundancy and retransmission, even when adopted together, still
cannot meet the needs of bandwidth cost and DMR for interactive streaming.

Our key insight is to break the trade-oft by discriminating retransmission packets. Edge-
based interactive streaming services can achieve an average RT'T of 10-20ms between ap-
plication servers and users by deploying the servers on the edge [78, 197, 282]. In this case,
limited times of retransmissions (but not too many) are tolerable for applications that have
adeadline of s0-200ms (§7.2.1). But the strategy for retransmission packets must be dif-
ferent for the initial transmission packets. The volume of retransmission packets is much
less than initial transmission packets since packet loss is always the minority. Yet, retrans-
mission packets have a much tighter time requirement since they have already consumed
time. This brings new changes to reduce the bandwidth cost and the DMR at the same
time (§7.2.4). By discriminating the strategies for initial transmission and retransmission
packets, we can break the trade-off between bandwidth cost and DMR.

Discriminating retransmissions for a different redundancy rate is the main insight for

this paper, which will help a lot on the performance (§7.4.5). We then propose Hairpin®, a

*In badminton, a hairpin shot is played when the shuttle is very near to the ground and the net (the
deadline of a shot) [243].
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new packet loss recovery mechanism to jointly optimize packet retransmission and redun-
dancy for edge-based interactive streaming (§7.3.3). However, as later elaborated in §7.3.2,
to further analytically optimize the performance, we still face the challenge of (1) the de-
pendency of decisions and future states, (2) the multi-dimensionality of decisions, and (3)
the convoluted goal of DMR and bandwidth cost. In response, Hairpin further formulates
the problem into a Markov decision process (MDP), which is known for efficiently op-
timizing the temporal dependency [253]. We then encodes the decisions and states into
nodes of MDP to reduce the complexity and achieve the optimal result.

We conduct a week-long packet-level measurement campaign on Tencent edge-based
cloud gaming service to motivate the design of Hairpin (§7.2.3 and §7.2.4). We then imple-
ment Hairpin and evaluate it with both trace-driven simulators and real-world deployments
in production (§7.4.1). Experiments demonstrate that Hairpin could significantly push for-
ward the Pareto frontier [2] by reducing the DMR by 67%-80% and achieve comparable
bandwidth costs simultaneously compared with state-of-the-art baselines (§7.4.3). Prelim-
inarily deploying Hairpin in Tencent cloud gaming service in production also shows signifi-
cant and consistent performance improvements in different types of networks (§7.4.6). We
will release the code and the traces of Hairpin.

Our main contributions are summarized as follows:

* We motivate the need for joint optimization of retransmission and redundancy
through the operating experiences of a production edge-based interactive streaming

service (§7.2).



* We present challenges in the joint optimization over retransmissions and redundancy

for edge-based interactive streaming, and then propose Hairpin with MDP formula-

tion (§7.3).

* We implement and integrate Hairpin in a cloud gaming application in production,

and extensively evaluate its performance with trace-driven simulation and real-world

deployments (§7.4).

7.2 BACKGROUND AND MOTIVATIONS

We introduce the interactive streaming (§7.2.1), present our measurement of packet losses
(§7.2.2), analyze why existing solutions are insufficient (§7.2.3), and motivate the design of

Hairpin (§7.2.4).

7.2.1 INTERACTIVE VIDEO STREAMING

Interactive streaming applications are increasingly attracting interest in many scenarios.
Examples include cloud gaming [12, 15, 19], remote driving [10, 170], cloud phone /

PC [43, 57, 114], and regional videoconferencing [13], forming a considerable market
value of billions of dollars. Compared with legacy live video streaming, with the inten-
sive deployment on edge nodes (or content generators in VR)), the network delay over the
wide-area network could be reduced for interactive streaming (e.g., an average RTT of 10-
20ms [78, 197, 282]). With the recent emergence of the metaverse and so on, these inter-
active video streaming applications are going to be increasingly dominant on the Internet.
Edge-based interactive streaming imposes specific requirements on transport, as summa-

rized below.
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Stringent deadline requirements. Since interactive streaming applications continuously
interact with humans, controlling end-to-end delay is critical for a seamless user experi-
ence. For example, videoconferencing may expect an end-to-end delay of <130ms for net-
work [150, 188], while cloud gaming would argue for a latency of <96ms [151]". In prac-
tice, server- and client-side processing usually take ~30 ms [45, 123, 239, 259]. Therefore,
the end-to-end round-trip delay for the network should not exceed s0-150ms (depending on
scenarios), which is the deadline required by the application [27, 241].

This also corroborates our measurement study with users in our production cloud gam-
ing service. We measure our cloud gaming service in production for one week (details in
Appendix D.1), with O(10,000) users every day, and collect a variety of metrics. Unless
other specified, the analysis using online data in this paper is also from this measurement
campaign. We categorize the measured round-trip interaction delay of each video frame
into several intervals. We present the appearance distribution of the position of those
frames in a flow for each category in Fig. 1.2, where the x-axis is the position of that frame
in a session normalized by the length of that session. Compared to the uniform distribu-
tion of low-delay frames (solid lines), frames with an end-to-end delay of >100ms (dashed
lines) have a higher probability to appear around the end of a flow. We hypothesize that
this is because users tend to exit a session if they have a high end-to-end delay. User’s exit-
ing behavior is a critical metric for user’s experience in real-time video streaming [85]. In
the meantime, setting a deadline for the delivery and reducing the fraction of higher than

that specific value has also been widely adopted in real-time video streaming [188, 190].

TBased on the statistics of the majority of people. Different users and applications could have different
latency sensitivity. For example, for gaming applications, 3D games have more stringent latency requirements
than 2D games [143]



The similarity between the soms and 1ooms curve in Fig. 1.2 also indicates that, as long as
packets could be delivered within the deadline (~100ms in this case), faster delivery barely
improves the user’s experience.

Thus, we should minimize the dead/ine miss rate (DMR) to enable a seamless experience
for users in interactive streaming, where in our cloud gaming service, the deadline for in-
teraction delay is around 10oms. For interactive streaming, it is essential to minimize the
occurrence of deadline misses for frames to an ultra-low level. For example, even a DMR of
107 still leads to a poor experience every 1000 frames (17 seconds at 6o fps), which drasti-

cally degrades the user’s experience [27].

Reliable delivery. Meanwhile, interactive streaming also requires reliable delivery for each
frame. For commercial video codec, failing to deliver a part of the frame will lead to severe
image quality degradation. Moreover, the loss of one frame would also lead to blurring for
the subsequent frames due to the dependency between frames*. Therefore, existing inter-
active streaming services usually try their best to reliably deliver frames. For example, in-
dustrial frameworks (e.g., WebRTC) [17, 137] and academic efforts [66, 116, 208] propose
to employ forward error correction (FEC) to recover lost packets at the receiver if possible,

and will retransmit lost packets if the recovery fails [18].

Low bandwidth cost. The bandwidth cost is still one of the largest operating expenses
in our and other cloud gaming service [55]. Moreover, to achieve a satisfactory user expe-
rience, interactive streaming must stream with high video resolution and frame rate (e.g.,

6ofps and >1080p for cloud gaming), which requires high goodput to support. Given the

*Mechanisms such as scalable video coding (SVC) allow limited packet losses, yet reduce the bandwidth
efficiency and require client support [234].
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requirements of low operating expenses and high video quality for users, we need to control

the bandwidth cost in packet loss recovery.

7.2.2 PACKET LOSSES IN EDGE-BASED INTERACTIVE STREAMING

Our observation from our cloud gaming service is that although the median loss rate is as
low as 1073, the instantaneous loss rate could be very high. In our measurement campaign
as described in §7.2.1, we also calculate the session-level loss rate, which is the ratio of total
lost packets in one user session (minutes to hours, containing at least O(10,000) frames),
to reflect the average loss rate over a long timescale. We then calculate frame-level loss rate,
which is the ratio of lost packets within one frame (tens of milliseconds), to show the in-
stantaneous loss rate over a short timescale. For example, if a session has 1M packets and 10
of them are lost, the session-level average loss rate is 0.01%. Meanwhile, if these 10 packets
belong to the same video frame which has so packets in total, the frame-level instantaneous
loss rate will be 20% for that frame and 0% for other frames.

As shown in Fig. 1.3, the session-level loss rate is 0.05% at the median, which is compara-
ble to similar measurements [132]. However, the instantaneous frame-level loss rate could
be very high: 2% frames lose more than 20% of their packets within one frame. Such a high
instantaneous packet loss poses a great challenge in controlling the deadline miss rate to
1073 or lower — we can no longer ignore these transient behaviors and have to deliver video
frames in time even when the instantaneous loss rate is high.

Moreover, these packet losses cannot be easily mitigated by reducing the sending rate.
To achieve a low latency, most CCAs in interactive streaming use delay as the signal to re-

duce the sending rate (e.g., BBR [75], Copa [47], GCC [77]). In this case, congestion losses
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rarely happen since the sending rate has already been reduced based on an increasing delay
in advance, which has also been measured in related work [77]. Our online measurements
unveil similar observations: our cloud gaming service has already adopted a delay-based
CCA similar to GCC [77], which is widely deployed in interactive streaming applications
such as Chrome and Stadia. We further demonstrate the weak correlation between RT'T®
increases and packet losses in our measurement in §7.2.4. As shown in Fig. 1.3, losses are
still outstanding at the tail, indicating that merely controlling the bit rate or frame rate is

still insufficient to avoid packet losses for edge-based interactive streaming.

7.2.3 WHY Ex1sTING SoLUTIONS FaIL?

As we discussed in §7.1, packet losses contribute a lot to deadline misses. Thus, we investi-
gate why existing packet loss recovery mechanisms are insufficient for edge-based interactive

streaming. Existing solutions mainly fall into two categories as follows.

Retransmissions. Existing transport protocols (e.g., TCP) rely on retransmissions to cope
with packet losses. Merely relying on retransmissions is insufficient to achieve an extremely
low DMR for interactive streaming frames at the magnitude of 0.1% or lower. For example,
when the packet loss rate is instantaneously 20%, there would still be 0.16% packets lost
even after 3 retransmissions. Note that since there could be tens to hundreds of packets per
frame, being unable to deliver even one packet would violate the deadline requirement of

that frame since interactive streaming requires all packets to be reliably delivered (§7.2.1).

SIn this paper, we use RT'T to represent the delay at the network layer that does not contain the time
of retransmission. We use application delay to refer to the delay at the application layer that contains the
retransmissions.
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Thus, the DMR of frames is still considerably high when relying on retransmissions and

rate controls only. Our evaluation in §7.4 also demonstrate the performance degradation.

Redundancy-based algorithms. There are also several solutions in interactive stream-

ing with redundancy mechanisms such as FEC. However, existing adaptive FEC solutions
from both the industry [17, 137] and academia [66, 116, 208] optimize the FEC param-
eters only for the initial transmission. They adjust the number of FEC packets accord-

ing to loss rate and retransmit packets as usual when packet loss occurs. Note that packet
losses are not deterministic: when the transient loss probability increases to 20%, it does not
mean precisely one packet loss every five packets. In this case, to achieve an extremely low
DMR of 1072 or lower, FEC rates need to be much higher than the loss rate, leading to se-
vere bandwidth cost (§7.4). For example, WebRTC, a state-of-the-art interactive streaming
framework, will send 100% redundant packets during this short timescale of high instanta-
neous loss rate for initial transmissions. In this case, there will be considerable bandwidth
cost while the DMR might still not be satisfied. We further evaluate the performance of

other baselines in §7.4.2.

7.2.4 MOTIVATIONS

Therefore, with the reduced RT'T, retransmissions are tolerable to some extent for edge-
based interactive streaming. In this case, we have the following observations on how and

what to retransmit.

RTT being much lower than the deadline enables the joint optimization of redun-

dancy and retransmission. As we discussed before, with an RTT of 10-20 ms and a dead-
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Figure 7.2: RTT distributions measured in production, categorized by the frame-level loss rate. Note
that retransmissions are not counted.

line of s0-150 ms, multiple retransmissions are tolerable to some extent. This enables the

joint optimization of redundancy and retransmission, which results in benefits in two

folds:

* Reduce the deadline miss rate. In existing FEC mechanisms, many of the deadline
misses come from the packet losses in the retransmissions. When adding redundancy
packets over retransmission packets, we could eftectively avoid the loss of retransmis-

sion packets and further reduce the deadline miss rate.

* Save bandwidth costs. To achieve the same DMR, the bandwidth cost of adding
redundancy to retransmissions is significantly lower than that of only adding redun-
dancy to initial transmissions. This is because retransmission packets are always the
minority in bandwidth consumption - redundifying retransmissions will only intro-

duce a little bandwidth cost, but could have significant DMR improvements.

When more rounds of retransmissions are tolerated (e.g., with smaller RT'Ts), the joint

optimization will have more significant benefits (later presented in §7.4.4). We are thus
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Figure 7.3: The distribution of the duration of each loss event measured in production. We measure
the duration of each time when the loss rate is larger than different thresholds (5%, ..., 40%). Loss
rates are measured at the frame level. The network type is reported from our cloud gaming clients.
Better viewed in color.

motivated to utilize the retransmission chances enabled by edge deployments and jointly

optimize the redundancy and retransmission mechanisms.

Loss recovery adaptions at the server are possible. Dynamically optimizing the tail cases
of high instantaneous loss rate needs quick adaption. According to our measurement, the
feedback loop between the server and client is smaller than the duration of loss events, mak-

ing the joint optimization of redundancy and retransmission practical. This comes in two

folds:

* The feedback loop does not inflate with the increase in the loss rate. We measure the
RTT of our cloud gaming service and categorize them into different frame loss rate
intervals. As shown in Fig. 7.2(a), the distribution of RT'T does not significantly
vary with the frame loss rate. The RTT in WiFi increases with the increase of frame
loss rate (e.g., due to retransmissions at the link layer [84]). Nevertheless, even when
the frame-level loss rate is 30% (the dashed green curve in Fig. 7.2(b)), 60% of those

acknowledged packets have an RTT of less than 25ms. This indicates (i) the server is
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able to quickly detect the network condition changes, and (ii) there are still multiple

transmission chances when the instantaneous loss rate increases.

* The duration of loss events is transient but still longer than several feedback loops.
We measure the duration of lossy frames in our cloud gaming service and present the
results in Fig. 7.3. According to our measurements, most loss events span multiple
RTTs. For example, 70% of frames with a frame-level loss rate of >10% will last more
than 2 frames in Ethernet sessions, which is several times the median RTT (12ms)
at the frame rate of 6ofps. Therefore, the reaction from the server is still effective to

alleviate packet losses by adjusting the redundancy parameters.

7.3 Hairpin OPTIMIZER

As we discussed above, edge-based interactive streaming needs to reduce the deadline miss
rate and bandwidth cost. For clarity, we first present the formula of frame deadline miss

rate (DMR) and bandwidth cost (BWC):

#Frames arrive after the deadline

DMR =
#Total frames
J— Redundancyy,, + Retransmissiony,, (7.1)
Datayy,

A higher DMR or BWC means more frequent stutters or higher operating expenses respec-
tively, both of which interactive streaming service providers will try to avoid. Note that
pushing DMR to an extremely low level is critical since the lower it is, the better user’s ex-

perience is going to be.



In this section, we first summarize some intuitions in the design space of joint optimiza-
tion of redundancy rate and retransmission and present a strawman solution (§7.3.1). We
then present the design challenges in the joint optimization of retransmission and redun-
dancy (§7.3.2). We address these challenges by providing a Markov chain-based optimiza-
tion algorithm to efficiently improve both the DMR and BWC (§7.3.3). We finally discuss
how Hairpin handles the inaccuracy in measurement, the overhead in online deployment,

and other practical issues in §7.3.4.

7.3.1 Basic IDEA AND STRAWMAN SOLUTION

Discriminating retransmissions from initial transmissions. The most important insight
in this paper is to understand the significance of discriminating retransmissions from initial
transmissions. In other words, we want an adaptive redundancy rate based on the plan-
ning of multiple transmission chances. The short RT'T of edge-based interactive streaming
enables packets to have more than one transmission chance without violating the deadline.
The ratio of RT'T and remaining time ¢ indicates the potential number of (re)transmissions.
For example, when the current RT'T is 2oms and packets still have 4oms towards their

deadline, the ratio follows - 40ms

T = 0 = 2,indicating that these packets could be ap-

proximately transmitted twice before the deadline. Packets with more transmission chances
could better utilize the potential retransmissions to deliver packets before the deadline,
which has already been discussed in §7.2.4. Therefore, our basic idea is to take future trans-
mission chances into consideration when optimizing the redundancy rate. When one batch
of packets has more foreseeable transmission chances (i.e., the deadline is still far away),

we could reduce the redundancy rate to save bandwidth costs. When the remaining time
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of these packets is getting closer to the deadline due to retransmissions, we could further

increase the redundancy rate to avoid deadline misses.

Strawman solution: RTT-aware adaptive FEC algorithm. Therefore, a strawman so-
lution is to (i) add redundancy to both initial transmissions and retransmissions, and (ii)
consider the remaining transmission chance in the optimization of the redundancy rate.
Since there have already been existing solutions on the redundancy rate based on network
conditions [17, 66, 208], we could introduce a multiplier controlled by the transmission
chance over the existing redundancy rate optimizations, i.e. a strawman solution is to re-
duce the redundancy rate when there are many transmission chances, and increase it when
transmission chances are few. Thus, we could enhance these algorithms by introducing a
factor over the results from existing algorithms.

FEC consists of two parameters (d, k), where d data packets and # redundant packets are
sent as a block. Block is composed to the convenience of FEC encoding. If there are up to £
packets lost in an FEC block (4, ), an ideal FEC decoder can recover all data packets with
any remaining packets [220, 221, 274]. We denote 8 = f as the FEC redundancy rate, and
d as the FEC block size.

Specifically, given a packet loss rate # and bitrate B, assume one of the state-of-the-art
solutions has already determined that 8, («, B) should be the optimized redundancy. We
could then increase or decrease the redundancy rate 4, (2, B) based on the remaining trans-

. . t P
mission chance 7, i.e.:

B(a, B.RTT, 1) — k- RTTT. 8, («,B) (7.2)



where £ is a coeflicient to adjust how aggressive the strawman solution is going to increase
or decrease the redundancy rate.

In fact, according to our evaluation in §7.4.5, such a strawman solution is enough to
push the Pareto frontier of DMR-BWC forward. However, it confronts a series of short-
comings, which prevents the operator from further improvements in performance. We will

elaborate on these challenges in the following section.

7.3.2  DESIGN CHALLENGES

Although we have presented a heuristic RT T-aware adaptive FEC algorithm as above, it is

still challenging to optimize these parameters due to the following reasons.

Temporal dependency: cascading decision-making between transmission rounds.
When considering multiple transmission chances, the decision of FEC parameters of one
round of transmission would cascadingly affect the optimization of the next round. For
example, if we aggressively add a high redundancy rate to a group of packets, the number of
packet losses will then be decreased. On the contrary, a low redundancy rate for the same
group of packets would probabilistically increase the number of packet losses under the
same network condition. However, these packet losses bring more packets to retransmit

in the next round. If we consider all actions for F packets for the foreseeable L rounds of
transmission, the action space will be extremely large: Since for each redundancy decision,
there are F'possible scenarios of the number of packets to transmit in the next round (de-

pending on how many packets are lost), the number of variables that we need to optimize
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will be O(F*)?. Therefore, in the enlarged action space over multiple retransmissions, it
is challenging to efficiently optimize. Moreover, the conditional probability between sce-
narios is not linear (e.g., hypergeometric for individually independently and identically
distributed losses). Therefore, using traditional optimization methods such as integer
programming in an extremely large action space is impractical. We need to coordinate the

choices in different rounds of transmission to achieve optimal performance.

Spatial dependency: redundancy rate and block size are tightly coupled. Even in a sin-
gle round, different variables (e.g., redundancy rate, block size, etc.) still have complicated

dependencies on each other. This goes to the following aspects:

(a) Number of packets to transmit in one round affects redundancy rates. The number of
packets to transmit in the different rounds is varying, depending on how many data packets
are lost during the last transmission. The penalty of redundancy rate on BWC also varies
according to the number of packets to retransmit. For example, when there are few pack-
ets to retransmit, even adding a redundancy rate of 100% for retransmissions would not
consume too much bandwidth, as also discussed in §7.2.4. Therefore, fewer data packets to
retransmit would encourage a more aggressive redundancy rate. The strawman solution is

not aware of the dependency here, leading to its suboptimal result.

(b) Dispersion of blocks might lead to deadline misses when using larger blocks. Due to the
bandwidth limit at the bottleneck link, packets sent out at the same time could be dis-

persed [146] and arrive at the receiver one by one. In this case, constructing large blocks

9For a frame with 5o packets (F=50), and 5 potential transmission rounds (Z=s, e.g., RT T is 2oms and
deadline is tooms), this turns into 10® variables.



RTT

2|3

RTT

—

Deadline

1

1 E

RTT

1(2|3|7

23

3’

Figure 7.4: Smaller block sizes in one frame could have better performance. Scenarios above and

below represent using small and large blocks. Data and FEC packets are shaded orange and blue.

100%

80%

w 60%
a

~ 40%

20%

0%

(a) Cumulative distribution.

Block size:
5 30
— 10 ---- 35
— 15 -=-- 40
— 20 ---- 45
— 25 ---- 50
ﬁ 8 12, 16 20
eceive time (ms)

—_—

o b~ 00 N O

Receive time (ms)

—4—99%ile
—o— 90%ile
—o— 50%ile

/

0 10 20 30 40 50

Block size (packets)

(b) Trend of percentiles.

Figure 7.5: Block receiving time with different block sizes. FEC blocks are burstily sent out at the

server side. Fig. 7.5(b) is processed from Fig. 7.5(a). Measurement details in §7.4.2. Better viewed in

color.

190




will increase the delay to wait for all packets at the receiver. Since packet losses can only be
determined after the completion of one block, smaller blocks may know earlier whether
they need retransmission and enjoy additional transmission chances before the deadline.
For example, in Fig. 7.4, due to the early determination of packet loss, the retransmission
of data packets for small blocks could arrive at the receiver before the deadline, while no
packets could arrive before the deadline for large blocks. We quantify the influence of block
size by measuring the receiving time of FEC blocks from our service online with different
block sizes. As we can see in Fig. 7.5 and 7.5(b), with a block size of 5o packets, more than
10% blocks could span 1oms at the receiver, which is even comparable to the RT'T. Also,
smaller block sizes might also be beneficial when the loss rate is higher than the redundancy
rate. As illustrated in Fig. 7.4, when the first four packets are lost during the transmission,
data packet #3 could still be successfully delivered for a small block size (the case above in
Fig. 7.4). For large blocks, there is no way to recover any lost packet if the loss rate is larger

than the redundancy rate.

Convoluted goal: deadline miss rate and bandwidth cost. Unlike latency or throughput
which we can directly measure, the estimation of the expected deadline miss rate needs to
consider multiple potential rounds of transmission. In this way, the strawman solution,
without explicitly estimating whether that frame is going to miss the deadline or not, will
have suboptimal results. For example, the relationship between the packet loss rate and the
success rate of delivering a video frame with tens of packets in a single round is hypergeo-
metric, even under the identical and independent distribution (i.i.d.) assumption. Con-
sidering multiple future rounds together will only make the relationship between dead-

line miss rate and network conditions more convoluted. Moreover, some applications or
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even the same application in different operating regions may have different preferences over
deadline miss rate v.s. bandwidth cost. The traffic cost in some regions might be higher
than in another, and some applications may give it all for the user’s experience while others
may not. Therefore, we need to explicitly optimize towards the goal to achieve the optimal

result.

7.3.3 MODEL FORMULATION AND OPTIMIZATION

We have the following designs to address the challenges above.

Encode the temporal dependency in multi-round planning into edges in Markov
chain. Markov chain is widely used in the optimization of the sequential decision-making
process (e.g., reinforcement learning [253]). With the Markov chain, we can formulate the
loss detection between two rounds of (re)transmission into the transition between two
Markov nodes. In this case, by only focusing on the optimal parameters between the tran-
sition of the current state and its potential states in the next round, we could decouple the
cascading effects of the transitions between neighbor nodes, which reduces the action space
significantly. We further show in Appendix D.2.1 that, in such a Markov chain, locally fo-

cusing on the neighbor nodes could still have globally optimal results.

Encoding the spatial dependency between variables into nodes in Markov chain. To
ensure the number of packets to transmit is considered in the optimization, we build a 2-D
Markov chain, with two dimensions as the transmission chance and the number of packets
to transmit. We present the state transition of our Markov chain in Fig. 7.6. Each node is

represented by (d, /), where d denotes the number of remaining data packets to transmit,
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Transmission chance [

Deadline missed
One missed packet will

lead to the deadline miss
of the block.

Packets to transmit d

Figure 7.6: The absorbing Markov chain in redundancy rate optimization at given loss rate and frame
size. [ is the estimated remaining transmission chances for the packets to transmit.

and / represents the remaining transmission chance for those packets. Our goal is to find
out the optimal redundancy rate for node (B, L), where B is a given block size, and L is the
remaining transmission chance from Eq. 7.3. In this case, both the temporal dependency

and spatial correlation between variables could be formulated into this 2-D Markov chain.

Explicitly optimize deadline miss rate and bandwidth cost with Markov chain formu-
lation. We finally provide an explicit expression of the deadline miss rate and bandwidth
cost for multi-round optimization within the formulation of MDP. We inversely calculate
the DMR and BWC at different states from the last chance to transmit (as the last layer of
the Markov chain), to the first chance to transmit (as the first layer of the Markov chain). In
this way, the transition probabilities between states could be directly iterated. We further
decouple the optimization of redundancy rate and block size to improve the optimization

efficiency.
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Notation Explanation

Inputs:
a Network loss rate.
T Remaining time till the deadline.

RTT The network round-trip time.
® The network bottleneck bandwidth.

F The frame size of that frame.
Intermediate variables:
L Remaining transmission chance.
The number of lost packets at the 7~th layer
ln,7r) ,
with 7 data packets.
The number of redundant packets at the ~th
k(n,r)

layer with 7 data packets.
DMR  Deadline miss rate.
BWC  Bandwidth cost.
Outputs:
8, Redundancy rate at the 7-th layer.
b, FEC block size at the 7-th layer.

Table 7.1: Notations in §7.3.

We present the analytical model and the algorithm below. In interactive streaming,
frames are continuously generated and sent out from the server. There are thousands to
millions of frames within one stream, depending on the specific application, where the
retransmission of previous frames overlaps with the transmission of subsequent frames.
Therefore, similar to the finite element analysis in mechanics [21], we pick one frame from
the stream, and analyze the expected DMR and BWC of that frame. The expected DMR
and BWC of one frame should be consistent with the DMR and BWC of a stream. We list
all notations that are going to use in Table 7.1. Specifically, Hairpin optimizes the FEC pa-

rameters as follows:
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Step 1: Calculating remaining transmission chance. Given current network RT'T, the
remaining time towards deadline 7, the bottleneck bandwidth ©, and a certain block size 4,

the remaining transmission chance L could be calculated as:

 T-d/®

=TT (7:3)

Step 2: Generating absorbing Markov chain. We then calculate the optimal redundancy
rate given the current loss rate « and frame size F. We iteratively calculate the absorbing
Markov chain from layer / —1 to layer /. We leave the detailed equations to Appendix D.2.1.

For the node (d, /), at a certain redundancy rate 4, its DMR follows:
DMR(d. ;) = o p((d.]) = (d.1=1):£) - DMR(d'l 1) (7.4)
wherep((d,l) — (d',] — 1);p) is the transition probability from (d, /) to (d',/ — 1)

and could be calculated based on the current loss rate 2 and redundancy rate 8 (details in

Appendix D.2.1). Similarly, the BWC could also be updated as:

BWC(,Lp) = fat S p((d D) (&1 1)) - BWCd.1=1)  (7:)

where the latter term is the additional BWC introduced in this layer /. Then, we calculate

the optimal 8 for (d, /):

ﬂgpt(d, [) =arg minﬂutz'lz'ty(DMR (d,;8),BWC(d,I;8)) (7.6)
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and have DMR(d,l) = DMR(d, 1, [Gopt) and BWC(d,l) = BWC(d,I; ﬂopt). Here,
utility(DMR, BWC) is the utility function to balance preference for low DMR and low
BWC. For simplicity, we adopt a linear combination of DMR and BWC as the optimiza-
tion goal:

utility(DMR, BWC) = DMR + A - BWC (7.7)

Note that Hairpin does not fall into the same trade-off between DMR and BWC as base-
lines, but improves both DMR and BWC, as we will evaluate later in §7.4.3. In practice,
service providers can adjust the coefficient A to balance stuttering events and bandwidth
costs in different scenarios. A lower 1 indicates that users prefer the deadline miss rate more
than bandwidth costs. We also evaluate performance with different utility functions in
§7.4.4.

Therefore, the redundancy rate for (B, L) could be optimized accordingly. After calcu-
lating all nodes at the layer /, we could then calculate the DMR and BWC at the layer / 4 1,
until the node (B, L) has been calculated. Since the iterations between nodes are linear, as
long as the utility function is monotonic to DMR and BWC (e.g., linear relationship), the
optimality still holds.

We set DMR(d,0) to 1 ford > 0 since one missed packet would lead to the miss of
the block (shaded green). We also set all DAR(0, /) to o since there is no remaining packet
to transmit. The BIC for all these boundary nodes is set to o. Note that different block
sizes and remaining transmission chance could multiplex the same chain to accelerate the

optimization, since the chain only depends on loss rate « and frame size F.



Few packets in RTX: no major difference
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Figure 7.7: A theoretical illustration of the failure rate of retransmitting different numbers of packets
by per-packet duplication or constructing FEC blocks. The failure rate of DUP increases with the
number of packets to retransmit, since we need to ensure every data packet is delivered. We vary
the redundancy rate and loss rate.

Step 3: Calculating optimal block size. We enumerate the possible block sizes from 1 to
the frame size, calculate the DMR and BWC for each block according to the chain in Step
2, and finally find the optimal block size in terms of a given utility function. We leave the
mathematical details to Appendix D.2.2. According to our evaluation in §7.4.5, not sur-
prisingly, when the bottleneck bandwidth is high (i.c., the dispersion is insignificant), the
optimal block size for most scenarios is the frame size. Nevertheless, when the dispersion is
significant, constructing smaller blocks could achieve better DMR. Operators could opti-
mize the block size for improvements at the last mile.

During the optimization of block sizes, we also optimize the trade-off of when a loss has
been detected, whether to retransmit that packet as soon as possible or wait for other pack-
ets to formulate an FEC block. On recovery ability, constructing several lost packets into
one FEC block might be more effective than individually retransmitting (or duplicating,
if with redundancy) each packet. We calculate the failure rate of delivering these packets

when there are different numbers of packets to retransmit at different redundancy rates
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and loss rates and present the results in Fig. 7.7. When there are few packets that need re-
transmission, whether duplicating or constructing FEC blocks has no major difference
(dashed line and solid lines shaded green). However, when optimizing at the z4z/ for inter-
active streaming, there could be multiple packet losses within one frame. Therefore, con-
sidering each frame could contain tens of packets, it is possible to suffer losses of 4 packets
or more at the tail. Constructing FEC blocks for these retransmission packets could reduce

the failure rate of delivering packets by several magnitudes.

Step 4: Getting the optimal parameters. Finally, based on network conditions and re-
maining time towards a deadline, Hairpin can calculate the optimal block size based on Step

3, and the optimal redundancy rate with the block size based on Step 2.

7.3.4 DEPLOYMENT DISCUSSIONS

In §7.3, we analytically optimize the FEC parameters given certain network conditions.
The reality might be more complicated than the theoretical model. In this section, we dis-
cuss several practical concerns of Hairpin based on our operational experiences. Our further
trace-driven simulation and deployments in production in §7.4 also demonstrate the effec-

tiveness of Hairpin in the wild.

Reducing computational overhead online. Hairpin adopts an optimization-based algo-
rithm, which might not scale to production-scale deployments in terms of computational
overhead. Since the optimization needs to run frequently (approximately every frame) and
scale to tens of thousands of users simultaneously, it should be computation-efficient and

time-efficient. In response, we do an offline step of enumerating the state space and solving
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each specific instance. Then, in the online step, the algorithm will be reduced to a simple
table lookup towards pre-computed optimized redundancy parameters. We enumerate the

state space of Hairpin as below.
1. Remaining transmission chance: 1 to 0.
2. Loss rate: 0% to 50% with quantization of 1%.
3. Framessize: 5 to 6o packets with quantization of 5 packets.
4. Number of packets to (re)transmit: 5 to 6o packets with quantization of 5 packets.

Hairpin then stores the best redundancy rate and block size under different conditions. We
found that the benefits of finer quantization are marginal. Our further evaluation in the
real world in §7.4.6 shows that the memory consumption (2MB) and table lookup time are

negligible for online deployment.

Handling network fluctuations. We discuss how Hairpin handles the fluctuations in net-
work conditions. For RTT, as presented in Fig. 7.2, RT'T does not increase too much - the
median RT'T always allows Hairpin to have 3-5 transmission chances no matter the loss rate.
Moreover, we further measure the network conditions in Hairpin with a short sliding win-
dow to make sure Hairpin has the most recent network conditions. We set the measurement
window to 2 frames and evaluate the sensitivity of this parameter in §7.4.4. In this case, the
transient fluctuation of RT'T could be reflected in the optimization results immediately.
We later demonstrate in §7.4 that Hairpin behaves well with real-world traces and produc-

tion deployments.
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Handling various loss patterns. In this paper, when given a certain loss rate, Hairpin as-
sumes the pattern of packet losses is identically and independently distributed (in the tran-
sition probability of Eq. 7.4). Note that the duration of a certain loss rate still follows the
results of the online measurement in Fig. 7.3. In practical deployment, working with FEC
codecs that could recover from different loss patterns (bursty or arbitrary) [220], Hairpin
could also handle different loss patterns since Hairpin only focuses on how many packets
within a block are lost. Since our data is collected frame by frame, if the burstiness spans
over several frames, it will be directly reflected on the value of loss rates. If the burstiness
spans within the frame, no matter how the pattern changes, the number of lost packets will
not change, which does not affect the recovery efficiency of the FEC codec. For example,
when there are 4 packet losses in one block, no matter whether these losses are consecutive
or separated in the block, as long as there are 4 additional FEC packets in the same FEC
block, the client would be able to recover these packet losses. Therefore, Hairpin does not
rely on the assumption of underlying loss patterns, but only focuses on the number of lost
packets. Packet losses might be consecutive across several frames. In this case, due to the
short feedback loop enabled by edge deployments, Hairpin should have already timely re-

acted as analyzed in §7.2.4.

7.4 EVALUATION

We introduce the implementations in §7.4.1 and experiment settings in §7.4.2. We further

answer the following questions:

* How does Hairpin perform under real-world traces? We demonstrate that Hairpin

could push forward the Pareto frontier of baselines on DMR and BWC (§7.4.3).
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Figure 7.8: Trace-driven simulation. The blue dashed line is the envelope of all baselines on the
Pareto frontier.
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Figure 7.9: Overview of Hairpin implementation.

* Is Hairpin sensitive to the settings of parameters? We investigate the performance
variation of Hairpin with different parameters, and demonstrate that Hairpin has per-

formance improvements in a wide range (§7.4.4).

* Why could Hairpin outperform other baselines? In §7.4.5, we break down the perfor-

mance improvements of Hairpin.

* How does Hairpin perform well in the wild? Finally, we deploy Hairpin in production
servers and find that Hairpin significantly improves both DMR and BWC in the real

world (§7.4.6).

7.4.1  Hairpin IMPLEMENTATION

We implement Hairpin in both an ns3-based WebRTC simulator [279] and our cloud gam-
ing application in production. We present the workflow of Hairpin in the network stack in
Fig. 7.9. Without Hairpin, interactive contents are first encoded with Video Encoder by the
application, and then sent out at the transport layer frame-by-frame. Then the video frames
could be received by the protocol stack at the client. Packet Sender and Packet Receiver
abstract the network stack at the transport layer for connection management. After that,

Video Decoder decodes the streaming contents and displays them to users. Meanwhile,
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network conditions (e.g., RTT, packet loss events) will be measured at the server, collected
by the Statistics Collector, and reported to Rate Controller to adaptively adjust the
streaming bit-rate according to network conditions [77]. Hairpin inserts between the exist-
ing application layer and transport layer, and optimizes the redundancy parameters based
on current network conditions, as shown in Fig. 7.9. The network statistics is still passed to
the congestion controller (rate controller) without modification. The underlying transport
protocol in our cloud gaming service is a customized version of the RTP protocol [233]
based on UDP to allow the loss of redundant packets without modifying the kernel at

the client. We implement Reed-Solomon FEC due to its recovery performance when the
redundancy rate is <100% [220], and implement a customized FEC codec for the redun-
dancy rate of >100%. Note that Hairpin could also work with other codecs (e.g., XORFEC,
FlexFEC, etc.) as long as their parameters are exposed to Hairpin. We discuss FEC codecs in

Appendix D.3.

7.4.2  EXPERIMENT SETUP

Traces. As for simulation traces, we collect a dataset in one production server in the wild
on our cloud gaming service in two weeks in January and August 2021, resulting in more
than 10oM video frames and more than 6oo hours of playtime. This also supports our
measurements in §7.2 and §7.3. Users access the service via either Ethernet, WiFi, or cellu-
lar connection, which we collect from our cloud gaming client. The cloud gaming service
streams at the frame rate of 6ofps and the bit rate ranging from 2Mbps to 30Mbps. The
network conditions are recorded on the server of our cloud gaming service, including the

average RT'T, average bit rate, and loss rate at the frame level (approximately every 16 ms).
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The traces contain 1,995 Ethernet gaming sessions, 741 WiFi sessions, and 572 cellular ses-
sions in total, each lasting from minutes to hours. To the best of our knowledge, we are
the first to collect online traces from an interactive streaming service for weeks at both the

frame level and packet level.

Baselines. We orthogonally review the public adaptive FEC mechanisms and retransmis-
sion mechanisms with deployments in practice. On the axis of retransmission optimiza-

tion, we implement the following baselines.

* Out-of-order. Traditionally, packet losses are detected by checking the out-of-order
packets, such as TCP duplicated ACK [64]. We use it as our default loss detection

mechanism.

* Probe timeout (PTO). Besides, to quickly detect packet losses of tail packets, recent

researchers also propose an aggressive timeout-based loss detection mechanism [86].

On the axis of redundancy parameter optimization, we implement the following mecha-

nisms:
* WebRTCy4 comes from the research paper published by Google in 2014 [137].

* WebRTCpo is the adaptive FEC mechanism used in WebRTC now (adopted by
Google Stadia [96], Meet [67], etc.), replacing the WebRTCr14. The difference is that
WebRTCry, is aware of RT'T and will reduce the redundancy rate when RTT is low,
while WebRTCpo 1 is more aggressive on adding redundancy. We migrate the imple-

mentation of the m88 version of Chromium released in December 2020 [18].
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* Bolot [66] and USF [208] are two heuristic adaptive FEC algorithms from the re-
search community. Unlike Hairpin, they do not add redundant packets for retrans-

missions.
* RTX adds no redundancy, but fully relies on retransmissions.

Note that none of these baselines optimize the redundancy for retransmissions here. Since
these two lines of work are orthogonal to each other, we combinatorially implement 2 (re-

transmission) X s (redundancy) = 10 baselines.

Hairpin Setup. In our simulation, we set the coefficient in the utility function in Eq. 7.7 to
1 = 107*, the measurement window of network conditions to 2 frames, and the deadline

to rooms. We evaluate the sensitivity of these parameter settings in §7.4.4.

7.4.3 TRACE-DRIVEN SIMULATIONS

To evaluate the performance of Hairpin in dynamic network conditions, we simulate Hairpin
over real-world traces as introduced in §7.4.2. We emulate the collected traces of loss rate
and RTT with ns-3, and evaluate whether Hairpin could capture the network dynamics of
loss and RTT variations and effectively adapt in real traces. We first present the trade-off
between DMR and BWC over three sets of traces in Fig. 7.8.

As shown in Figure 7.8, RTX has the lowest bandwidth cost since RTX only retransmits
a packet after it is lost. However, it also has the highest deadline miss rate among all base-
lines. Meanwhile, WebRTC oy working with PTO has the lowest DMR among all baselines
but also the highest BWC. Other baselines stay on the Pareto frontier in the trade-oft be-

tween DMR and BWC. In contrast, Hairpin could break the trade-off and achieve a much
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Figure 7.10: The performance of Hairpin and all baselines (labels omitted for brevity) on WiFi traces
when the deadline requirement from the application is different.

better DMR and BWC, as the red stars denoted in Figure 7.8: 67%-80% lower than the low-
est DMR (WebRTCxnop), and comparable BWC as RTX. Thus, as we analyzed above, Hairpin
could effectively improve both DMR and BWC significantly compared with all other base-
lines.

Note that the traces here are collected from our production servers, including the net-
work RTT and instantaneous loss rate, with a fined granularity of every 16ms. The results
in WiFi traces are worse than in Ethernet traces since WiFi traces have higher loss rates and
RTTs, as measured in §7.2.4. Results over cellular traces are surprisingly good. This is be-
cause, during our online measurements, we just started to provide cloud gaming service for
cellular users and had admission control over network conditions during that time. In all,

Hairpin could significantly push forward the Pareto frontier of existing baselines in all traces.

7.4.4 PARAMETER SENSITIVITY

We also evaluate how Hairpin performs with different parameters.
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The setting of the deadline. In the evaluation in §7.4.3, the deadline is set to rooms. We
also investigate how Hairpin performs when the deadline is shorter or longer. Thus, we
present the results of DMR and BWC of Hairpin and baselines over WiFi traces when the
deadline is set to soms (Fig. 7.10(a)) or 200ms (Fig. 7.10(b)). As presented in Fig. 7.10,
given the same trace, when the deadline is shorter (5oms), the advantages of Hairpin over
baselines are a little less than when the deadline is 1ooms. This is because the retransmis-
sion chance is less and the design space is smaller when the deadline is shorter. Nevertheless,
Hairpin is still much better than all existing baselines. When the deadline is longer, the bene-
fits are even larger due to the larger design space in retransmission. Results over other sets of

traces are similar.

Utility coefficient 1. For the utility coefficient A in Eq. 7.7, as introduced in §7.4.2, it
could adjust the preference over the trade-oft between the DMR and BWC. A higher A
indicates that users prefer the BWC more, while a lower 1 indicates that the DMR is out-
weighing the BWC. Therefore, we change A from 107 t0 1077, and present the DMR

and BWC of Hairpin with different A over WiFi traces in Fig. 7.11. Note that Fig. 7.11 is
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zoomed in from Fig. 7.8(b). As shown in Fig. 7.11, the BWC is decreasing with the increase
of A, while the DMR is increasing by a little. Thus, operators could adjust 1A to balance the

DMR and BWC according to the requirements of applications.

7.4.5  Hairpin DEEP DIVE

We further provide a deeper understanding of Hairpin in the following aspects.

The effectiveness of redundancy over retransmission. One of the major observations in
this paper is to identify the significance of differently handling initial transmission packets
and retransmission packets. To validate this, we further compare the performance with

three baselines:

* FixedSame non-discriminately adds FEC packets to both initial transmission and

retransmission packets with a specified fixed ratio.

* FixedRTX only adds FEC packets to retransmissions with a fixed ratio, and never
adds FEC packets to initial transmissions, in contrast to all existing solutions in

§7.4.2.

* Hairpin-Same uses exactly the same Markov-chain-based formulation as in Hairpin,

but does not discriminate the initial transmissions and retransmissions.

As shown in Fig. 7.12, FixedRTX significantly improves the trade-oft between DMR and
BWC against existing baselines while FixedSame cannot. This demonstrates that discrim-
inately adding FEC over initial transmission and retransmission packets can effectively im-
prove performance. As we discussed in §7.3, even by naively discriminating the retransmis-

sions with another fixed redundancy rate would already be helpful, illustrating the necessity
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Figure 7.13: The loss rate in each transmission round.

of discriminating retransmissions. Hairpin-Same even behaves worse than the FixedRTX
baseline, demonstrating the harm of adding redundancy to the initial transmission packets.
Nevertheless, Hairpin still outperforms Hairpin-Same by reducing BWC by half (targeting

the same DMR), demonstrating the optimality of the Markov-chain model.

Understanding Hairpin’s decisions. In Appendix D.4, we present the redundancy rate and
block size results of Hairpin to provide a deeper understanding of how Hairpin optimizes in
different scenarios. Besides, we present the number of transmission rounds of Hairpin and
baselines in Fig. 7.13(a). When Hairpin gradually increases the redundancy rate in future
transmission rounds, most frames could therefore be delivered. Thus, the 99.9th percentile
of the number of transmission rounds in Hairpin is less than all other baselines by more than
one. Similarly, when we inspect the loss rate in each round as shown in Fig. 7.13(b), Hairpin
also successfully maintains the lowest loss rate when the transmission round goes up. Note
that the loss rate here is significantly high due to the survivorship bias — only lost packets
will have another transmission round, while loss has already indicated a degraded network

performance. This also indicates that the loss is not i.i.d. but bursty in the experiments.
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Figure 7.14: The effect of DMR on other metrics.

Optimizing towards extremely low DMR. We further illustrate why we need to achieve
an extremely low DMR and how it affects user’s experience. As analyzed in §7.3.1, a lower
DMR approaching zero directly indicates fewer stall events in a gaming session. We mea-
sure the number of stall events in each gaming session, where stall event is only counted
once if there are multiple missed frames in one second or if it lasts longer than one second.
As shown in Fig. 7.14(a), Hairpin can reduce the average and median number of stall events
(which is also critical for user’s opinion scores [225]) by a half or more against baselines.
By having a DMR of 0.06%, Hairpin is able to reduce the 75th percentile number of stalls in
a session to 2. Considering the duration of a gaming session (minutes to hours), this will
considerably improve the user’s experience.

We also show the difference of calculating DMR by frame and by time in Fig. 7.14(b).
In this paper, we do not argue using a new metric (DMR by frame) is better — we calculate
DMR by the number of missed frames over total frames because of the simplicity in the
formulation in §7.3.3. Calculating DMR by time is almost equivalent to DMR by frame

since the stalled time is the number of stalled frames (missed frames) times the interval be-
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Figure 7.15: The performance of Hairpin and all baselines (labels omitted for brevity) on WiFi traces
with different deadline requirements.

tween frames. Therefore, we replot Fig. 7.8(b) using two different DMRs. As shown in

Fig. 7.14(b), the results are almost the same with each other.

Integrating with congestion control. To further investigate the performance of Hairpin
when interacting with the CCA, we integrate the Hairpin with two CCAs in the WebRTC
framework, GCC [77] and NADA [289], in our simulation. We then replay the collected
traces by setting their bandwidth, RTT, and loss rate to the link in ns-3. The bandwidth
ranges from 2Mbps to 30Mbps. As shown in Fig. 7.15, Hairpin could still achieve significant

advantages over all existing baselines.

7.4.6 REAL-WORLD EXPERIMENTS

Finally, we deploy the Hairpin in a production server in our cloud gaming service. We con-
ductan A/B test in production of Hairpin against the WebRTCpyp baseline. The bit rate
of the cloud gaming service also supports the range of 2-30Mbps as simulated in §7.4.3.

The A/B test runs for one week in September 2021, covering 17k sessions in total, all of



Ethernet  DMR BWC P(DMR>1%) #Session

WebRTCxowr ©0.34%  30.4% 6.9% 8380
Hairpin 0.23%  3.0% 4.6% 7306
WiFi DMR BWC P(DMR>1%) #Session

WebRTCnowr 0.72%  31.8% 19.3% 652
Hairpin 0.51%  3.0% 15.3% 613

Table 7.2: Real-world experiment results. P(DMR>1%) denotes the ratio of sessions with an aver-
age DMR of larger than 1%.

which have a duration of at least 4 minutes. Hairpin has been integrated into the UDP-based
connections of our cloud gaming service since then. Since other optimizations are also de-
ployed into our service after we deploy Hairpin, to make a fair comparison, we only present

the results from the controlled A/B test in September 202.1.

Performance. As shown in Table 7.2, Hairpin is able to improve both the average DMR and
the average BWC compared to WebRTCpioy. Specifically, for Ethernet sessions, Hairpin could
improve the DMR by 32% while also reducing the BWC by 40% against WebRTCxoy. For
WiFi sessions, the improvements on DMR and BWC are 30% and 43%. We also measure
the ratio of sessions with an average DMR of larger than 1%, i.e. tail sessions. Hairpin could
also reduce the tail sessions by 34% and 21% for Ethernet and WiFi sessions respectively
compared to WebRTCyoy. Note that the DMRs in real-world experiments are a little higher
than those in simulations (§7.4.3). This might be because of other external factors (e.g.,
user devices) that could affect the DMR. Nevertheless, Hairpin could significantly improve

the users’ experiences on both the DMR and BWC compared to WebRTCpo .

Overhead. We further measure the overhead of the optimization of Hairpin. As introduced

in §7.3.4, to accelerate the optimization online, we precompute the optimized FEC pa-



rameters and store the result table for online look-up. At our quantization granularity of
the table, it takes 1.98MB to store the table, which is negligible on servers since the table is
static and could be shared by all connections. Moreover, according to our measurements,
the time of looking up the table is always less than 1ms, which is also negligible since the

table is looked up at the granularity of the frame.

7.5  LIMITATIONS

Delay components in interactive streaming. Hairpin could have maximum benefits when
the end-to-end network delay dominates the total delay from the video encoder to the de-
coder in Fig. 7.9. This is generally true in interactive streaming services. Related measure-
ment studies also demonstrate that the network delay is still one of the bottlenecks of edge-
based interactive streaming [124, 190]. Therefore, we focus on the optimization of streams
between edge servers and clients. Our deployments in the wild demonstrate that optimiz-
ing the network latency could significantly improve the user’s experience (note that DMR
is measured end-to-end). Hairpin can also work with the optimization of other delay compo-

nents (e.g., encoding, decoding, etc.) to further improve the performance.

Deployment efforts for applications. Another concern of deploying Hairpin is that both
the server and the client need modification to support the redundancy and retransmissions.
There are previous efforts implementing the FEC mechanism over TCP [s54, 111], which
needs to modify the TCP protocol stack at the client and are not suitable for products at
scale. For scenarios where TCP is compulsory for transport, the deployment of Hairpin may

depend on the ability to modify the reception mechanism of TCP packets at the client.
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However, most interactive streaming applications adopt UDP to reduce the network de-
lay [67, 96, 182, 224], including our service. In this case, Hairpin could be implemented

within the application at the server and the client, which is practical for most applications.

7.6 SUMMARY

We propose Hairpin, a packet loss recovery mechanism for edge-based interactive streaming
to jointly optimize redundancy and retransmissions. Hairpin motivates the joint optimiza-
tion with real-world measurements, and optimizes the redundancy and retransmissions
with Markov decision process. Both trace-driven simulations and real-world deployments
show that the joint optimization significantly reduces the DMR and BWC compared with

state-of-the-art solutions.
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Network Layer on Data Path:

Smooth Queue Management

8.1 INTRODUCTION

In-network packet scheduling and queue management are powerful tools to ensure that

competing networked applications fairly share network resources and achieve their perfor-
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mance objectives (i.e. high throughput, low latency) as best possible. However, emerging
real-time streaming applications such as video conferencing, online gaming, and virtual re-
ality sufter from performance volatility. Performance volatility manifests as sudden, abrupt
drops in throughput or spikes in latency, often as a result of bursty arrival patterns of com-
peting traffic. Performance volatility results in glitches and stalls for applications with
heavy, real-time (HRT) traffic” (such as video conferencing). Indeed, prior work shows that
a latency spike of only 200 ms can lead to several seconds of recovery time at the application
layer [188].

Troublingly, we observe that many advanced queueing disciplines today not only fail
to prevent performance volatility but that they actually aggravate volatility. The problem
stems from a fundamental tension between two desirable properties: maximizing through-
put fairness and minimizing performance volatility. We observe that strict fairness entails
high volatility in the presence of bursty workloads, and that naively mitigating volatility en-
tails weakening fairness.

To understand the crux of the conflict between fairness and volatility, we consider a mo-
tivating example in Figure 8.2(a). An HRT video connection runs alone over a residential
network link, when another user loads a web page (namely, amazon. com, settings in §8.7.1).
In experiments with a range of queueing disciplines, we see that the video connection ex-
periences an unacceptable (>190ms [216]) frame delay lasting for as much as a second. On
the one hand, the worst-performing queueing discipline for the HRT flow is fazr queneing

(FQ), which benefits fairness. Indeed, FQ rapidly shifts bandwidth resources to the new

"HRT represents flows demanding high throughput and low latency at the same time. For example,
beyond requiring low latency, videoconferencing applications will also try to increase the bitrate for better

quality [163].
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Web flows, bottlenecking the HRT flow, which will require several RT'Ts before it receives
adequate signals to adjust its video bitrate and its congestion window. On the other hand,
the best setting among existing schemes for the HRT flow is the least fair one since it sim-
ply benefits the HRT flow at the expense of the Web traffic.

An intuitive solution to the volatility vs. fairness tradeoft might involve some sort of
priority scheme with surgically computed ‘weights’ to prioritize sensitive classes of traffic
to avoid extreme unfairness. Unfortunately, this is impractical. First, labeling flows (e.g.,
with DSCP bits [53]) in this way is zo# incentives compatible " since Internet senders would
always benefit from labeling their traffic with higher-priority classes. Worse yet blindly ad-
hering to potentially buggy labeling of various applications will immediately deprive us of
any performance guarantee. Second, administrators cannot simply assign weights of classes
a priori, because traffic distribution is dynamic and largely unpredictable.

The above discussion leads us to our quest for a queue management scheme that bal-
ances three properties that lie in tension with each other. First, we desire a scheme which,
in the long run, adheres to traditional flow-rate fairness. Second, we desire a scheme that
tames volatility and enables HRT flows to live side-by-side with bursty traffic patterns
(namely, web traffic). Finally, we desire a scheme that is practical, in the sense that it is
parameter-free like CoDel [203] and does not require any flow labeling by senders or application-
specific configurations such as deadlines [82].

To this end, we designed Confucius*, a parameter-free queue management scheme that

balances fairness versus volatility. In the long run, Confucius guarantees fair flow schedul-

TRecent efforts (e.g., L4S [69]) which use incentives-compatible labeling still suffer from practicality and
performance issues, as we will later show.

*One of Confucius’ (the philosopher) educational philosophy is teaching students according to their needs,
where in this paper we are going to serve the flows according to their needs.
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ing between competing classes of traffic. However, in the short run, Confucius refuses to
abruptly adjust service rates upon bursty traffic arrivals. Instead, when new flows arrive and
service rates must be adjusted to ensure fairness, Confuciusgradually adjusts the weights to
provide HRT flows a few RTTs to detect the change in network conditions and adjust their
bitrates and congestion windows appropriately. More specifically, Confucius assigns flow
rates according to a simple exponentially weighted moving average (EWMA [175]) which
smoothly moves rates towards a fair allocation. We find that this approach provides a good
tradeoft between fairness and volatility; in experiments, we measure flow-completion times
(FCTs) for web traffic (which benefit from strict fairness) versus frame delays for HRT
flows (which benefit from smoothing) to understand the impact of this tradeoft. In trace-
driven experimental tests, we find that Confucius typically reduces the duration of frame
delay degradation of HRT flows by 90% while maintaining comparable FCTs for web traf-
fic.

We faced several challenges in designing Confucius:

PrACTICALITY Confucius is a classful queueing scheme, which (like many other class-
tul schemes [231, 240]) groups low-latency flows into the same queue to avoid the latency
impact of sharing a queue with buffer-filling traffic. This begs the question of how Confu-
cius can be parameterless, correctly classifying flows without the use of labels. In §8.5, we
illustrate how Confucius adaptively migrates flows between classes depending upon their
queue occupancy: flows that naturally occupy a small fraction of the buffer are clustered
together, while flows that are observed to be bufter-filling compete in a shared bufter with

other buffer-filling flows.
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PERFORMANCE GUARANTEES It s easy to vaguely describe Confucius as ‘balancing fair-
ness and volatility’ but it is harder to formulate this into a rigorous service model. By math-
ematically analyzing the EWMA function which Confucius uses to adjust service rates, we
calculate performance bounds for a few classes of applications that might use Confucius. We
show that short, FCT-driven flows (such as web traffic) observe a maximum slowdown of
360 ms relative to fair queueing in our setting; HRT flows (such as real-time video) experi-
ence more than 9o% less stalls compared to fair queueing, and that long-lived, bulk transfers

experience no degradation at all relative to fair queueing (in the limit).

AvoIDING OsciLATIONS  Enforcing fairness and consistency in a dynamic environment
with multiple control systems (e.g., congestion control, bit-rate adaptation) operating con-
currently is dangerous. Seemingly minor changes in queue management could have large
collateral damage to applications. By jointly and cautiously assigning the service rate per
queue and the flows per queue, Confucius avoids conflicting decisions that will be detrimen-
tal to stability. More importantly, Confucius’s control is strategically slow-moving, effec-
tively leaving enough time for other control systems, especially congestion control, to kick
in to react optimally.

Before moving forward, we consider one issue of setting. Confucius is designed for de-
ployment in residential and end-user access points (e.g., WiFi APs or cellular base stations),
and our experiments and data involve application use in those settings where it is well-
known that congestion is frequent [52, 117, 188]. There is an open discussion in the net-
working community in exploring congestion’s impact in other settings (e.g., in the Internet

core [95] or in datacenters [51]), but these other settings are out of scope for Confucius.
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Figure 8.1: Number of TCP flows and their size for loading each of Alexa top 1000 websites (mea-
sure time: July 2022 from one vantage point with Chrome and capture the HAR log [1].

Moreover, the computation capability at edge routers also enables us to fine-grained traffic

management for flows, as we will demonstrate in §8.7.5.

8.2 MOTIVATION

We start by describing recent trends in Internet applications that call for reconsidering
ueue management. Next, we explain via an intuitive running example why existing ap-
q g t. Next pl tuit g ple why existing ap

proaches in both AQM and scheduling fall short in addressing these challenges.

The rise of HRT brings new challenges to queue management. While the Internet al-
ways carried multiple applications, the emergence of prosperous real-time communication
applications (e.g., videoconferencing, cloud gaming, virtual reality), in particular, has made
sharing of bottleneck links particularly challenging. HRT applications require not just low
latency but consistently low latency while also sending at very high bitrates [163, 188]. De-
spite recent advances in wireless technologies such as G and WiFi 6 [62, 188, 264], the

HRT consistency requirement is often violated, bringing bad user experience. Facilitating
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Figure 8.2: (a) A pre-existing HRT flow (e.g., videoconferencing) competes with flows of a Web-page
load (namely, amazon. com). The HRT flow experiences transient delay degradation with classless
(blue) schemes, while Web traffic experiences long page load times with classful (green) schemes.
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For instance, CBQ with different weights (1:1 or 1:5) will result in poor fairness (JF1<<0.9) in certain

workloads. Y axis is not lin-scaled.
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the HRT consistency objectives requires queue management schemes to shift from pre-

venting fairness to also preventing performance volatility.

Volatility is very hard to avoid in the Internet. While intuitively, providing consistent
performance in the Internet could be addressed by recycling good old AQMs, two key char-
acteristics make this task particularly challenging. First, Internet traffic is often bursty. As
an intuition, a simple page load results in a burst of responses from multiple sources. In
fact, the median number of flows that a webpage load generates is 27, while for 2.5% of web-
sites that number is 56 flows. As an illustration, we present the number of HTTP requests,
concurrent flows (defined by s-tuples), and source IPs in Fig. 8.1(a). Second, while most
AQMs schemes were designed with loss-based CCAs in mind, today’s applications run
multiple distinct congestion control algorithms in accordance with their distinct objectives.

Importantly, ten distinct algorithms are used by the top Alexa websites [193].

Research Question. Taken together, these trends beg the question: Are today’s in-network
queue mechanisms (i.e. AQM and scheduling) able to fazirly and consistently satisty the

heterogeneous objectives of flows sharing a bottleneck link while being practical?

8.2.1 MOTIVATING EXAMPLE

To answer this question, we present an intuitive experiment. Assume a user has a video call,
thus pulling an HRT (beavy, real-time) flow through a router. At t=os, another user opens
a web page and creates a burst of new short flows on the same bottleneck link as the video
flow. The two applications use different CCAs, to achieve their objectives. Concretely,

the HRT flow uses Copa [47], a low-latency CCA for videos [122] and the webpage uses
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TCP Cubic. Fig. 8.2 illustrates the experience of the two applications (a) over time, (b) on
average, and (c) in terms of fairness (JFI), when the bottleneck link is controlled by a variety
of schemes. We explain the experimental settings in more detail in §8.7.2. While simple,
our example practically demonstrates the tension between fairness and volatility. Thus, the
observations we draw from this example generalize to other traffic mixes and scenarios as we
show in §8.7.

We distinguish existing schemes in classful and classless. The former requires end-hosts
to label packets per application (videoconferencing, or web). The latter does not need or
leverage end-host labels.

Unfortunately, none of the existing solutions can adequately address the tension be-
tween fairness and volatility in a realistic setting. Specifically, these existing solutions, re-

spectively, have one or multiple of the following issues:

Performance volatility: the HRT flow suffers from delay degradation when Web
flows join. Classless schemes such as FIFO, FQ, RED are unable to avoid performance
volatility, effectively hurting the HRT flow. As we observe in Fig. 8.2(a), when classless
schemes (in blue) are managing the bottleneck link, the HRT flow experiences high de-
lays. Concretely the delay of HRT increases by 4 x reaching 400-80o ms. In perspective, an
end-to-end delay for video frames of more than 190 ms (dashed line in Fig. 8.2(a)) causes

a stall in video streaming [216]. Fig. 8.3(a) and 8.3(b) visually explain why simple classless
schemes such as FQ and FIFO are so bad at avoiding volatility. Observe that the available
bandwidth for the HRT flow reduces so abruptly when the web flows arrive that the HRT

flow cannot adapt.
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Figure 8.3: lllustration of how bandwidth shares change over time with incoming flows for different
scheduling algorithms. The dashed red line marks the fair share of the HRT flow.

Failing to offer consistent latency is an unintuitive result for AQM schemes that actu-
ally try to control end-to-end latency [79, 109, 113, 203]. However, traditional AQMs
cannot balance the performance of heterogeneous flows, as they were designed with loss-
based CCAs in mind [107] and cannot effectively communicate congestion to delay-based
CCA:s, which are adopted by most real-time flows [77]. For multiple latency-sensitive
CCA’s (including GCC and Copa), a sender does not interpret AQM-induced losses or
ECNs as congestion, thus would not reduce its sending rate until the loss rate is very high.
Therefore, as shown in Fig. 8.2(a) and 8.2(b), AQM:s such as CoDel and RED result in

significant delay degradation for the HRT flow.
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Unfairness: either the Web flows or the HRT flow suffer from extreme performance
degradation. Classful schemes such as CBQ, which splits packets into classful queues of
configurable service rate or strict priority, which only dequeues packets of lower priority
if high priority is empty, protect the HRT flow, as we observe in Fig. 8.2(a). However,
classful schemes also result in unfair allocations (as shown in Fig. 8.2(b)) because they
overpenalize (or even starve) web traffic which experiences high page load times (PLTs) as
shown in Fig. 8.3(c). While, in theory, CBQ could be configured to be fair, that requires
knowledge of the exact workload (ratio of flows between classes) over very short time in-
tervals, which is in practice infeasible. For example, we measure the fairness that different
schedulers can provide while changing the number of competing flows to the HRT flow
in Fig. 8.2(c). Modifying CBQ’s configuration improves JFI for a subset of the workloads:
CBQ (1:1) works well when there are two flows competing while CBQ (1:5) achieves a
good JFI when there are five competing flows — they both degrade as the number of flows

changes.

Impracticality: requiring end-hosts to correctly label their traffic is unrealistic in the
Internet. Besides the sensitivity to configuration, classful schemes require the end-host

to label flows according to their importance or objectives and prioritize traffic based on
that. Such label-driven management is unrealistic for home routers for the following rea-
sons. First, labeling incurs substantial coordination overhead. Indeed, users will need to
use labels according to their application objectives while also agreeing with routers on the
meaning of these labels. Second, label-driven management assumes end hosts are trusted

and bug-free. In practice, senders have the incentive to label their flows with a higher prior-
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ity. Thus, such schemes are mostly practical only for datacenters where both end-hosts and
routers are under the control of the same entity (e.g., LSTF [194], pFabric [42]).
While simplistic, our motivating example teaches us two lessons about how we should

treat flows of various objectives or CCAs:

Takeaway 1. Immediately enforcing bandwidth fairness e.g., upon arrival of a traffic burst,
burts the performance of existing flows due to the disparity between the CCAs’ sending rate
and the available bandwidth in the bottleneck link. CCAs might not have information about

the dramatic decrease in bandwidth early enough to react gracefully.

Takeaway 2. Flows driven by different CCAs or having distinct objectives should not share
the same quene because their perception of congestion differs. As a result, even advanced AQM
schemes cannot signal congestion in the right way and at the right time for each of them inde-

pendently.

8.3 Confucius DESIGN

In this section, we explain how the takeaways from §8.2 manifest in the design of Confucius,
a scheme that pushes forward the Pareto frontier between fairness and non-volatility. To
this end, we explain how Confucius re-allocates bandwidth upon arrival of a burst of new
flows to avoid performance volatility. Then, we explain how Confucius splits bandwidth

across new and existing (old) flows to achieve equitable performance (fairness).
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8.3.1 TAMING VOLATILITY THROUGH CAUTIOUS BANDWIDTH RE-ALLOCATION

To address the performance-volatility problem Confucius leverages a simple yet powerful
insight that stems from Takeaway 1: Upon the arrival of a burst, the reduction of the band-
width that is available to existing (old) flows is inevitable if we want to preserve long-term
throughput fairness. Yet, if we gradually and cautiously control the reduction of the band-
width during the transient period, we can eliminate the disparity between the sending rate
of the old flows’ CCA and the actual service rate at the bottleneck link, thereby taming
volatility.

To understand why there is an advantage in gradually controlling the HRT flow’s band-
width allocation compared to directly cutting its available bandwidth to its fair share, we
measured the duration of severe delay degradation y. Concretely, y denotes the time inter-
val during which an HRT flow would experience a delay of more than 190 ms of delay®.

We plot y as a function of the Available Bandwidth Reduction Factor (ABRF) for difterent
CCAs in Figure 8.4(a). We find that CCAs respond very poorly to sudden, large reductions
in bandwidth. For instance, reducing GCC’s available bandwidth to one-sixteenth of its
initial value (i.e., ABRF = 16) results in y > 10 seconds stalls of video frames. Interestingly,
we observe in Fig. 8.4(a) that the curve y = frcy(ABRF), as we denote the relationship
between the ABRF and the duration of delay degradation y, follows a super-linear relation-
ship.

To avoid such delay degradation, Confucius gradually reduces the available bandwidth for
the HRT flow. For instance, to achieve a final ABRF of 16, one might use log,(16) = 4

iterations of bandwidth reduction if the weight is smoothed. Such an exponential (smooth)

$This is the reccommended network delay for video chats by ITU [216]
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Figure 8.4: (a) Duration of delay degradation increases with the available-bandwidth-reduction fac-
tor (ABRF). (b) An illustration of how gently reducing available bandwidth helps reduce delay dura-
tion. Note that (a) is a log-log plot but (b) is a log-lin plot.

change in bandwidth share can be achieved by using EWMA and cutting the HRT flow’s
bandwidth by half at each iteration. This would give the CCA an opportunity to learn
about the reduced bandwidth allocation through its usual congestion signals while simul-
taneously mitigating the disparity between the flow’s sending rate and available bandwidth
at every iteration, thus taming volatility. Figure 8.4(b) demonstrates, in the ideal case, the
value proposition of this approach: instead of scaling super-linearly, the duration of delay
degradation increases only logarithmically with the ABRF (modulated by fcc4(2), a small
constant).

Applying a logarithmic dampening factor to the HRT flow’s available bandwidth (in-
stead of an instantaneous reduction), Confucius no longer preserves strict fairness. Intu-
itively, that could result in severe damage to short flows. Yet, we prove in §8.4.2, that Confu-
cius guarantees that the FCT for short flows will 2lways be within a constant, additive factor

of the FCT under a strictly fair allocation.
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8.3.2 EQUITABLE HANDLING OF COMPETING FLOWS

Having explained how Confucius gradually re-allocates bandwidth between old and new
flows, we discuss how Confucius actually splits this bandwidth among individual flows. At
a high level, Confucius first splits flows to queues and strategically assigns a portion of the
available bandwidth to each of them, as illustrated in Figure 8.5.

Following Takeaway 2, splitting flows into different queues is essential and challenging.
Indeed, putting all old flows in a single FIFO queue will lead HRT flows (e.g., Copa) to
starvation [47] if flows use heterogeneous CCAs. But, using FQ to split old flows may not
be able to provide low latency to the bursty old flows [176].

Confucius splits flows into queues according to their objectives on the premise that flows
of similar performance objectives will not hurt each other. To identify the objective of
flows in the system, Confucius uses the queue occupancy. We find that flows implicitly
demonstrate their preferences and objectives based on how they utilize the bottleneck queune.
For example, latency-sensitive applications will choose CCAs that can achieve low latency

such as Copa [47] or GCC [77]. Such CCAs achieve low latency by trying to keep the
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bottleneck queue as short as they can. In contrast, throughput-oriented CCAs (e.g., Cu-
bic) will keep the bufter full to maximize the utilization for the throughput. This allows

us to identify the latency preference of flows by their queue occupancy: if one flow has a
low queue occupancy, it indicates that (i) that flow tries to not overutilize the queue; and
(ii) that flow can co-exist with other flows with similar behaviors.

By grouping flows with similar queue occupancy into the same queue, flows with dif-
ferent queue occupancy will not affect each other. Meanwhile, with a fixed number of
queues to schedule between, latency-sensitive flows, no matter bursty or not, will have a
consistent latency. Thus, Confucius has a set of queues, each designed to accommodate old
flows with different buffer occupancy, and a separate queue dedicated for short flows. Con-
fucius adopts a Deficit-Weighted Round-Robin (DWRR) algorithm to schedule between
these queues. When a new flow arrives at the router, Confucius will put it into the short-
flow queue. Confucius will periodically measure flow characteristics and reclassify flows as
necessary. Doing so allows Confucius to measure flow characteristics accurately. To further
increase the robustness of the performance in practice, we introduce hysteresis-based mech-
anisms for the reclassification of flows. We elaborate on this mechanism in §8.5.

Having categorized flows according to their objective the next natural question is (7) how
to split bandwidth across those categories; and (72) how long to wait before changing the
bandwidth allocation. For the former, our insight is that bandwidth allocation needs to
depend on the ratio between the number of old and new flows. For the latter, our insight
is to move bandwidth to new flows from old ones so fast as the old flows’ CCA has time to

react.
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In practice, respecting the reaction time of each CCA means that we need to adapt the
design of Confucius in various CCAs. To this end, we plot response curves for different
CCAs and find that the reaction time of CCAs during bandwidth changes is always above
a certain threshold, where Confucius always benefits from gentle adjustments. We could
therefore design a uniform weight-adjustment algorithm for flows with different CCAs. In
practice, Confucius effectively focuses on the least reactive CCA to make sure all CCAs can

have adequate time to react.

8.4 AGE-AWARE FLOwW WEIGHTS ADJUSTMENT

In this section, we dive into Confucius’ weight adjustment (§8.4.1). We then analytically
show that this mechanism guarantees bounded performance degradation, both for existing

HRT flows and newly-arrived mice flows (§8.4.2).

8.4.1 ADJUSTMENT MECHANISM

Recall that Confucius classifies flows into different queues and uses DWRR to schedule
packets across these queues. To assign weights (i.e. service rates) to queues, Confucius uses
the following process. For each flow, £, Confucius first computes a weight, wy; then, for a

given queue, Q, the weight is computed by summing up flow weights of all flows in Q:

Wy = wa (8.1)

A key ingredient in Confucius’ design is the computation of per-flow weights. For this

purpose, Confucius distinguishes zew flows from old flows. In fact, Confucius groups new
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flows into a separate queue called Q,,.,, (depicted in Figure 8.5). All old flows which are
mapped to Q1, Qs,..,Q, are assigned a flow weight of wy = 1, and are collectively designated
by the set F,;;. When a new flow arrives, it is first mapped into Q,,,,, and the flow weights

of all flows in Q,,,, are then recomputed as follows:

. (’E[d’
Wf—mln |—

new |

L2 1) . € Quew (8.2)

There are several considerations in the design of Eq. 8.2:

Age-aware adjustment (22’ ) . As described in §8.3.1, Confucius gradually reduces the avail-
able bandwidth for HRT flows. To achieve this, Confucius gradually increases the weights
of the competing new flows. Here, # represents the age (in milliseconds) of the new flow,
and A is a parameter that controls the rate at which the flow weights for mice flows are ad-
justed — flow weights double every 1 milliseconds. The higher 1 is, the faster new flows
converge to their fair share of the bandwidth, and the more abrupt the reduction in avail-
able bandwidth for HRT flows. We will discuss how A affects the performance degradation

quantitatively in §8.4.2.

Initial weight <£’—ﬁﬂ> . If the initial flow weight for new flows is too small, even an expo-

nential growth factor would result in a protracted convergence period for these new flows.
In particular, when there are already many old flows, it is hard for few new flows to grab
their fair share of bandwidth. Therefore, we scale the initial weight of new flows with the
number of old flows that are currently active in the router. For each new flow, we set the
‘|]:old

initial weight to QTW‘\’ where | F,4| and | Q,,.,,| are the total number of old and new flows,

respectively. The intuition behind this particular choice of initial weight is always limiting

232



the bandwidth reduction for old flows to be less aggressive than a factor-of-2 reduction.
In this case, the duration of delay degradation can logarithmically scale with the base of

fcca(2), as shown in Figure 8.4(b).

Upper bound (min(..., 1)). Confucius uses a flow weight threshold of 1 to ‘age out’ new
flows from the Q,.,, queue. Once the flow weight of a flow reaches 1, the flow is no longer

considered new, and is moved to one of the other queues based on the output of the Flow

Classifier (§8.5).

Parameter configuration. The choice of 4 is an important consideration in the design

of Confucius. A large A (e.g., A — 00) leads to abrupt reductions in available bandwidth,
causing volatility, while a small A (e.g., 1 — 0) results in unfairness (or even starvation) for
new flows. Moreover, in setting this parameter, we need to be aware that different flows,
particularly flows with different CCAs, respond differently to the same congestion signals
(e.g., Copa requires 5 RTTs to effectively reduce its sending rate, while BBR’s response time
is dictated by its probing interval of 6-8 RTTs). Consequently, we seek to configure 4 so
that the available bandwidth drops as fast as possible, subject to the responsiveness of the
underlying CCAs.

To deal with the heterogeneity of CCAs on the Internet [193], we set 1 as the inverse of
the probing period of the least responsive, latency-sensitive CCA. This ensures that even the
least responsive CCA can smoothly react to bandwidth changes. Based on the experiments
depicted in Figure 8.4(a), BBR is the least responsive CCA with a probing period of 6-8

RTTs. Therefore, given a typical RT'T of 30-50 ms for Web services [276], we set A=0.004
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Parameters and variables:

B Size of each new Web flow.

N Number of new Web flows.

k  The responsiveness of a CCA.

90 The delay target that a CCA will try to achieve.

C  Thelink capacity.

7 The feedback loop of a CCA (usually one RTT).
By The initial burst of a new flow (e.g., the initial cwnd [102]).

P The scheduling policy.
Functions:
s(¢)  Sending rate of the HRT flow of time .
7(¢)  Available bandwidth of the HRT flow of time z.
p(t)  Number of packets in the queue of the HRT flow.
9(¢) The queueing delay of the HRT flow.

Table 8.1: Notations

(ms™") to have a doubling interval of =250 ms. Experiments in §8.7.2 demonstrate satis-

factory results for not only BBR but also several other CCAs.

8.4.2 THEORETICAL ANALYSIS

In this subsection, we demonstrate analytically that Confucius can provide consistent perfor-
mance for both HRT and Web flows. In the scenario of a single HRT flow competing with
N new flows (e.g., Figure 8.2(a)), we show that Confucius guarantees bounded delay degra-
dation for the existing flow, while yielding FCTs for Web flows that are within a constant

additive factor of what FQ provides. We list the notations we will use in Table 8.1.

Scenario overview. Consider a single HRT flow running by itself on a bottleneck link. At

t = 0, N new flows (e.g., Web flows), each with size B, join the same bottleneck link and
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share the bufter with the existing flow. We analyze the performance degradation for both

the existing and new flows.

CCA model. We adopt a simplified delay-convergent CCA model [41, 48], where the
delay-sensitive CCA has a target queueing delay, go. The CCA seeks to maintain its queue-
ing delay around this target, increasing or decreasing its sending rate proportional to the

difference between the current delay and the target:

Sk (gt —7) — q0) (8.3)

Here, s(¢) is the flow’s instantaneous sending rate, ¢(#) the instantaneous queueing delay it
experiences, and 7 is the feedback loop of the CCA. Finally, £ is a coefficient representing

the CCA’s responsiveness. We discuss how £ varies for different CCAs in Appendix E.1.5.

Delay model. Next, we analyze the number of packets in the queue, p(¢), at time #. At any

¢t > 0, this quantity satisfies the following relationship:

) =p(0) + [ () — A(e)) d (5.9

where p(0) = ¢qo - Cis the buffer occupancy in steady state with C being the link capacity.
If () represents the instantaneous service rate (i.e. available bandwidth) for the HRT flow

at time ¢, then the queueing delay can be written as follows:
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There are two metrics that we focus on. The first is the maximum queueuing delay

max

experienced by the HRT flow, 4%, for a given scheduling policy 2:

g3 = max ¢(z) (8.6)

t>0

max

In this context, we find that 43" serves as a good proxy for the duration of delay degrada-
tion since it establishes a Jower bound on how quickly previously-queued packets of the
HRT flow drain from the bottleneck queue.

The second metric is the FCT, T, for the new flows, which can be expressed as follows:
T
/ (C—r({))df = N- B (8.7)
0

Since FQ provides the ‘fairest’ bandwidth allocation (representing one extreme of the
fairness vs. non-volatility tradeoff), we use the FCT for Web flows under FQ, Ty, as our
baseline. We then calculate 7p — T as the degree to which policy P degrades Web flow
performance relative to FQ.

Having established our two figures of merit (maximum queneuing delay and FCT degra-

dation to FQ), we evaluate four scheduling policies: FQ, FIFO, CBQ (1:1), and Confucius.

236



FQ ~ N(% PtqtT o
FIFO z(%—l—l) (§ %—i—qo—i—T) <0
CBQ ~ §\/% +q0+7 St

Confucius =~ 640 + 157+ % + (loqo+klsr)22 ~ 1o§2e

Table 8.2: Approximations for different schedulers on their maximum delay (q}”“x) and FCT degrada-
tion (ITp— TFQ). In the transient scenarios, existing scheduling policies have either unbounded delay
degradation, or unbounded flow completion time degradation. The unbounded terms with workload
changes (/N and B) are marked in red.

We find that the available bandwidths for these policies satisfy the following relationships:

rro(t) = w5 (t>0) (8.82)
rero(t) < C- ngg\[Bo (£>0) (8.8b)
resg(t) = 5 (t>0) (8.8¢)

Peontucis(£) = max (§ - 274, £5) (t>0) (8.8d)

where for FIFO, B is the initial burst size of these new flows (e.g., the initial congestion
window in TCP). We then solve for the performance degradation of the HRT flow, g7,
and FCT degradation of mice flows, 7p — Ty, with the differential equation in Eq. 8.5
using Laplacian transforms. We summarize the approximate results in Table 8.2 and leave
the analytical details to Appendix E.1.

For FQ and FIFO, we observe that the duration of delay degradation scales linearly with
the number of new flows, /N, and is therefore unbounded, where N can go to more than

100 in some Web pages (Fig. 8.1(a)). Intuitively, as the number of flows joining the bottle-
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neck link increases, the more drastically the available bandwidth for the HRT flow drops,
resulting in significant volatility.

In the case of CBQ, pre-labelling the HRT flow enables the policy to give it a fixed share
of bandwidth, resulting in bounded delay degradation. However, if the weights are not
appropriated precisely (i.e., do not match the number of flows in each queue), CBQ con-
verges to an unfair solution, and the degradation in FCT for mice flows becomes unbounded
(§8.2).

Finally, Confucius yields bounded performance degradation for both sets of flows. On one
hand, Confucius ensures that the delay degradation for HRT flows is a constant that de-
pends only on the CCA’s queueing delay target (¢o), the responsiveness of the CCA (),
the duration of its feedback loop (7), and the decay parameter (1)¥. On the other hand,
Confucius can also ensure the FCT degradation for mice flows is bounded by an additive
constant factor with respect to the decay parameter (1), which goes to negligible with the

increase of the flow sizes.

8.5 OccUPANCY-AWARE FLOW CLASSIFICATION

As described in §8.3.2, Confucius seeks to classify flows into groups, each with a dedicated
queue based on how aggressively they consume bufter space. In this section, we first present
our design consideration when classifying flows into different queues (§8.5.1). We then

present our hysteresis-based mechanism to robustly classify the flows (§8.5.2).

91In practice, when using Copa with an RT'T of 4oms, the approximation bound ¢24* . - from Table 8.2
is roughly 640ms. As we show experimentally in §8.7.2, the delay degradation using Confucius is much lower

than this.
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Figure 8.6: The relationship between  Figure 8.7: Confucius’s hysteresis reclassification mecha-
queue utilization and delay in different nism for flows. Only when the buffer occupancy of a flow
CCAs. Experiments are simulated with has significantly deviated from the current class will it be
real WiFi traces from [188]. moved to another class.

8.5.1 DEsiGN CONSIDERATIONS

Confucius puts short flows into a separate queue Q,.,, and classifies long flows with dif-
ferent buffer occupancy aggressiveness into separated queues. Therefore, we need to set
up a series of queues Qy, O, - - -, Q, to accommodate flows with different buffer occu-
pancy.” Queue indices increase with buffer target i.e. Q; will be shorter than Qs, as shown
in Fig. 8.5. Specifically, we denote the buffer occupancy that queue Q; targets as q((f). Re-
alizing this brings with two questions. First, how many queues we should set for routers
to accommodate heterogeneous flows. Second, how to match the flow’s buffer occupancy
with the target q((f) that queue Q; tries to maintain. We will answer these two questions in

the following.

Number of queues to set. The first thing to determine for instantiating Confucius is how
many queues we should set on the router. To answer this, we need to estimate how many

CCA groups of distinct queue behavior there are in the wild. To this end, we measure

IWe use per-queue buffer occupancy as maximum queue length.
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the buffer occupancy of 7 CCAs (the top-5 CCAs used in websites [193] plus two recent
latency-sensitive CCAs, namely GCC and Copa), over real-world bandwidth traces [188].
We further measure the network RT'T at the sender, and the application-layer performance
(including the delay in the socket buffer and retransmissions). A lower RT'T and appli-
cation delay indicate that such a given CCA is more latency-sensitive. As we can see in

Fig. 8.6, GCC, Copa, and Vegas have a low network RTT and application delay. Thus,
delay-sensitive applications can choose these CCAs to achieve lower latency. Cubic, Yeah,
and Illinois have a much higher delay, while BBR is in-between. We observe that the CCAs
concentrated in three clusters (dashed circles in Fig. 8.6). Concretely, GCC, Copa, and
Vegas have a queue occupancy of less than 20%; Cubic, Illinois, and Yeah have a queue oc-
cupancy of more than 80%; and BBR’s queue occupancy stays in-between. Therefore, we
set three queues and use the average queue occupancy in these three clusters as our targets
{q((f) }. We expect other CCAs to fall into one of these three representative categories, if not

we can configure Confucius to work with more queues.

Practical challenges. While one can characterize flows offline as we did above, Confucius
cannot use the same approach online. Indeed, Confucius works at line-rate and flows will
not come prelabeled with their CCA. Inferring the buffer aggressiveness of a flow is chal-
lenging in practice for the following reasons. First, the buffer aggressiveness of flow may
take a long time to manifest. For example, Confucius will not be able to characterize short
flows lasting only a few RT'Ts (§8.2). Second, the network conditions will also affect the
measurement, effectively deceiving Confucius. For example, a drop in the available band-
width will result in an increase in the buffer occupancy [188], which does not necessarily

mean that flow is aggressive in occupying the buffer. Finally, a flow’s buffer aggressiveness
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can change over time. For example, a Cubic flow throttled/congested elsewhere (on a dif-
ferent router) will not be aggressive in buffer occupancy (although Cubic would). Such a
cubic flow can share the queue with other delay-sensitive flows. However, when the bot-
tleneck moves to the current router, this Cubic flow will be aggressive on the buffer occu-
pancy. Therefore, we need to periodically monitor the buffer share that each flow occupies
within its current queue and re-consider its classification. We elaborate on our algorithm in

the next subsection.

8.5.2 HYSTERESIS-BASED ADJUSTMENT

o allow re-classifications while avoiding oscillations in flows’ classification, we introduce a
To all lassificat hil ding oscillat flows’ classificat trod

hysteresis mechanism. The overall classification steps are as follows:

Classification of new flows. For the flow fin the new-flow queue ., when the flow

is ready (its weight reaching one) to be moved out from the new-flow queue Q,,, to one
of the old queues (which we elaborate on in §8.4.1), we measure the bufter occupancy of
that flow gri.e. the number of packets of this queue that belong to flow . We then find the

queue 7 with the nearest Q;, to accommodate this flow.

Periodic adaptation. Confucius periodically examines flows and queues and moves flows
accordingly. First, intra-queue examination identifies and moves flows that are outstanding
among flows in the current queue (e.g., a flow that is more aggressive compared to the other
flows). Second, the queue-level examination checks if the length of a queue fits the queue’s

control target.
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1. Intra-queue examination. Confucius examines the bufter each flow occupies and

compares it with its fair share. Specifically, if the buffer occupancy of a flow (Zq—f@)
gEQ;
is larger than its fair share (@), ie.:
L > L + (8.9)
>0 ar Q]

where 2 > 0 is a hysteresis, that flow is too aggressive in the current queue. Confucius
wll promote that flow from queue Q; to Q;4; to keep Q; near its control target. Sim-
ilarly, a flow with an outstandingly lower bufter occupancy that its fair share in the

queue, i.e.:
6 1
= < — —« (8.10)
ZfeQi qr |Qt |
will be demoted from queue Q; to Q;_;. Here we set & to 10% based on our previ-

ous observations in Fig. 8.6. Our evaluation in §8.7 shows that the performance of

Confucius is not sensitive to the workloads and CCAs.

2. Queue-level examination. Confucius verifies that the length of each queue is within
the target. If the length of a queue exceeds a safe region between the control target
of any of the two neighbor queues, Confucius moves all flows in the current queue
to a higher or lower queue, as shown in Figure 8.7. This is needed because the intra-
queue examination only focuses on cross-flow relative occupancy. Thus, it cannot
identify instances in which flows in the current queue are comparably aggressive
but more aggressive than the target of this queue. For example, assume that there
are two Cubic flows that were previously classified to Q; (the least aggressive) due to

being throttled elsewhere or measurement errors. When these Cubic flows start to
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be aggressive in buffer occupancy, Confucius would need to move them to a different

queue to protect latency-sensitive flows that may join.

While seemingly complex, these operations are well within the capabilities of Linux-based

edge routers. In fact, we have implemented a complete prototype in §8.6.

8.6 Confucius IMPLEMENTATION

Implementing Confucius in Linux kernel has some challenges. We discuss them and our

solutions below.

Order-preserving during reclassification. Flows can be moved to another class in the
runtime. Thus, we need to ensure the order-preservation during the reclassification of Con-
fucius of a certain flow. In response, we adopt a virtual class design in Confucius. During the
enqueue process of new packets, we bind the sk_buff to each flow. During the dequeue
process, we search for all flows that are bound to the determined class and dequeue the
packet with the earliest enqueue time. In this way, when moving a flow to another class, we

can just rebind the pointer of the flow from the previous class to the new class.

Reducing computational overhead. To implement Confucius in Linux kernel and op-
timize the execution overhead, we need to strictly optimize the computational overhead.

Specifically, we have the following two implementations:

(1) Bit-shifting for exponential operations. Confucius reweights flows based on their ages with

an exponential function, yet the floating number calculation in the kernel is expensive.

1

Therefore, we quantize the weight of new flows with the unit of ;.

We follow the imple-
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mentation of EWMA and use bit shifts for the exponential changes of the weights, i.c., left

shifting the weight by one bit every % milliseconds.

(11) Periodical reweighting and reclassification. The reweighting and reclassification do not
necessarily need to happen for each packet. For the reweighting, as we discussed before, we
only need to reweight for a certain flow every % milliseconds. When weset A = 0.004,
this means to reweight every 250 ms. For the reclassification, we should at least observe

the results after moving one flow to a new class for a certain period to measure the queue
utilization, which should at least be more than one RT'T to fully observe the behavior of
the sender in the new class. Therefore, we also reclassify the flows in a periodic way — we set

the reclassification period to 1ooms.

8.7 EvaALuATION

We first present our experimental setup (§8.7.1); then we evaluate Confucius by answering

the following questions:

* How does Confucius navigate the fairness-volatility trade-off compared to baselines
on real-world Web traces? Confucius protects an HRT flow from delay degradation
when competing with loading 95% of websites with various CCAs. In contrast, with

classless schemes such as FQ or FIFO, the percentage is less than 30% (§8.7.2).

* How sensitive is Confucius to changes in workload? We vary the size and number
of flows and find that Confucius remains consistently performant (in terms of delay
degradation for the HRT flow and PLT degradation for Web flows) always following

our theoretical analysis (§8.7.3).
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Figure 8.8: Experiment setup.

* How does Confucius scale if there are multiple flows with different CCAs? We test
Confucius under the coexistence of flows with different CCAs, and demonstrate that
Confucius can correctly separate flows based on their behaviors and provide consistent

performance to all of them (§8.7.4).

* How does Confucius perform in the testbed prototype? We integrate Confucius into
the qdisc module in Linux kernel 4.4.0 and evaluate Confucius with real HT TP re-
quest traces. Confucius can reduce the duration of delay degradation by more than

60% with reasonable overhead (§8.7.5).

* How does Confucius perform in different settings? We show that Confucius is still able
to outperform baselines when working with multiple HRT flow competition, band-

width-probing CCAs, and different bottlenecks (§8.7.6).

8.7.1 EXPERIMENT SETUP

Ns-3 setup. In §8.7.2-8.7.4, we evaluate the performance of Confucius with ns-3.34. We set
up a linear topology and limit the capacity of the bottleneck link to 20Mbps, which is the
average bandwidth in the WiFi traces from [188], as shown in Figure 8.8. The round-trip

propagation delay is set to 4oms in total based on measurements from [188]. We further
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Figure 8.9: The trade-off between the performance of the HRT flow (duration of delay degradation)
and Web flows (page loading time). The dashed line denotes the Pareto front of classless baselines.

We change the CCA that the HRT flow uses in different subfigures and observe similar performance

improvements of Confucius in all experiments.
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change the RT'T and the bottleneck in §8.7.6. We adopt a videoconferencing application
in ns-3, of which the flow is an HRT flow. We connect the HRT flows to different delay-
sensitive CCAs, including Copa [47], GCC [77], BBR [75] etc. The Web flows use the

default CCA in Linux kernel — Cubic [129].

Linux kernel setup. In §8.7.5, we implement Confucius as a kernel module of queue dis-
ciplines (qdisc) in traffic control in Linux kernel 4.4.0 and evaluate the performance of
Confucius on a machine with Intel Xeon E5-2620 v4 CPU. We run the official CCP-based

implementation of Copa [46].

Web traces. To compose a realistic and relevant dataset of web traffic, we followed two
steps. First, we collected the Alexa Top-1000 websites [34] (July 2022, distribution in
Fig. 8.1). Second, we loaded each of these websites and measured the size of the HTTP
requests they trigger. Having this dataset we replay the traces from these rooo websites to

test a variety of scenarios. We plan to release our dataset.

Baselines. We compare the performance of Confucius with multiple scheduling and AQM
baselines. For the parameters in these baselines, we use the default parameters in the Linux

kernel 4.4.0 or ns-3.34.
(1) FIFOand (2) FQ, the two most used schedulers.

(3) SJF (shortest job first) prioritizes short flows over long flows. Since we cannot know
which job is shorter, we approximate a job’s length with its age (namely, PIAS [51]), i.e.
always prioritizing flows that are newer, which is exactly opposite to what Confucius tries

to do.
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(4) HHF [105] heavy-hitter filter differentiates between small flows and heavy-hitters, giving

each category a fixed share of bandwidth.

(5) Cobel [203] and (6) RED [113] will drop packets before the queue overflows to notify

the sender about the congestion.

(7) BQ puts flows from different applications into different classes based on their labels. We

set the weights for two classes to 1:1 and 1:5 and evaluate performance, respectively.

(8) StrictPriority strictly prioritizes traffic from HRT flows if they are labeled accord-
ingly.

(9) bualQ [231] is a recently proposed scheduler in L4S [69] that protects latency-sensitive

flows with labels.

Metrics. We focus on the following metrics in experiments.

* Duration of delay degradation for video frames is the duration for which the delay
of the video frame is greater than 190 ms. This directly reflects users’ experiences on
video stalls [188, 216, 290]. We use this metric to evaluate how volatility affects the

performance of the HRT flow.

* Page Load Time (PLT) is the time till the last HT'TP request in a web page is com-
pleted. We use this metric to evaluate the performance of web trafhic. PLT degrada-

tion refers to the increase of delay compared to FQ.

Besides, we also evaluate other metrics in different experiments, which we will elaborate on

accordingly.
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8.7.2  Confucius UNDER A REALISTIC WORKLOAD

Simulation scenario. At t=o0 we start an HRT flow from the videoconferencing applica-
tion. At t=10s we reconstruct the requests associated with one of the Alexa Top websites.
All flows are active i.e. we are not replaying pre-recorded traffic. We run the same scenario
1000 times, once per website. In each run, we measure the duration where the frame delay
of the video flow is larger than 190 ms (delay degradation). We also measure the loading
time of the web pages from different websites. We repeat the whole experiment three times,
each considering a different CCA for the HRT flow. We summarize and present the aver-

age results in Figure 8.9.

Confucius strikes a balance between video and web performance that is consistent
across CCAs. In Figure 8.9(a), we observe that classless schedulers (i.e. those that do not
use a label from the end host and are marked in blue) suffer from long video stalls. For ex-
ample, when using FQ and FIFO, the video flow experiences delay degradation for 6oo ms
on average. Classful schedulers (i.e. those that require labels on packets and are marked in
green) protect prelabeled video flows, but considerably degrade the PLT for the Web traffic.
Worse yet, as we discussed in §8.2, it is unrealistic to assume that an end-host will correctly
label all traffic. Confucius not only reduces the duration of stuttering compared to existing
classless schemes, but is almost on par with classful schemes. Moreover, Confucius main-
tains a low PLT for Web flows. Notably, Confucius pushing the Pareto front of the classless
schedulers (the dashed blue line) forward. The results are similar for Confucius when the

video flow uses other CCAs such as BBR or GCC, as shown in Figures 8.9(b) and 8.9(c).
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Figure 8.10: The distribution of results in Fig. 8.9(a).
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Confucius protects the HRT flow from traffic from more than 95% of the websites,
while not sacrificing their performance. We further break down the distribution for
different websites in Figure 8.9(a) into Figure 8.10. Figure 8.10(a) which presents the distri-
bution of delay- degradation duration when the video flow encounters Web flows from dif-
ferent websites in the dataset. With FQ or FIFO0, the HRT flow will experience delay degra-
dation (frame delay >190ms) for more than 70% of websites, half of which will even last
520 ms (in the case of FIF0) and 660 ms (in the case of FQ). In contrast, with Confucius,

the HRT flow will not experience any delay degradation when encountered with 95% of
the websites, comparable to CBQ. Importantly, Confucius does not over-penalize web traffic
— the PLT of 90% of websites are only increased by less than 360 ms against FQ, as shown

in Figure 8.10(b), which mostly corroborate our previous theoretical analysis. We further
present the distribution of maximum experienced delay, and the delay of all packets of the
HRT flow when competing with different websites in Figures 8.10(c) and 8.10(d). This
further demonstrates that Confucius is able to control the latency volatility in not only the
duration of delay degradation but also directly the raw delay. The results when using GCC

and BBR are similar.

8.7.3 Confucius UNDER WORKLOAD CHANGES

In this subsection, we test our theoretical analysis in a more practical setting. Concretely,
we investigate whether Confucius can provide consistent performance in different work-

loads. To this end, we vary the workload by changing the number of flows in a Web page
and the size of Web flows. We measure the duration of delay degradation in different sce-

narios and the degradation on the PLT against FQ.
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Figure 8.11: Four flows with different CCAs (Cubic, BBR, Copa, and GCC) run in the same bottleneck
router. We present the frame delay and classification results of these flows when using Confucius
over time in Figure 8.11(a) and 8.11(b). We also compare the fairness (JFI) and the delay of latency-
sensitive flows (Copa and GCC) of Confucius and baselines in Figure 8.11(c).
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Figure 8.12: Performance consistency in workloads with different number of Web flows, each flow
with the size of 15KB.

Confucius delay degradation is bounded by a theoretically-estimated threshold, con-
firming our analysis. We vary the number of flows in the Web page from s to 100, each
with the size of 15KB and summarize our results in Figure 8.12(a). The duration of de-
lay degradation for FQ and FIFO increases with the number of flows. For example, when
the number of Web flows goes to 6o, the HRT flow experiences a degraded delay for more
than half a second when using FQ or FIF0. On the contrary, Confucius maintains zero delay
degradation in this setting, similar to CBQ (which uses labels). We further compare the ex-
perimental results with our previous analysis in §8.4.2. As we can see in the yellow dashed
line in Figure 8.12, the experimental results corroborate our previous theoretical analysis on
the performance of Confucius in Table 8.2.

We further change the size of Web flows (from short flows to long flows) and see if Con-
fucius is capable of handling all types of competing traffic. We vary the size of Web flows
from 15KB to 9MB, and run s flows with the same size to compete with the HRT flow.

With the increase of the size of flows, the competing flows are changing from short flows
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Figure 8.13: Performance consistency in workloads with different size of Web flows, each experi-
ment having 5 flows.

(e.g., Web) to long flows (e.g., FTP). In this case, when using FIFO, the HRT flow will suf-
fer from drastic delay degradation due to failure to provide inter-CCA fairness across flows,
as shown in Fig. 8.13(a). The HRT flow using FQ also has a long delay degradation of hun-
dreds of milliseconds. In contrast, Confucius is still able to achieve both negligible duration
of delay degradation for the HRT flow and bounded degradation of the PLT for the Web

flows in the same time.

8.7.4 HETEROGENEOUS FLOW CLASSIFICATION

In this subsection, we zoom in on Confucius’s flow classification mechanism and investigate
its effect on delay and fairness. We find that Confucius groups flows of the same CCA to-
gether, without any prior knowledge, which in turn leads to better performance compared
to the baselines.

We simultaneously run HRT flows of four different CCAs: one Cubic flow, one BBR

flow, one GCC flow, and one Copa flow for 100 seconds. We plot the frame delay for
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each flow over time in Figure 8.11(a). In this experiment, we also measure the JFI in Fig-
ure 8.11(c) to present the fairness when using different schemes. We also compare the re-
sults (the delay of the Copa and GCC flow, and the JFI among all flows) of the same ex-
perimental settings with other schedulers in Figure 8.11(c). We find that with Confucius the
Copa and GCC flows maintain a low end-to-end delay even though they share the bottle-
neck link with Cubic and BBR. Meanwhile, they also enjoy a reasonable fair share of the
bandwidth - the JFI in this experiment is 0.98 in Figure 8.11(c).

To understand Confucius’s superior performance, we look at its classifications over time
and verify that Confucius works in practice as we expect. We make two observations. First,
Confucius can classify flows using different CCAs into different queues. As shown in Fig-
ure 8.11(b), the Copa and GCC flows can be stably classified into the low occupancy queue
(Q1, blue), the BBR flow into the median occupancy queue (Q,, yellow), and the Cubic
flow into the high occupancy queue (Qs, green). This follows our previous observation in
Figure 8.6 — Copa and GCC both demonstrate similar low bufter occupancy, while Cubic
occupies the bufter aggressively, and BBR in the middle. In this way, flows with different
queue occupancy can be isolated from each other. Moreover, we notice that the Cubic flow
can temporarily be in the same queue as BBR, as shown in the yellow lines in the green bar
in Figure 8.11(b). This is, in fact, beneficial for Confucius as the Cubic flow has (at times)
alow queue occupancy in its probing period. Second, flows with different CCAs can co-
exist in the same queue as long as they have similar buffer occupancy. In this experiment,
Copa and GCC flows are put into the same queue since they have similar buffer occu-
pancy. As we can see in Figure 8.11(a), these two flows still have consistent low latency all

the time.

255



g 2000 oCBQUIL 26400 [*— Confucius
*#Confuils™ 3~ o —o— FIFO

< 1500 2 oF|ED > > 3200
€ "70 labeysl - Q) £ 1600
Eo 1000 £ 800
5 o 400

0 g 100
%’ 0 200 400 600 800 ) 1 10 100
o o

Duration of delay degradation (ms) Number of long-running flows

(a) HRT flow’s delay degradation vs. Web  (b) Processing time for each packet. Axes are
flows’ load time. log-scaled.

Figure 8.14: Results over our Linux kernel-based testbed.

8.7.s TESTBED EXPERIMENTS

We also evaluate the performance of Confucius in the Linux kernel. We find that Confucius is
capable of achieving significant benefits in kernel-based implementations while only adding
marginal processing delay.

We run an iperf3 flow, set the CCA to Copa, and measure the delay reported by ipert3
for the latency-sensitive flow. We then set up an HTTP server based on Python to serve
the client with the Web traces we collected. We also measure the computational overhead
of Confucius and the baselines. We log the processing time for the enqueue and dequeue
operation in Linux tc, where the reweight and reclassification in Confucius are both imple-
mented.

As shown in Figure 8.14(a), Confucius reduces the duration of delay degradation by more
than 60% without the need for labels on each packet. This result is similar to our simula-
tion in Figure 8.9(a). Moreover, 86% of websites when using Confucius do not suffer from

delay degradation. Notably, this number is only 56% and 30% for FIFO and FQ.
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We vary the number of long-running flows to observe how the processing time changes.
Note that the processing time of Confucius is insensitive to the number of short flows, as
they all belong to the new-flow queue. As shown in Figure 8.14(b), Confucius slightly in-
creases the processing time for each packet compared to FQ. However, even if there are
100 concurrent long-running flows on the same queue discipline, the per-packet process-
ing time is still 5 s, indicating a processing rate of 200 kpps, or a bitrate of 100 Mbps~2..4
Gbps (depending on the packet size). Note that Confucius is mainly designed to be deployed
on the last-mile routers such as home routers. This can satisty the daily usage of home ac-
cess points or last-mile routers. We stress that the kernel implementation of Confucius can
be further optimized for high-performance execution in the future. We leave the further ex-
ploration of Confucius over numerous flows (e.g., in the routers in the core network) in the

future.

8.7.6 MICROBENCHMARKS

We further evaluate the performance of Confucius in a series of microbenchmarking set-
tings. In Appx. E.2.1, we demonstrate that the hysteresis mechanism of Confucius (§8.5.2)
is able to work with bandwidth-probing CCAs (e.g., BBR) and stably and correctly clas-
sify flows. We further show that Confucius will not have any side effects if the bottleneck is
not the router where Confucius is deployed in Appx. E.2.2. Finally, we also show that even
if there are multiple HRT flows competing at the same time, Confucius is still able to han-
dle those flows simultaneously and provide significant performance improvements against

baselines (Appx. E.2.3).
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8.8 SuMMARY

In this chapter, we propose Confucius, the first queue management scheme to balance fair-
ness against volatility. Confucius achieves this by grouping flows based on their latency pref-
erences, which it infers by observing their buffer occupancy over time. Confucius gradually
adjusts per-flow weight, and uses those weights to devise the per-queue service rate. Do-
ing so allows Confucius to mitigate volatility that degrades the performance of HRT flows.
Linux kernel-based emulation and ns-3 based simulations show that Confucius can reduce
the number of websites causing delay degradation for video flows from 70% to 5% with

negligible overhead.
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Conclusions and Future Work

9.1 WORK SUMMARY

Real-time multimedia transmission is an important application on the current Internet. As
people’s demand for a better life increases, the latency requirements for real-time multime-
dia transmission applications are becoming higher and higher. Optimizing latency for real-

time multimedia transmission is of great significance. Existing solutions mostly focus on
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median, goth percentile, and other general latency cases, while neglecting the optimization
of 99.9th percentile and even 99.99th percentile latency. In many real-time multimedia ap-
plications such as cloud gaming, remote surgery, and virtual reality, a one-in-ten-thousand
stutter can have serious consequences. In comparison, the real-time multimedia transmis-
sion latency optimization in this work focuses more on stutter events with occurrence fre-
quencies of one in a thousand and one in ten thousand.

Unlike median and goth percentile latency, which have clear bottlenecks (usually propa-
gation delay), when discussing extreme tail latency with occurrence probabilities of one in
a thousand and one in ten thousand, any high latency component can lead to an increase
in extreme tail latency, resulting in a decrease in user experience. This paper first analyzes
the components and roles of existing real-time multimedia transmission in the Internet
architecture and proposes the importance of controlling path latency. In a network with
continuous fluctuations, decisions need to be made frequently at the end. If the endpoint’s
decision is slower due to high control path latency, it will lead to an increase in extreme tail
latency. This paper divides the control path into feedback and decision components and
optimizes them separately. This paper also emphasizes the difficulty of meeting extreme tail
latency requirements with existing data path architectures and locates and optimizes the
causes of latency fluctuations in the application layer, transport layer, and network layer.

The main research content and contributions of this paper can be summarized as fol-

lows:

1. In the control path, Zhuge, a congestion signal early feedback solution that short-
ens the feedback loop, is proposed to address end-to-end latency fluctuations caused

by feedback latency fluctuations. Zhuge decouples the feedback loop from the data path
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to achieve the goal of shortening the feedback loop for early congestion signal feedback.
Specifically, this work classifies real-time multimedia transmission protocols based on their
feedback modes into in-band and out-of-band feedback, and optimizes different types of
feedback modes accordingly. Experiments based on real routers and large-scale simulations
show that the early congestion signal feedback solution proposed in Chapter 4 can effec-
tively reduce end-to-end latency fluctuations, thus improving user experience. This work
was published at the ACM SIGCOMM 2022 conference and was tested for product de-

ployment at Alibaba, achieving good performance improvements.

2. In the control path, Metis, a lightweight and reliable rate control decision frame-
work, is proposed to address end-to-end latency fluctuations caused by decision la-
tency and instability. Metis is a lightweight and reliable rate control decision conversion
and interpretation framework that transforms optimized complex rate control decision al-
gorithms into simple rate control decision algorithms, achieving timeliness and reliability
of decision-making. Specifically, this work converts existing complex rate control decision
algorithms based on machine learning and integer programming into simple rate control
decision algorithms based on decision trees. Experiments and analysis based on existing
algorithms show that the lightweight and reliable rate control decision conversion and in-
terpretation framework proposed in Chapter s can effectively reduce performance fluctua-
tions, thus improving user experience. This work was published at the ACM SIGCOMM
2020 conference and was tested and deployed in real production environments at Tencent,

Kuaishou, and other companies.
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3. In the data path, AFR, an adaptive frame rate adjustment solution, is proposed to
address end-to-end latency fluctuations caused by latency fluctuations in the applica-
tion layer’s video codec. AFR is an adaptive frame rate adjustment solution that actively
adjusts the frame rate of the video codec in the application layer, thereby reducing latency
fluctuations in the video codec. Specifically, this work proposes an application-layer active
queue management solution based on joint analysis of network conditions and applica-
tion conditions, using queuing theory and stochastic process modeling. Experiments for
large-scale users show that the adaptive frame rate adjustment solution proposed in Chap-
ter 6 can effectively reduce end-to-end latency fluctuations in cloud gaming applications.
This work was published at the USENIX NSDI 2023 conference and has been deployed at

Tencent on a large scale for two years.

4. In the data path, Hairpin, a joint recovery solution that integrates multiple packet
loss recovery mechanisms, is proposed to address end-to-end latency fluctuations
caused by transport layer packet loss and its recovery mechanisms. Hairpin is a joint
packet loss recovery solution that integrates existing packet loss recovery mechanisms,
especially retransmission and redundancy recovery. Specifically, this work uses Markov
chains to jointly model packet loss and retransmission, proposing an optimal strategy for
adding redundancy and deciding whether to retransmit. Experiments based on real net-
work datasets show that the joint packet loss recovery solution proposed in Chapter 7 can

effectively reduce end-to-end latency fluctuations while also reducing the cost of band-

width overhead. This work is accepted by USENIX NSDI 2024 conference.
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5. In the data path, Confucius, a new router queue management solution, is proposed
to address end-to-end latency fluctuations caused by bursty competition and queuing
of multiple applications at the network layer. Confucius is a new router queue man-
agement solution that reduces end-to-end latency fluctuations by optimizing differential
service bandwidth allocation without relying on endpoint information. Specifically, this
work infers the latency sensitivity of different flows by observing the bottleneck queue oc-
cupancy of different flows, thereby achieving differential service optimization for different
flows. Tests based on real routers and thousands of websites show that the router queue
management solution proposed in Chapter 8 can effectively reduce end-to-end latency fluc-

tuations without relying on any endpoint labels or information.

9.2 FUTURE WORK

Real-time multimedia is a long-standing research topic in network systems, but the appli-
cation scenarios it faces are becoming more and more complex. From network telephony to
video conferencing, to cloud gaming, remote surgery, and finally to virtual reality and aug-
mented reality, the latency requirements of applications for networks are getting higher and
higher, and the scenarios are becoming more diverse. Real-time multimedia applications
involve a series of deep systemic issues, some of which are not just research problems in the
field of networks. This paper only solves some key problems, but there are some aspects

that can be further explored in the future.

1. Joint optimization with the operating system. With the gradual promotion of edge

node deployment and the large-scale deployment of new-generation wireless access net-
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work technologies (such as WiFi 6 and §G), the net propagation delay of networks is get-
ting lower and lower. At this point, the latency bottleneck on the endpoint side becomes
more prominent. Of course, many excellent researchers in the field of operating systems are
also trying to reduce this latency, but it should be noted that network latency is actually the
most elastic part of latency components: the network can always sacrifice some throughput
for lower latency. Therefore, if the latency budget of the entire link can be planned in ad-
vance when the endpoint operating system and other latency bottlenecks are anticipated,

latency can be further reduced.

2. Joint optimization with different scenarios. Network layer indicators are currently
more related to network service quality. Even if the stutter rate and other indicators are
actually counted at the application layer video frame granularity, this is not the user’s real
experience, but only an estimate of the user experience. Furthermore, different users may
have different experiences with the same latency and picture quality due to differences in
their physiological and psychological states and application usage. How to understand the
user’s real experience and optimize it, especially when these emerging application scenarios
are gradually entering people’s field of vision, is also a direction worth further in-depth
research.

From a broader perspective, the latency problem solved in this paper is not only appli-
cable to real-time multimedia transmission. In fact, the design of transport layer, network
layer, and control path in this work can be migrated to other applications with similar low-
latency requirements. In recent years, new network scenarios such as the Internet of Things
and connected vehicles have brought great opportunities to network research. Whether

the low-latency optimization in this work can be applied to other network scenarios and
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whether there are new challenges to be solved are also directions worth exploring in the fu-

ture.
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Zhuge (§4)

A1 MEASUREMENT DETAILS

We carried out two measurements in this paper, including the measurement of the network
conditions and application performance of our online RTC application in §4.2.3, and the
trace collection of available bandwidth from WiFi networks in §4.7.2. We present their

measurement details as below.
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Figure A.1: The ratio of frame rate<<10fps over real-world traces.

Performance of our online RTC application. We measure our online RTC application
for one month in December 2021, with millions of user sessions, and billions of video
frames. Among them, the Ethernet, WiFi, and 4G are the top-three types of access net-

works in our users. We then calculate the tail performance metrics as shown in §4.2.3.

Available bandwidth of WiFi networks. We measure the available bandwidth of the WiFi
network in a nearby restaurant [28], and in our office. We continuously download a large
file from another Ethernet-connected server in the same subnet with wget. To bypass the
potential rate limits over the UDP protocol, we run TCP CUBIC on the server. We cal-
culate the receiving rate from the packet captures at the client as the available bandwidth.
The average receiving rate of the office WiFi and restaurant WiFi are 27Mbps and 21 Mbps

respectively.

A.2  SUPPLEMENTARY TRACE-DRIVEN SIMULATIONS

Frame-rate improvements. We further present the summary of the performance improve-

ments on the frame-rate in Figure A.1. We measure the ratio of low frame-rate (per-second
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Copa ABC Copa+Zhuge

P(NetworkRtt > 200ms)  0.1%  6.4% 0.1%
P(FrameDelay > 400oms)  9.5%  2.4% 3.2%
P(FrameRate < 1ofps)  4.5% 0.8% 1.5%

Table A.1: Performance of on the original traces of ABC.

frame rate <1ofps). As shown in Figure A.1(a) and A.1(b), Zhuge achieves the smallest (or
close to smallest) low frame rate ratio among all baselines. ABC does not perform well in
terms of frame rate in these five traces due to its aggressiveness on rate increasing, which we

will further analyze below.

Results over the traces used in ABC [125]. We further rerun the simulation over the
original traces evaluated in the ABC paper. We find that ABC does perform the best among
all solutions in terms of application performance (frame delay and frame rate). Neverthe-
less, Zhuge could still significantly improve the application performance against the origi-
nal Copa by 67% and achieve comparable performance to ABC. This indicates that Zhuge
could achieve comparable performance without modifications on the server or the client
like ABC. We do not present this result in the main text since the traces evaluated in ABC
were collected 10 years ago while other traces are collected in recent 2 years. The average
available bandwidth of ABC traces is an order of magnitude lower than that in the 5 traces
in §4.7.2. Thus, the traces in ABC may not faithfully reflect the development of the wire-

less access networks in recent years.
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Metis (§5)

B.1 RESAMPLING IN DECISION TREE TRAINING

To explain the resampling equation during decision tree training (Equation s.1), we first
briefly introduce the basic knowledge about RL used in this paper. We refer the readers

to [248] for a more comprehensive understanding of RL.
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Figure B.1: RL with neural networks as policy.

In RL, at each iteration 7, the agent (e.g., a flow scheduler [83]) first observers a state
5, € S (e.g., remaining flow sizes) from the surrounding environment. The agent then takes
anactiona, € A(e.g., scheduling a flow to a certain port) according to its policy 7 (e.g.,
shortest flow first). The environment then returns a reward r, (e.g., FCTs of finished flows)
and updates its state to s,.;1. Reward is used to indicate how good is the current decision.
The goal is to learn a policy 7 to optimize accumulated future discounted reward E ), 7/r,]
with the discounting factor y € (0,1]. 74(s, 2) is the probability of taking action 4 at state
s with policy 7 parameterized by &, which is usually represented with DNNSs to solve large-
scale practical problems [195, 196]. An illustration of RL is presented in Figure B.1.

However, it is not easy for the agent to find out the actual reward of a state or an action
in the training process since the reward is usually delayed. Therefore, we need to estimate
the potential value of a state. Value function 15 (5) is introduced to determine the potential

future reward of a state s at the time # with the policy 7

V() = Rs)+ Y p (s, 7(s) V() (B.1)

sSesS
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where p(s'|s, 2) is the transition probability onto state s’ given state s and subsequent action
a. Similarly, Q-function Q;”) (s,4) is to estimate the value of how a certain action « at state s

may contribute to the future reward:

Q7 (s,a) = R(s) + Y _p(sls.a) V() (B.2)

sSes

Therefore, a good action 4 at the state s would maximize the difference between the value

function and Q-function, i.e., the optimization loss £(s, 7) of RL could be written as:
Us,m) = VD(s) = Q7(s,4) (B3)

In the teacher-student learning optimization in §5.3.2, to make the loss independent of
7 and therefore easy to optimize, Bastani et al. [58] bounded the loss above with:

0(s) = VD (s) — min Q7 (s5,4") = VP (5) — Q" (s,2) (B.4)

a'ed

Therefore, we can resample the (state, action) pairs with the loss function above, which ex-
plains the sampling probability in Equation s.1. The sampling probability p(s, 2) in Equa-
tion 5.1 is proportional to but not equal to the loss function due to the normalization of
probability.

We further empirically evaluate the improvement on QoE of the resampling step. We
measure the QoE of the decision trees with and without the resampling step. As shown in
Figure B.2, 73% of traces could benefit from the resampling step with different degrees of

improvement. The median improvement on QoE over all traces is 1.5%. Since the resam-
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Figure B.2: The resampling step could improve the QoE of 73% of the traces, with the median im-
provement of 1.5%.

pling step is adopted for the last mile performance improvement, network operators may

choose to skip the step if performance is not a critical issue for them.

B.2 IMPLEMENTATION DETAILS

Parameter settings. For the DNN in Pensieve, we set the number of leaf nodes (A1) to
200. Our experiments on the sensitivity of A4 in Appendix B.s shows that a wide range of

M perform well.

Testbed details. We train the decision tree with sklearn [211] and modify it to support
the CCP. The server for Pensieve is equipped with an Intel Core i7-8700 CPU (6 physical
cores) and an Nvidia Titan Xp GPU.

B.3 PENSIEVE DEBUGGING DEEP DIVE

We also provide more details on the experiments of two links with bandwidth fixed to

3000kbps and 1300kbps in §5.5.4.
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Figure B.3: Buffer Occupancy at 3000kbps Link.

3000kbps link. Except for the experiments in §5.5.4, we also investigate the runtime buffer
occupancy over the 3000kbps link. As shown in Figure B.3, the bufter occupancy of Pen-
sieve fluctuates: buffer increases when 1850kbps is selected and decreases when 4300kbps
is selected, which is also faithfully mimicked by Metis +Pensieve. The oscillation leads to a
drastic smoothness penalty. Meanwhile, the buffer occupancy can also interpret the poor
performance of rtMPC in Figure s.10: tMPC converges at the beginning. Thus, there is
no enough buffer against the fluctuation of chunk size since the size of each video chunk is
not the same. Thus a substantial rebuffer penalty is imposed on rMPC. The buffer of BB
and RB decreases slightly during the total 1000 seconds experiment as the goodput is not
exactly 28 50kbps (the average bitrate of sample video).

As the raw outputs of the DNNs in Pensieve are the normalized probabilities of selecting
each action, we further investigate those probabilities of Pensieve on the 3000kbps link and
present the results in Figure B.4. A higher probability close to 1 indicates higher confidence

in the decision. We can see that Pensieve does not have enough confidence in the decision
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Figure B.4: Probabilities of selecting 1850kbps, 2850kbps, 4300kbps qualities. The probability of
selecting other three qualities is less than 10~* thus not presented.

it made, which suggests that Pensieve might not experience similar conditions in training;

thus, it does not know how to make a decision.

BB RB rMPC Metis +Pensieve Pensieve
1.050 0.904 0.803 0.986 0.983

Table B.1: QoE on the 1300kbps link.

1300kbps link. We also provide the details about the experiments in Figure 5.9(c) on a
1300kbps link and present the results in Figure B.5 and Table B.1. The results are similar

to the 3000kbps experiment, except that the performance of RB is worse since it converges

faster.

B.4 INTERPRETATION BASELINE COMPARISON

We further want to know the reason for the performance maintenance of Metis. We mea-

sure the accuracy and root-mean-square error (RMSE) of the decisions made by Metis com-
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Figure B.5: Results on a 1300kbps link. Better viewed in color.

pared to the original decisions made by DNNs. As baselines, we compare the faithfulness

of Metis over the DNNs with two recent interpretation methods:

* LIME [217] is one of the most widely used blackbox interpretation method in the
machine learning community. LIME interprets the blackbox model with the linear

regression of the inputs and outputs.

* LEMNA [128] is an interpretation method proposed in 2018 and designed to in-

terpret DL models based on time-series inputs (e.g., RNN). LEMNA employs a
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cate a better performance. Better viewed in color.

mixture regression to handle the dependency between inputs. We employ LEMNA

as a baseline since some networking systems also handle time-series inputs.

As both methods are designed based on regressions around a certain sample, to make a fair
comparison, we run the baselines in the following way: At the training stage, we first use
k-means clustering [177] to cluster the input-output samples of the DL-based network-
ing system into & groups. We then interpret the results inside each group with LIME and
LEMNA. We vary £ from 1 to so and repeat the experiments for 100 times to eliminate the
randomness during training. Results are shown in Figure B.6. Since the decision tree inter-
pretations of Metis do not rely on a particular sample, they do not need to be clustered and
are constant lines.

From Figures B.6(a), Metis +Pensieve achieve high accuracy of 84.3% compared to orig-
inal DNNs. The low decision errors in Figures B.6(b) indicate that even for those decision
tree decisions that are different from DNN:s, the error made by Metis is acceptable, which

will not lead to drastic performance degradation. The accurate imitation of original DNNs
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with decision trees results in the negligible application-level performance loss in §5.5.5.
Meanwhile, the accuracy and RMSE of Metis are much better than those of LIME and
LEMNA. Our design choice in §5.3.1 is thus verified: decision trees can provide richer ex-

pressiveness and are suitable for networking systems.

B.s  SENSITIVITY ANALYSIS

In this section, we present the sensitivity analysis results on the hyperparameters of Metis
when applied to the DL-based networking systems.

To test the robustness of Metis against the number of leaf nodes, we vary the number
of leaf nodes from 20 to 5000 and measure the accuracy and RMSE for Pensieve. The re-
sults are presented in Figure B.7. The accuracy and RMSE of Metis +Pensieve with the
number of leaf nodes varying from 20 to 5000 are better than the best results of LIME and

LEMNA in Figure B.6 in Appendix B.4. The robustness indicates that network operators
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do not need to spend a lot of time in finetuning the hyper-parameter: a wide range of set-

tings all perform well.

B.6 ComrutaTiON OVERHEAD

We further examine the computation overhead of Metis in decision tree extraction. We
measure the decision tree computation time of Pensieve at different numbers of leaf nodes
on our testbed. As the action space of Pensieve (6 actions) is much small, the decision tree
of Metis +Pensieve has completely been separated with around 1000 leaf nodes. Thus we
cannot generate decision trees for Metis +Pensieve with more leaf nodes without enlarg-

ing the training set. As shown in Figure B.8, even when we set the number of leaf nodes to
5000, the computation time is still less than one minute. Since decision tree extraction is ex-
ecuted offline after DNN training, the additional time is negligible compared to the train-
ing time of DNN models (e.g., at least 4 hours in Pensieve with 16 parallel agents [179]).

Metis can convert the DNNs into decision trees with negligible computation overhead.
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C.1 POTENTIAL SOLUTIONS AND CONCERNS

In this section, we discuss why other potential solutions are insufficient to address the
problem in this paper, and discuss other concerns of adapting the frame rate during run-

time.
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C.1.1 POTENTIAL SOLUTIONS

Discarding frames or adjusting resolutions. For most widely adopted codecs, drop-
ping one frame or changing the resolution will make the following frames fail to recover
the raw pixels of the block because they are differentially encoded by the motion vector to
the previous one”. This is to utilize the redundant information between frames to reduce
the bitrate of the stream. Since key frames do not rely on previous frames, they are usu-
ally much larger than other predictive frames (sometimes 10X [158]. Therefore, given the
same bottleneck bandwidth, sending a frame with 10X larger size will take approximately
10X time (tens to hundreds of milliseconds), which drastically increases the delay for the
users. Moreover, frequently requesting key frames will degrade the goodput of the stream-
ing and potentially increase the congestion in the network. Therefore, directly dropping
delayed frames at the client or frequently changing the resolution will introduce stalls for

the subsequent frames and degrade the users’ experiences of high-quality RTC.

Adjusting the bit-rate. Without changing the resolution and frame rate, adjusting the bit
rate has a very limited effect in reducing the decoding delay. Generally speaking, resolution,
bit rate, and frame rate could be independently set. The display resolution describes the
number of distinct pixels in each dimension that can be displayed, and the frame rate rep-
resents the number of pictures within one second of video. And the bit rate represents the
amount of data used for storing the coded bit-stream. So the higher resolution we set, the
more pixels a single picture will have, which could mean a higher definition of the video.

And setting a higher frame rate means there will be more pictures per video second to make

"Recent advances on scalable video coding could partially break the inter-frame dependency, yet degrades
video quality with the same bit-rate [234].

2.80



the video smoother. If we set a higher target bit-rate while keeping other parameters un-
changed, the encoder can use more data to represent the pictures to achieve lower possible
image distortion with a lower quantization parameter [49].

In this case, with the unchanged frame rate and resolution, the decoding procedure is
also unaffected. For example, in H.264/AVC, a sequence of macroblocks can be composed
of aslice, a picture, therefore, is a collection of one or more slices. Slices are completely in-
dependent of each other, and the macroblocks inside a video frame can be reconstructed
in parallel. The video decoding has been parallelized using slice-level or block-level paral-
lelism. The resolution will affect how many pixels there are in one frame, and the frame
rate determines the tolerable decoding delay for each frame. The parallelized decoder is not
significantly affected by the precision of each pixel. We further measure the decoding per-

formance with different bitrates in production in Appendix C.2.4.

Preset the frame rate and resolution based on client types. An alternative to AFR is that
the application checks whether the hardware could reliably decode the video at a certain
resolution and frame rate at initialization. This, however, would lead to underutilization on
the client side. The decoding capability of hardware is fluctuating over time due to various
reasons. For example, we measure the distribution of decoding delay of each user session in
Appendix C.2.5. One-fourth of users will have at least 1%o time of a long decoding delay of
>18ms, which could result in severe queuing delay, as we illustrated in Figure 6.6. In this
case, if we set the resolution and frame rate based on this tail metric, users will have a much
lower resolution and frame rate during most of the time. Therefore, we need to control the

frame rate in the runtime to dynamically adapt to the network and decoder dynamics.
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Allocating the application with dedicated resources. Another seemingly feasible so-
lution is to bind the application to a certain CPU core or GPU core to avoid the poten-
tial fluctuations caused by scheduling. However, we do not have such privileged control
on client devices. As a user space application, the controllability over the user’s system is
limited. Even if an expert user pins the application to a certain core, for commercial sys-
tems such as Windows, pinning does not indicate isolating the core for that application
only [36]. The system can only ensure the pinned application to run on that core, but
could also schedule other processes if still available. Moreover, since our application is not
CPU-intensive most of the time, there would usually be idle resources on the same core
where the user binds the application to. Therefore, there could still be the same issue of

latency increases at tail.

C.1.2 PracticaL CONCERNS

Since the frame-rate needs to be adjusted at the server, a straightforward concern is whether
the frame-rate adaption over the Internet is timely for the stringent delay requirement of
high-quality RT'C. The measurements in production have two following findings. On one
hand, the round-trip network delay is short enough to enable timely feedback: the average
round-trip network delay is around 20ms of our cloud gaming service (Appendix C.2.2).
Measurements over other high-quality RTC services (e.g., Google Stadia) have similar re-
sults of less than 20ms [78, 197]. On the other hand, the degradation of decoding delay
usually lasts for a long time, with a median duration of more than roo milliseconds (Ap-

pendix C.2.5). Moreover, we also demonstrate that the increase in decoding delay and net-
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CPU Release date  Score Portion
Intel® Core™ i5-4590 Q22014 868 1.66%
Intel® Core™ i5-7200U Q4 2016 481 1.61%
Intel® Core™ i5-9400F Q1 2019 1058  1.56%
Intel® Core™ i5-4460 Q22014 8o1 1.41%
Intel® Core™ i5-5200U Q4 2014 573 1.38%

Table C.1: Top 5 CPU models of clients in our cloud gaming service.

GPU Release date  Score Portion

Intel® UHD Graphics 630 Q3 2017 888  4.54%
Intel® HD Graphics 4600 Q22013 474  3.42%
Nvidia GeForce GTX 1050Ti Q4 2016 5059  3.19%
Intel® HD Graphics 630 Q3 2016 825 2.77%
Nvidia GeForce GT730 Q22014 863  2.48%

Table C.2: Top 5 GPU models of clients in our cloud gaming service.

work delay is hardly correlated (Appendix C.2.6). Therefore, for high-quality RTC, when

the decoder fluctuates, it is timely enough to control the frame rate over the Internet.

C.2  MEASUREMENT OVER DATASET

In this section, we supplement the observations in the main text with measurements in

production. The measurement settings follow the details in §6.5.2.

C.2.1 UseER CHARACTERISTICS

In addition to the distribution in §6.3.1, we present the top-s models, with their release

dates, benchmark scores, and portion in our users, of CPU and GPU in Table C.1 and C.2.
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C.2.2 Drray DISTRIBUTIONS

Compared to traditional RT'C scenarios, the delay distribution for high-quality RT'C has
some unique features according to our measurements. We present the Cumulative distribu-
tion function (CDF) of component delays and the total delay to explore the delay patterns.

First, due to the edge deployments, the network delay in our cloud gaming service is
quite small. According to Figure C.1, the average round-trip network delay is approxi-
mately around 20ms. Even in this case, similar to traditional RT'C services, the network
delay is accounted for a large part of the total delay, the network delay line closely follows
the total delay at the median for all four categories in Figure C.1.

However, the tail delay of others component delays like decoding delay and queuing de-
lay are noticeable under cloud gaming scenarios. For the decoding delay, we can notice that
the decoding delay for 108op frames is 18ms at the 99th percentile. Note that the decoder
of all sessions evaluated in this paper has been hardware-accelerated. Therefore, as analyzed
in §6.3.1, the queuing delay is becoming noticeable at the tail. Referring to Figure C.1, the
99th percentile of queuing delay can reach soms under categories (2) and (4), which could
degrade users’ experience for high-quality RTC services. We further present the root cause

analysis below in Appendix C.2.3.

C.2.3 Roort CAUSE ANALYSIS

The total delay is mainly contributed by the network delay, decoding delay, and queuing
delay §6.3. Therefore, we want to investigate how these three components contribute to

the increase in total delay at the tail. For each frame, we denote 7"as total delay and C as
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Figure C.1: Raw measurements of delays from production.

component delay, where the component delay could be the network, decoding, or queuing
delay.

To analyze the necessity and sufficiency of the component delay increasing to the total
delay at the tail, we then calculate two conditional probabilities between the event of T

longer than a certain threshold 77, and the event of Clonger than a certain threshold C,:

* P(C > Cy|T > T). We want to account for how component delay increasing
contributes to total delay under different delayed degrees 77, and this conditional

probability is subject to quantify it. If this conditional probability is close to one,
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Network Queuing Decoding
P(C> C,|T>T,) 447% 56.6% 4.0%
P(T>T,|C>C,) 29.8% 69.5% 84.2%

Table C.3: Conditional probabilities with 7, = 100mzs and C,, = 50ms for wired connections,
which accounts for 82% of total users of our cloud gaming service.

there will be great confidence to blame the component delay for contributing Cy,

delay to the total delay to reaching 7,

* (T > T,|C > C,). As the sum of component delays, the total delay should
increase when one of the component delays increases. This conditional probability
is subject to illustrate this assumption and indicates the probability of total delay

reaching the 7}, under different component delay increasing degree Cy,.

We calculate the conditional probabilities for three components for difterent C, and 77,

and have the following observations.

Total delay increasing is a reflection of components delay increases. As the sum of the
different types of components delay, It’s obvious that no matter what kind of component
delay is increasing, the total delay will also increase.

So to find out the sufficiency of total delay increasing, we calculate the conditional prob-
ability of P(T" > T,,|C > Cy) in right-side of Figure C.2. We can notice that for all the
component delays, their delay increasing can also mean a higher probability of total de-
lay increasing (75%ile line in the figure is shifting to the right with the component delay
increasing). The down-left corner is 100%, because as the sum of all types of component

delay, the total delay must be larger than any component delay.
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Figure C.2: The heatmap of conditional probabilities for wired connections. The horizontal and
vertical axes have been normalized by their average values. The star point’s value is recorded in
table C.3 The down-left corner is 100% since the total delay should always be larger than the com-

ponent delay.
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Queuing delay is responsible for delay increases of >100oms. To figure out the necessity
of total delay increasing, we calculate the conditional probability of P(C > C|T > T}) in
left-side of Figure C.2. Our major finding is that with the different order of severity of total
delay increasing (2-16x of E(T), the root cause of it is also changing. As we can see, when
T, is larger than 8[E( 7)), network delay has a high probability (shaded red) to be blamed.
However, when T}, is from 3E(7) to 8E(7), queuing delay dominates the most increased
events. It illustrates that the queuing delay is responsible for the increase of total delay by
around rooms. Specifically, we present the conditional probabilities for three components
with 7}, = 100msand C,, = 50ms for wired connections in Table C.3. As we can see,
queuing delay has both high P(C|7) and P(7]C). Indicating that the total delay has a great
possibility of reaching 1ooms when queuing delay increases to soms. And for those video
frames that total delay truly getting the 10oms, there will be great confidence to blame the
queuing delay for contributing to the majority of delay increasing. So the queuing delay

will be the root cause of the increase of total delay to 10oms.

C.2.4 DEecoDpING PERFORMANCE

In this section, we explain the reasons behind the ineffectiveness of controlling the service
process for eliminating queuing time by adjusting the bit rate. The decoding time of de-
coders mainly depends on the resolution of the streaming. However, due to the depen-
dency between frames, changing the resolution during the streaming will make the subse-
quent frames undecodeable and needs to request a new key frame for most codecs [87]. Yet,

since the frame size of key frames is usually several times ofthose of other frames [158], fre-
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Figure C.3: The correlation between the frame size and decoding delay for hardware decoders.

quently requesting key frames will impose additional overhead on the network and degrade
the users’ experiences.

Another straightforward solution is to try to accelerate the service process by reducing
the bit rate while maintaining the same resolution. With the same resolution and frame-
rate options, reducing the bit rate means lesser video data per video frame can carry. We
are to investigate whether sending video frames with smaller data sizes is helpful for decod-
ing acceleration. However, according to our measurements on the H.264 decoder, merely

changing the bit rate does not significantly reduce the decoding time.
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We measure the relationship between the frame size and decoding time of the dataset
described in §6.5.2. We first present the heat map in Figure C.3(a). With the variation of
frame size, the distribution of decoding time does not significantly change, where the de-
coding time of most frame sizes intensively falls around several milliseconds, as shown in
the red area at the top of the heat map. To eliminate the frame size variation under the same
target bit rate, we split the frame size into different intervals and present the cumulative dis-
tribution function (CDF) in Figure C.3(b). As the frame size become larger, the [128KB,
00) the line does not locate in the rightest area (higher decoding delay). And other frame
size interval’s CDF lines stay together, indicating that the lowering frame size does not help
for the decoding time acceleration.

Moreover, we split the dataset into four different categories (Table 6.1), to demonstrate
that reducing frame size will not help decode acceleration under various platforms. We
leverage the Pearson correlation coeflicient to illustrate the independence, which value of
zero can indicate that there is no association between the two variables [236]. Figure C.3(c)
shows that most of the Pearson’s r value is located around zero, indicating the poor associ-
ation between frame size and decoding delay. Therefore, controlling the service process of
encoding bit-rate cannot effectively reduce the decoding time and alleviate the load of the

decoder queue.

C.2.5 DECODER DEGRADATION

Because the queue overhead will be introduced by the mismatch of the rate of two sides of
the queue [133], if the decoding speed is not capable of processing the incoming default

Gofps, it will be necessary for AFR to change to a lower target frame rate. However, since
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Figure C.4: Decoder degradation when filtered with different thresholds for decoding delay.

the client and server are located distant, the frame-rate adjustment request to the server side
will need a control loop to take effect on the client side with the updated frame rate. So if
the AFR control loop is shorter than the decoder degradation duration, the decoder will be
capable of processing a higher incoming frame rate before the AFR requests take effect.

We measure the duration of the decoder degradation level over the traces introduced
in §6.5.2. As we can see in Figure C.4(a), for frames with a decoding time of more than
12ms, 50% of them last for more than 1o frames. Under 6ofps streaming, considering the
average of RTT is close to one frame interval of 16.7ms, and the 9o%ile encoder response
delay is less than three frames interval §6.6.4. In this case, lowering the frame rate will be
helpful for alleviating the decoder queue even under the control loop delay of AFR. There-
fore, AFR is capable of timely adjusting the frame rate to adapt to the decoder degradation.
Moreover, the AFR can significantly help alleviate the queue overhead under those frames
with a long period of decoder degradation and sustain queuing time for waiting for over-
head queue elimination.

We further measure the ratio of frames with different decoding delays and present the re-

sults in Figure C.4(b). Half of the user sessions suffer from a decoding delay of >12ms for
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at least 1%o frames. This also indicates that the degradation of decoding delay is a general

issue among all clients.

C.2.6 CoOMPONENT CORRELATION ANALYSIS

The streaming pipeline will be affected by many components, like the networking, decod-
ing, and queuing delays can both cause total delay increases to degenerate the user’s expe-
rience Appendix C.2.3. In this paper, we propose AFR to reduce the tail queuing delay by
matching the arrival rate of the decoder queue to the service rate (decoding speed). When
decoding delay increases to disable decode frames timely, the AFR will send a frame-rate
adjustment request from the client to the server. However, the request and subsequent
frames need to be transported through the network. Therefore, a straightforward question
is: does the increase of decoding delay affect the network delay to put an extra effect on the
AFR control loop? We will figure out this by measuring the independence of those compo-
nent delays.

We quantify the independence of different component delays with Pearson’s r value [236],
dynamic time warping (DTW) [61], and Cramer’s v value [90]. In short, all these metrics
demonstrate the poor association between networking and decoding delay, inclining that
we could decouple the network and decoder issues and independently control them.

Regarding the Pearson correlation coefficient, the value of zero can indicate that there
is no correlation between the two variables [236]. Figure C.s illustrates that for all four
categories in Table 6.1, the Pearson’s r value of networking and decoding are close to zero,

indicating a poor correlation between them.
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Figure C.6: Cramer’s V between different delay components.

Moreover, the different component delays might be correlated with each other across
frames. For example, the decoding delay could affect the subsequent queuing delay by its
incapacity to decode video frames timely. To measure the correlation across frames, we
leverage DT'W to calculate the optimal match between two-time series [61]. The DTW
algorithm is widely used in many scenarios like sign language recognition and time series
clustering [159, 204]. The optimal match calculation under DT'W is denoted by the match
with minimal cost, where the cost is computed as the sum of absolute differences, for each
matched pair of indices, between their values. Therefore, a larger DT'W distance can be

considered the mismatch between two series to a further extent. According to Figure C.s,
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the normalized DT'W distance of network delay to decoding delay under all four categories
is large, showing the lack of correlation between them.

The strength of the relationship can also be assessed by Cramer’s V value, which is a met-
ric based on the y*-test but normalized for different data sizes. It indicates how strongly
two categorical variables are associated [90]. A Cramer’s V value of < 0.1 can be inter-
preted as hardly correlated [72]. According to our measurement in Figure C.6, we can no-
tice that all the Cramer’s V values of networking and decoding delay are < 0.2, illustrating
the weak association between networking and decoding state. Therefore, according to our

measurements before, we can see the independence between networking and decoding de-

lay.
C.3 SIMULATOR IMPLEMENTATION

In this section, we introduce the implementation of our simulator. Specifically, traces are
recorded in the following format:

R(n) = [ts(”),r,([g,r(”) rfifc)ode] (C.1)

queune’

where #5(") is the arrival timestamp of the 7-th frame, 7,1, Zjueue> and Ty, are the round-
trip network delay, queuing delay, and decoding delay of that frame. The simulator reads
the traces frame-by-frame at specific timestamps and measures the current frame rate based
on the interarrival time as §6.4.2. The simulator then dequeues the head frame in the de-
coder queue when the decoder is available, where the decoding time of each frame is also

read from the trace.
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When the adaptive frame-rate decides to set the frame-rate to f,,,, the simulator first reads
the current control loop by the round-trip network delay of the current frame rf[j) . The
simulator then calculates the earliest frame 7 + £ that the new frame-rate f,,, will take in
effect:

k = argmin (ts(”+k) — 0 '2',(;,) > (C.2)
k

After that, based on the measurement of the current frame-rate f.,,, the simulator calculates
the slowdown factor 8 = f,,,/f.s» and reads the traces with a slowdowned speed. For exam-

ple, as shown in Figure C.7, When there are frames R(z+k+1) to R(z+4k+3) in the origi-
nal trace, the simulator reads the traces with indices R(z+4+§8), R(n+k+28), - - - . When
B is not integer, the simulator interpolates the traces with its neighbor frames (S(z + £ + 1)

and S(n + k£ + 2)).
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Figure C.9: The number of wasted frames when skipping frames instead of adjusting the frame rate
for AFR.

C.4 SUPPLEMENTARY EXPERIMENTS

C.4.1  AVERAGE DELAY

We further measure the average queuing delay and total delay for four traces and present
the results in Figure C.8. As we can see, the reduction of tail delay of AFR does not sacrifice
the average delay on all traces. In contrast, the average delay has also been slightly improved

against baselines, due to the improvements at the tail.

C.4.2 Frame Costs oF AFR wITH SKIPPING

Besides, as we discussed in §6.6.4, skipping frames without changing the frame rate from
the content generator (e.g., gaming application) would waste the rendering resources of the
server. For example, for high-quality RT'C, rendering at 6ofps would take approximately
one time more GPU resources than rendering at 3o0fps. Therefore, we measure how many
frames have been wasted (i.e., frame cost) if we merely skip the frames to approximate the

target frame rate without adapting the content generator.
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We present the results of all traces in Figure C.9. For all traces, adjusting the frame rate
could save 3% to 12% frame costs in all traces, saving considerable operating expenses for
the service provider since GPU is one of the highest expenses. For stuttered sessions (fol-

lowing the definition in §6.6.2), the saved frame cost would be even higher.

C.4.3 PARAMETER SENSITIVITY

Long-term control target (77,) We present the simulation results on the sensitivity of 17,
(in the stationary controller) on different traces in Figure C.10. As we discussed in §6.5.2,
alower IV results in a more aggressive queue control yet leads to the degradation of frame
rate. We vary 17 from o.25ms to 16ms and measure the interarrival time, queuing delay,
and total delay. By adjusting 7, operators could effectively balance the total delay and
frame rate. Therefore, operators could adjust 17 according to the preferences on total

delay and frame rate for different users and games.

EWMA discounting factors (£,,,, and &

serv

- ). We also vary the EWMA discounting fac-
tors (£,,,, for the arrival process and £, for the service process). Higher £indicates that
the EWMA focuses on the recent values more to capture changes, while a lower value in-
dicates more attention to the historical trends. As shown in Figure C.11, the performance

metrics (including the queuing delay, total delay, and frame rate) are relatively robust to

these two parameters. By varying £, and £,

. across several magnitudes, most metrics

change marginally. For example, the 99%ile of queuing delay changes by 4 X when varying
Wy (Figure C.10) while only changes by less than 15% when varying £, by three mag-

nitudes (Figure C.11). We also observe trends in varying £, and £, . Lower £, values
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Figure C.12: The system begins to control the queue after control-loop delay 7 and stabilize the
queue at 7.

will slightly improve the performance of AFR, implying that the long-term behavior of ar-
rival service is more critical. Higher £, also slightly improves the performance, indicating
focusing on recent decoding time is helpful. This is because we have already filtered out
outlier decoding time. Paying more attention to recent decoding time could make the AFR

quickly adjust the frame rate.

C.s CONVERGENCE ANALYSIS

Finally, we provide a detailed analysis of the convergence time during the state transitions
of the stationary controller. As introduced in §6.4.2, let the expectation of queuing delay

E(Tq,,m) = W), according to Eq. 6.1, we have:

U cﬁ + cf
oy s fry 1 —_— C-
©, P ( + W, y}) %, (C.3)

Then we can discuss the convergence time of the system. The convergence time here

refers to the time at which the stationary controller converges to a stationary state when
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the service process changes, and the potential accumulated queue during the transition is
drained up.

Specifically, without loss of generality, we discuss a simplified case shown in Figure C.12:
Both the arrival and service process have an average value of zero for # < 0, and the service
process changes from zero to one at# = 0. The arrival rate will gradually respond to the

change after a control loop of 7. We want to find the convergence time 7 where

To To
/ @, dr > / @, de (C.4)
0 0

In this case, the queue accumulated during the response to the arrival rate will be cleared.

We further illustrate the convergence in Figure C.12. By substituting Eq. C.3, we have:

To c+a, To
a S 1 .
/r (‘uﬂ— 2o (“5) dt>/0 dr (C.s)

From the measurement of EWMA in Eq. 6.5, we have

B=1-(-£)" (t>7) (o)

Therefore, lety =1 — f# to simplify the expression, we need to find the minimum 7§ such
that:

2 2
¢, tq

/ (=745 Za-pp2) > ()

By solving the integral in Eq. C.7, finally we have

&+ (yTO_f — 1)(;/T°_T —3)+2(Tp —7)Iny
2 2(yT=7—1) 4+ 27lny

Wy < (C.8)

For example, when set ¢z + ¢ = 2, we vary the other parameters in Eq. C.8 and present
the minimum 75 in Figure C.13. In the most general settings of AFR (7 = 1 since the av-

erage RTT is around 15ms, f# = 0.25 asintroduced in §6.5.2, ) = 2ms), the stationary
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Figure C.13: Contour plot of the convergence region of 7|, with different parameters.

controller can converge to the new stationary state within 2 frames. In other settings of the
AFR parameters, the stationary controller could also converge and drain the queue within

tens of frames, which is much less than the frame-rate adjustment interval of hundreds of

frames as evaluated in §6.6.2..
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Hairpin (§7)

D.1 MEASUREMENTS IN PRODUCTION

We present our measurement results on the cloud gaming service X in production to sup-
port some claims in the paper.
To investigate the effect of edge acceleration of interactive streaming in the wild, we con-

duct a measurement campaign on the cloud gaming service X. The measurements last
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Figure D.1: Network delay distributions of the interactive streaming service of company T. Delay
ratio is the ratio of frames with a delay of > 20, > 40, > 60,> 80 and > 100 ms in each
session. Note that the delay here is measured at the application layer (details in §7.4.2).

for one week with thousands of sessions (containing heterogeneous users through Ether-
net, WiFi with Windows and MacOS systems) and are presented in Fig. D.1. As shown in
Fig. D.1(a), the majority of network delay collected at the granularity of video frame falls
into 10-20ms for both Ethernet and WiFi. We also measure the flow-level delay ratio at
different thresholds and present the results in Fig. D.1(b). With the edge acceleration, the
ratio of frames with longer than rooms delay in most flows is less than 1072, Among them,
Ethernet flows perform slightly better than WiFi flows. This validates the effectiveness of
edge acceleration: the average network delay could be reduced to 10-20ms with a proper
edge acceleration.

We further measure the fluctuation of RT'T by the duration when RTT is roughly kept
at the same level. We quantify it by calculating the transmission chance (i.e., layer L) for the
RTT measured by each frame, and calculate the duration when the chance is kept the same.
For example, given a deadline of rooms in this paper, when the RTT measurements are

[26ms, 18ms, 17ms, 22ms, 17ms, 19ms, 19ms], the transmission chances are [3, 5, 5, 45 5, 5,
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Figure D.2: Distribution of network RTT maintenance duration in our interactive streaming service.

s]. In this case, the durations of each transmission chance are [1, 2, 1, 3], which are denoted
as RTT maintenance durations. We present the distribution of RT'T maintenance duration
measured in our cloud gaming service in Fig. D.2. The RT'T maintenance duration of Eth-
ernet is much longer than that of WiFi, indicating that Ethernet has a more stable end-to-
end delay. Meanwhile, the median duration of both Ethernet and WiFi is above hundreds
of milliseconds, which is much higher than the feedback loop of Hairpin. This indicates that
RTT does not frequently change, and Hairpin is able to detect and react to the fluctuations of

RTT.

D.2 OprtiMIZATION MODEL

In this section, we present the notations used in the Markov chain in §7.3.3. We further

present the detailed designs here.

D.2.1  OPTIMIZATION OF THE REDUNDANCY RATE

We build an absorbing Markov chain to model the redundancy and calculate the dead-

line miss rate considering retransmission, as shown in Fig. 7.6. We first define the staze in
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the Markov chain as (7, 7), where 7 is the number of unacknowledged packets within the
block, and 7 is the number of retransmission. For example, (dy, 0) represents the initial
transmission where all d; packets have not been received before (since it is the first time of
transmission). (3, 2) denotes that there are still 3 data packets that need to be retransmitted
for the second time.

We first calculate the transition probability between states in the Markov chain. For the
transition between state (71, 7) to (75, 7 — 1), we know that 7, data packets are lost in the 7-
th transmission and need to be transmitted for the (»+ 1) time. We first discuss the scenario
of n, > 0. We denote the total number of packet losses (including data and redundancy)
in the 7~th transmission as /(7;, 7). We denote the number of redundant packets in the 7-th
transmission as (7, 7). Since the packet losses of all packets should not be less than the
packet losses of data packets, we have /(71, 7) > n,. Meanwhile, since there are only (7, 7)
redundant packets in total, we have /(1,7) < ny + k(ny, 7). We also have (1, 7) >
k(n, r), otherwise the lost packets could be recovered with FEC. Therefore, the probability
of n, data packet losses under the condition of (7, » — 1) total packet losses follows the

hypergeometric distribution:

H(nyyny + k(ny, r — 1), ny,l(ny, 7))

W)/
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Thus, the transition probability from (7, 7) to (75, 7 — 1) is:

p((m,7) = (m2,r =1)) =

Z H(nyyny + k(ny,7), n1,L(n1, 7)) - P({(n1, r) losses)
l(nl,r)

On the other hand, at the loss rate of 2, losing /(7 7) packets in all 7, + k(ny, 7) packets

follows the Binomial distribution:

P(l(ny,7) losses) = Bi({(ny, 7); ny + k(ny,7),2) =

ny + k(ﬂlu V) al(nl,r) (1 . a)nl-i-/e(nl,r)—l(m,r)
Z(i’ll, }")

(D.3)

Therefore, by substituting Eq. D.1 and D.3 into Eq. D.2, we can have the transition proba-
bility for 7z, > 0. Similarly, when state transits from (7, 7) to (0, » — 1), then the number
of lost packets in the 7-th layer of Fig. 7.6 must be less than &(#;, 7). Therefore, the transi-

tion probability satisfies:
plm,7) = (0,7 = 1)) = 33007 Bi (i + k(m, 7). @) (D.4)

D.2.2 OrtiMIZATION OF BLOCK S1ZE

In the following analysis, we are going to compare the utility of transmitting the whole
frame for L chances, or splitting the frame into several blocks and some of them enjoying
L+1 chances. With that, we assume that the dispersion is less than one RTT.

Therefore, when the block size is set to d, there are /N7 blocks that could enjoy L+1

chances of transmission, and the remaining /N, blocks with L chances of transmission,
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where

N _ | PPL=(L+1)-RTT
e L /e J
F (D.s)
N = L_i-‘ — Niy

Therefore, the on-time delivery of the frame requires the on-time delivery of each block.
Since the deadline miss rate is equal to one minus the probability of on-time delivery, we

have the frame DMR (FDMR) given a certain block size d as:

1 — FDMR(d) = (1 — DMR(L +1,d))"**" - (1 — DMR(L,d))™
= FDMR(d) =1 — (1 — DMR(L +1,d))"**" - (1 — DMR(L,d))™ (D.6)

— Nyy1 - DMR(L +1,d) + N; - DMR(L, d)

where the last equation holds since DMR(L,d) < land (1 — 2)” =1 — na whena < 1.
As for the bandwidth cost, recalling Eq. 7.5, the number of extra packets of the frame is the
sum of the number of extra packets for each block. Since the BWC of each block shares the

same denominator (frame size §), the frame BWC is also the sum of BWC of each block:
FBWC(d) = Npyy - BWC(L+1,d) + N - BWC(L,d) (D.7)
Therefore, the optimal block size is:

d e = arg max utility (FDMR(d), FBWC(d)) (D.8)
d
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In our implementation, we iterate the possible block size B from 1 to the frame size
S, and store the optimal block size in each scenario in an offline lookup table. Since the
DMR(L, B) and BWC(L, B) are accessible in the absorbing Markov chain constructed

above, the construction of the table is time-efficient.

D.3 IMPLEMENTATION DETAILS

We are going to introduce the sending mechanism beneath Hairpin and the implementation

of the redundancy optimization in Hairpin.

Acknowledgement aggregation. In wireless networks, researchers also propose to aggre-
gate several acknowledgements at the client side to alleviate the uplink interference [163].
However, the delayed acknowledgement might also interfere with the measurements of
RTT, delay the detection of packet losses and waste potential chances of retransmission. In
our implementation, to eliminate the interference from acknowledgement mechanisms, we
disable the aggregation of acknowledgements. The precise measurement of RT T in the sce-
nario of aggregated acknowledgement could also be implemented with recent efforts such
as TACK [163], which is out of our scope.

Note that this is different from the aggregation on wireless routers [62]. Such aggre-
gations due to wireless channel competition should be reflected in our measurements of
network RTT fluctuations in Fig. 7.2. In our simulation with online measurements and

deployments in production, Hairpin behaves well even with the RT T fluctuations.

FEC codec. For the scenarios with a redundancy rate of <100%, we implement the FEC

codec as RS-FEC, as suggested by many other related efforts [220]. We refer the readers
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Figure D.3: Sensitivity of the measurement window in §7.3.4.

to [220] for the details of RS-FEC. However, when implementing the redundancy rate of
>100%, RS-FEC is not designed to reliably recover lost packets in all cases. For example,
when there are 2 data packets and 4 FEC packets, RS-FEC cannot always recover 2 data
packets when there are 4 packet losses due to the invertibility of the decoding matrix: it
depends on whether two packets received at the client are linearly independent at the gener-
ation matrix.

Therefore, we implement a customized FEC codec. For example, for data packets 2z and
b, when considering them as two numbers (with a length of up to 12kbits), we could cal-
culatez + b,a + 2b,2a + b, etc., and send them to the client. The only overhead is the
additional bits that could overflow from the addition, which is much less than the data
bits. Moreover, as shown in Fig. D.8, in most cases the redundancy rate is less than 100%.
Therefore, the overall decoding overhead is also acceptable. We leave the further adoption

of advanced FEC codec when the redundancy rate is >100% as our future work.
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Figure D.4: Average end-to-end delay of in the experiments in §7.4.3. We trim the lowest average
delay in different traces for comparison.

D.4 SUPPLEMENTARY EXPERIMENTS

Measurement window. We also evaluate the performance of Hairpin by adjusting the mea-
surement window of the network conditions that we discussed in §7.3.4. Since Hairpin op-
timizes the redundancy parameters based on real-time measurements of the network con-
ditions, the size of the measurement window might aftect the performance of Hairpin. We
vary the measurement window from the last 1 to 8 frames and reconduct the experiments
over WiFi traces. We measure the average and 95th percentile DMR and BWC, and present
the results in Fig. D.3. The DMR and BWC are quite robust: By varying the measurement
window from 1 to 8, the average DMR and average BWC vary within 0.47%-0.49% and
6.94%-7.19%, which is subordinate to the improvements in §7.4.3 (Fig. 7.8(b)). In prac-
tice, operators can decide the measurement window based on the fluctuations of network

conditions.

Per-frame latency of Hairpin. Besides, we also measure the average end-to-end delay for the

successfully delivered frames in the experiments in §7.4.3 for Hairpin and different baselines.
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Figure D.5: The distribution of the delivery time of each frame. Note that the y-axis is log-scaled.

As shown in Fig. D.4, the average end-to-end delay of Hairpin does increase compared to the
baseline with the lowest average delay. However, the increase is only o.1-1.5ms for all traces,
which is negligible compared with the RT'T (1%-7%), and considering the deadline effect
we discussed in §7.2.1. Furthermore, operators could also adopt less aggressive mappings
(e.g., increasing 1) to tradeoff between the tail delay and average delay.

We also present the distribution of the delay of each frame in Fig. D.s. Similar to Fig. D.4,
the average (median) latency of frames of Hairpin is similar to other baselines. However,
Hairpin could reduce the tail latency significantly. For example, Hairpin can reduce the 99.9th
percentile frame latency to 8oms while all baselines of longer than rooms. Looking at the
vertical axis, Hairpin is also capable of reducing the ratio of higher than rooms by more than

a half, as shown in Fig. 7.8(b).

Loss rates in each round. We further present the distributions of loss rates of all frames
in each round (specifically, initial transmission and the third retransmission) in Fig. D.6.
This expands the results in Fig. 7.13(b). We can tell from Fig. D.6(a) that due to the con-

servative redundancy strategy of Hairpin, the loss rate of Hairpin is higher. However, when
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Figure D.6: Distribution of loss rates by frame in each round of transmission.
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Figure D.7: Heuristic-based Hairpin (Hairpin-lin). The envelope of baselines is from Figure 7.8(b).

retransmission starts, Hairpin is able to maintain a low loss rate — which means a high success
rate in delivering frames — compared to other baselines. This shows the strategy of Hairpin:
conservatively adding FEC packets when deadline is far away, and aggressively adding FEC

packets to retransmissions.

The improvements of using Markov chain. As we analyzed in §7.3.2, a strawman solu-
tion is good but not enough to fully utilize the design space of redundancy and retransmis-
sion. Thus, we also evaluate the heuristic baseline we present in §7.3.1 (denoted as Hairpin-

lin, with sweeping the coefficient £ from o.5 to 4, and present the results in Figure D.7. As
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Figure D.8: Optimization results by Hairpin. Fig. D.8(a) to D.8(c) present the redundancy rate with
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