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Abstract

Interactive streaming requires minimizing stuttering events (or
deadline misses for video frames) to ensure seamless interaction
between users and applications. However, existing packet loss
recovery mechanisms uniformly optimize redundancy for initial
transmission and retransmission, which still could not satisfy the
delay requirements of interactive streaming, but also introduces
considerable bandwidth costs. Our insight is that in edge-based
interactive streaming, differentiating retransmissions on redun-
dancy settings can often achieve a low bandwidth cost and a low
deadline miss rate simultaneously. In this paper, we propose
Hairpin, a new packet loss recovery mechanism for edge-based
interactive streaming. Hairpin finds the optimal combination of
data packets, retransmissions, and redundant packets over mul-
tiple rounds of transmissions, which significantly reduces the
bandwidth cost while ensuring the end-to-end latency require-
ment. Experiments with production deployments demonstrate
that Hairpin can simultaneously reduce the bandwidth cost by
40% and the deadline miss rate by 32% on average in the wild
against state-of-the-art solutions.

1 Introduction

Edge-based interactive video streaming is coming to age.
Emerging interactive streaming services, such as cloud
gaming, has been attracting considerable attention from both
academic [24,128},44,/53./63]] and industrial communities [3,/8},9].
These services run applications (e.g., video games) on remote
servers, stream the contents (e.g., screens) to users, and interact
with users in real time. To provide a seamless interaction between
servers and users, the streaming needs to be delivered with low
latency. To reduce the network round-trip time (RTT) for inter-
active streaming, operators deploy servers on edge computing
nodes. For example, cloud gaming applications render gaming
scenes on remote servers and deliver these scenes to users over
the Internet, where these servers could be deployed near the users
to shorten the physical distance of the streaming. By deploying in-
teractive streaming services at the edge, the median network RTT
of these edge-based applications could be reduced to 10-20ms.
To provide a satisfactory user experience, controlling the ratio
of frames violating the latency requirement is critical for inter-
active streaming applications [56]). This is due to the continuous
interactions between users and applications: Interactive stream-
ing users will start to experience stutters when the end-to-end
delay is above 50-200ms (i.e., the deadline of delivering a frame).
However, even if only 0.1% of the frames stutter, users may
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Figure 1: An illustration of the design space of existing solutions and
Hairpin. By co-designing the redundancy and retransmission at the
transport layer, Hairpin is able to break the existing trade-off between
bandwidth cost and deadline miss rate.

experience stutters every one minute at a frame rate of 24fps.
Thus, to improve user experience, we need to reduce the ratio
of deadline misses in an interactive streaming service [57].

In this case, a major challenge to control the deadline misses
comes from the high instantaneous loss rate on the Internet. Due
to the spatial dependency within video frames and temporal
dependency between video frames, interactive streaming
expects packets to be reliably delivered [57]. However, from
our measurement of our edge-based cloud gaming service in
production with O(10,000) users, sessions can experience a
drastically high instantaneous loss rate. Although the average
loss rate is considerably low by mechanisms such as proper
rate control, our measurement observes that more than 2% of
video frames suffer from an instantaneous loss rate of 20% or
higher (§2.1). It indicates that those lost packets are concentrated
on a few frames. Thus, although the network RTT can be very
low with edge deployments, retransmissions of lost packets
take additional time and will consequently violate the deadline.
Thus, it is essential to optimize the loss recovery mechanisms
to control the deadline miss rate (DMR) of video frames.

Unfortunately, existing solutions to recover packet losses
cannot meet the stringent DMR requirements with a reasonable
bandwidth cost. As shown in Figure |1} one line of research
efforts (the vertical dimension) is devoted to quickly retrans-
mitting lost packets, such as probe timeout (PTO) [33]], from
the transport layer. However, merely retransmitting lost packets
cannot meet the requirement of interactive streaming — the
DMR is much higher than 0.1% (§4.3). Another line of effort
(the horizontal dimension) is devoted to adaptive forward error
correction (FEC) so that the client might be able to recover
packets based on redundant packets without retransmission [5].
Yet, redundancy-based solutions come with the price of a
considerable bandwidth cost of 20% or more due to the high
instantaneous loss rate. For content providers, such a high
bandwidth cost will drastically increase operating expenses and



degrade users’ video quality. To the best of our knowledge,
none of the existing solutions jointly optimized retransmission
and redundancy. Such an orthogonal design of redundancy and
retransmission, even when adopted together, still cannot meet
the needs of bandwidth cost and DMR for interactive streaming.

Our key insight is to break the trade-off by differentiating
retransmission packets. Edge-based interactive streaming ser-
vices can achieve an average RTT of 10-20ms between ap-
plication servers and users by deploying the servers on the
edge [27,/58L89]. In this case, limited times of retransmissions
(but not too many) are tolerable for applications that have a dead-
line of 50-200ms (§2.I). But the strategy for retransmission
packets must be different for the initial transmission packets.
The volume of retransmission packets is much less than initial
transmission packets since packet loss is always the minority.
Yet, retransmission packets have a much tighter time requirement
since they have already consumed time. This brings new changes
to reduce the bandwidth cost and the DMR at the same time
(§2.4). By differentiating the strategies for initial transmission
and retransmission packets, we can break the trade-off between
bandwidth cost and DMR, and improve the performance signifi-
cantly (§4.4).

We then propose Hairpirﬂ a new packet loss recovery mecha-
nism to jointly optimize packet retransmission and redundancy
for edge-based interactive streaming (§3.3). However, as later
elaborated in §3.2] to further analytically optimize the perfor-
mance, we still face the challenge of (1) the dependency of
decisions and future states, (2) the multi-dimensionality of de-
cisions, and (3) the convoluted goal of DMR and bandwidth
cost. In response, Hairpin further formulates the problem into a
Markov decision process (MDP), which is known for efficiently
optimizing the temporal dependency [79]. We then encodes the
decisions and states into nodes of MDP to reduce the complexity
and achieve the optimal result.

We conduct a week-long packet-level measurement campaign
on Tencent START cloud gaming service to motivate the design
of Hairpin (§2.3]and §2.4). We then implement Hairpin and
evaluate it with both trace-driven simulators and real-world
deployments in production (§4.1). Experiments demonstrate that
Hairpin could significantly push forward the Pareto frontier [/1]
by reducing the DMR by 67%-80% and achieve comparable
bandwidth costs simultaneously compared with state-of-the-art
baselines (§4.3). Preliminarily testing Hairpin in Tencent START
cloud gaming in production also shows significant and consistent
performance improvements in different types of networks (§4.7).
We will release the simulation codes of Hairpin.

Our main contributions are summarized as follows:

* We motivate the need for joint optimization of retransmission
and redundancy through the operating experiences of a
production edge-based interactive streaming service (§2).

* We present challenges in the joint optimization over retrans-
missions and redundancy for edge-based interactive streaming,

!In badminton, a hairpin shot is played when the shuttle is very near to the
ground and the net (the deadline of a shot) [76].

and then propose Hairpin with MDP formulation (§3).

* We implement and integrate Hairpin in a cloud gaming appli-
cation in production, and extensively evaluate its performance
with trace-driven simulation and real-world deployments (§4).

2 Background and Motivations

We introduce the interactive streaming (§2.1)), present our mea-
surement of packet losses (§2.2)), analyze why existing solutions
are insufficient (§2.3), and motivate the design of Hairpin (§2.4).

2.1 Interactive Video Streaming

Interactive streaming applications are increasingly attracting
interest in many scenarios. Examples include cloud gam-
ing [3}[8}[9], remote driving [2,54]], cloud phone / PC [[13}18|/39],
and regional videoconferencing [4], forming a considerable
market value of billions of dollars. Compared with legacy
live video streaming, with the intensive deployment on edge
nodes (or content generators in VR), the network delay over the
wide-area network could be reduced for interactive streaming
(e.g., an average RTT of 10-20ms [27,58}(89]). With the recent
emergence of the metaverse and so on, these interactive video
streaming applications are going to be increasingly dominant on
the Internet. Edge-based interactive streaming imposes specific
requirements on transport, as summarized below.

Stringent deadline requirements. Since interactive streaming
applications continuously interact with humans, controlling
end-to-end delay is critical for a seamless user experience. For
example, videoconferencing may expect an end-to-end delay of
<130ms for network [491/56]l, while cloud gaming would argue
for a latency of <96ms [SOH In practice, server- and client-side
processing usually take ~=30 ms [14,{42l/74,83|]. Therefore, the
end-to-end round-trip delay for the network should not exceed
50-150ms (depending on scenarios), which is the deadline
required by the application [111[75].

This also corroborates our measurement study with users
in our production cloud gaming service. We measure our
cloud gaming service in production for one week (details in
Appendix [A), with O(10,000) users every day, and collect a
variety of metrics. Unless other specified, the analysis using
online data in this paper is also from this measurement campaign.
We categorize the measured round-trip interaction delay of each
video frame into several intervals. We present the appearance
distribution of the position of those frames in a flow for each
category in Fig. 2l where the x-axis is the position of that frame in
a session normalized by the length of that session. Compared to
the uniform distribution of low-delay frames (solid lines), frames
with an end-to-end delay of >100ms (dashed lines) have a higher
probability to appear around the end of a flow. We hypothesize
that this is because users tend to exit a session if they have a high
end-to-end delay. User’s exiting behavior is a critical metric for
user’s experience in real-time video streaming [32]. In the mean-
time, setting a deadline for the delivery and reducing the fraction
of higher than that specific value has also been widely adopted

2Based on the statistics of the majority of people.
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*Note: Unless otherwise specified, all measurements in §E]and are
from the production in the wild (measurement details in §4.T).

in real-time video streaming [56}/57]. The similarity between
the 50ms and 100ms curve in Fig. [2}also indicates that, as long
as packets could be delivered within the deadline (~100ms in
this case), faster delivery barely improves the user’s experience.

Thus, we should minimize the deadline miss rate (DMR) to
enable a seamless experience for users in interactive streaming,
where in our cloud gaming service, the deadline for interaction
delay is around 100ms. For interactive streaming, it is essential
to minimize the occurrence of deadline misses for frames to an
ultra-low level. For example, even a DMR of 1073 still leads
to a poor experience every 1000 frames (17 seconds at 60 fps),
which drastically degrades the user’s experience [11].

Reliable delivery. Meanwhile, interactive streaming also
requires reliable delivery for each frame. For commercial video
codec, failing to deliver a part of the frame will lead to severe
image quality degradation. Moreover, the loss of one frame
would also lead to blurring for the subsequent frames due to
the dependency between framesﬂ Therefore, existing interactive

streaming services usually try their best to reliably deliver frames.

For example, industrial frameworks (e.g., WebRTC) [5/}46]
and academic efforts [22,140,|/61] propose to employ forward
error correction (FEC) to recover lost packets at the receiver if

possible, and will retransmit lost packets if the recovery fails [7].

Low bandwidth cost. The bandwidth cost is still one of the
largest operating expenses in our and other cloud gaming
service [17]. Moreover, to achieve a satisfactory user experience,
interactive streaming must stream with high video resolution and
frame rate (e.g., 60fps and >1080p for cloud gaming), which
requires high goodput to support. Given the requirements of low
operating expenses and high video quality for users, we need
to control the bandwidth cost in packet loss recovery.

2.2 Packet Losses in Edge-based Interactive Streaming

Our observation from our cloud gaming service is that although
the median loss rate is as low as 1073, the instantaneous loss rate
could be very high. In our measurement campaign as described
in §2.1] we also calculate the session-level loss rate, which is the
ratio of total lost packets in one user session (minutes to hours,
containing at least O(10,000) frames), to reflect the average

3Mechanisms such as scalable video coding (SVC) allow limited packet losses,
yet reduce the bandwidth efficiency and require client support [[70].

loss rate over a long timescale. We then calculate frame-level
loss rate, which is the ratio of lost packets within one frame
(tens of milliseconds), to show the instantaneous loss rate over
a short timescale. For example, if a session has 1M packets and
10 of them are lost, the session-level average loss rate is 0.01%.
Meanwhile, if these 10 packets belong to the same video frame
which has 50 packets in total, the frame-level instantaneous loss
rate will be 20% for that frame and 0% for other frames.

As shown in Fig. 3] the session-level loss rate is 0.05% at the
median, which is comparable to similar measurements [45]. How-
ever, the instantaneous frame-level loss rate could be very high:
2% frames lose more than 20% of their packets within one frame.
Such a high instantaneous packet loss poses a great challenge in
controlling the deadline miss rate to 10> or lower — we can no
longer ignore these transient behaviors and have to deliver video
frames in time even when the instantaneous loss rate is high.

Moreover, these packet losses cannot be easily mitigated by re-
ducing the sending rate. To achieve a low latency, most CCAs in
interactive streaming use delay as the signal to reduce the sending
rate (e.g., BBR [25], Copa [15], GCC [26]). In this case, conges-
tion losses rarely happen since the sending rate has already been
reduced based on an increasing delay in advance, which has also
been measured in related work [26]. Our online measurements
unveil similar observations: our cloud gaming service has already
adopted a delay-based CCA similar to GCC [26]], which is widely
deployed in interactive streaming applications such as Chrome
and Stadia. We further demonstrate the weak correlation between
RTTE] increases and packet losses in our measurement in §2.4, As
shown in Fig. 3| losses are still outstanding at the tail, indicating
that merely controlling the bit rate or frame rate is still insufficient
to avoid packet losses for edge-based interactive streaming.

2.3 Why Existing Solutions Fail?

As we discussed in §I] packet losses contribute a lot to deadline
misses. Thus, we investigate why existing packet loss recovery
mechanisms are insufficient for edge-based interactive streaming.
Existing solutions mainly fall into two categories as follows.

Retransmissions. Existing transport protocols (e.g., TCP)
rely on retransmissions to cope with packet losses. Merely
relying on retransmissions is insufficient to achieve an extremely
low DMR for interactive streaming frames at the magnitude
of 0.1% or lower. For example, when the packet loss rate is
instantaneously 20%, there would still be 0.16% packets lost
even after 3 retransmissions. Note that since there could be tens
to hundreds of packets per frame, being unable to deliver even
one packet would violate the deadline requirement of that frame
since interactive streaming requires all packets to be reliably
delivered (§2.1)). Thus, the DMR of frames is still considerably
high when relying on retransmissions and rate controls only. Our
evaluation in §4]also demonstrate the performance degradation.

Redundancy-based algorithms. There are also several solutions

“In this paper, we use RTT to represent the delay at the network layer that does
not contain the time of retransmission. We use application delay to refer to the
delay at the application layer that contains the retransmissions.
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Figure 4: RTT distributions measured in production, categorized by
the frame-level loss rate. Note that retransmissions are not counted.

in interactive streaming with redundancy mechanisms such as
FEC. However, existing adaptive FEC solutions from both the
industry [5146] and academia [22]/40}/61] optimize the FEC pa-
rameters only for the initial transmission. They adjust the number
of FEC packets according to loss rate and retransmit packets as
usual when packet loss occurs. Note that packet losses are not de-
terministic: when the transient loss probability increases to 20%,
it does not mean precisely one packet loss every five packets. In
this case, to achieve an extremely low DMR of 1073 or lower,
FEC rates need to be much higher than the loss rate, leading to se-
vere bandwidth cost (§E]). For example, WebRTC, a state-of-the-
art interactive streaming framework, will send 100% redundant
packets during this short timescale of high instantaneous loss rate
for initial transmissions. In this case, there will be considerable
bandwidth cost while the DMR might still not be satisfied. We
further evaluate the performance of other baselines in §4.7]

2.4 Motivations

Therefore, with the reduced RTT, retransmissions are tolerable to
some extent for edge-based interactive streaming. In this case, we
have the following observations on how and what to retransmit.

RTT being much lower than the deadline enables the joint
optimization of redundancy and retransmission. As we
discussed before, with an RTT of 10-20 ms and a deadline
of 50-150 ms, multiple retransmissions are tolerable to some
extent. This enables the joint optimization of redundancy and
retransmission, which results in benefits in two folds:

* Reduce the deadline miss rate. In existing FEC mechanisms,
many of the deadline misses come from the packet losses in
the retransmissions. When adding redundancy packets over re-
transmission packets, we could effectively avoid the loss of re-
transmission packets and further reduce the deadline miss rate.

e Save bandwidth costs. To achieve the same DMR, the
bandwidth cost of adding redundancy to retransmissions is
significantly lower than that of only adding redundancy to
initial transmissions. This is because retransmission packets
are always the minority in bandwidth consumption — redun-
difying retransmissions will only introduce a little bandwidth
cost, but could have significant DMR improvements.

When more rounds of retransmissions are tolerated (e.g., with
smaller RTTs), the joint optimization will have more significant
benefits (later presented in §4.5). We are thus motivated to utilize
the retransmission chances enabled by edge deployments and
jointly optimize the redundancy and retransmission mechanisms.
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Loss recovery adaptions at the server are possible. Dynam-
ically optimizing the tail cases of high instantaneous loss rate
needs quick adaption. According to our measurement, the
feedback loop between the server and client is smaller than the du-
ration of loss events, making the joint optimization of redundancy
and retransmission practical. This comes in two folds:

* The feedback loop does not inflate with the increase in the loss
rate. We measure the RTT of our cloud gaming service and cat-
egorize them into different frame loss rate intervals. As shown
in Fig. @), the distribution of RTT does not significantly vary
with the frame loss rate. The RTT in WiFi increases with the
increase of frame loss rate (e.g., due to retransmissions at the
link layer [31]]). Nevertheless, even when the frame-level loss
rate is 30% (the dashed green curve in Fig. b)), 60% of those
acknowledged packets have an RTT of less than 25ms. This
indicates (i) the server is able to quickly detect the network
condition changes, and (ii) there are still multiple transmission
chances when the instantaneous loss rate increases.

* The duration of loss events is transient but still longer than
several feedback loops. We measure the duration of lossy
frames in our cloud gaming service and present the results
in Fig.[5] According to our measurements, most loss events
span multiple RTTs. For example, 70% of frames with a
frame-level loss rate of >10% will last more than 2 frames
in Ethernet sessions, which is several times the median RTT
(12ms) at the frame rate of 60fps. Therefore, the reaction
from the server is still effective to alleviate packet losses by
adjusting the redundancy parameters.

3 Hairpin Optimizer
As we discussed above, edge-based interactive streaming needs
to reduce the deadline miss rate and bandwidth cost. For clarity,

we first present the formula of frame deadline miss rate (DMR)
and bandwidth cost (BWC):

#Frames arrive after the deadline

#Total frames
Redundancypye + Retransmissionyy,,

DMR=

0

BWC=

Datapye
A higher DMR or BWC means more frequent stutters or higher
operating expenses respectively, both of which interactive
streaming service providers will try to avoid. Note that pushing



DMR to an extremely low level is critical since the lower it is,
the better user’s experience is going to be.

In this section, we first summarize some intuitions in the
design space of joint optimization of redundancy rate and
retransmission and present a strawman solution (§3.1). We then
present the design challenges in the joint optimization of retrans-
mission and redundancy (§3.2). We address these challenges
by providing a Markov chain-based optimization algorithm to
efficiently improve both the DMR and BWC (§3.3). We finally
discuss how Hairpin handles the inaccuracy in measurement, the
overhead in online deployment, and other practical issues in

3.1 Basic Idea and Strawman Solution

Differentiating retransmissions from initial transmissions.
The most important insight in this paper is to understand the
significance of differentiating retransmissions from initial trans-
missions. In other words, we want an adaptive redundancy rate
based on the planning of multiple transmission chances. The
short RTT of edge-based interactive streaming enables packets
to have more than one transmission chance without violating
the deadline. The ratio of RTT and remaining time ¢ indicates
the potential number of (re)transmissions. For example, when
the current RTT is 20ms and packets still have 40ms towards
their deadline, the ratio follows R}—T = ggzi =2, indicating that
these packets could be approximately transmitted twice before
the deadline. Packets with more transmission chances could bet-
ter utilize the potential retransmissions to deliver packets before
the deadline, which has already been discussed in There-
fore, our basic idea is to take future transmission chances into
consideration when optimizing the redundancy rate. When one
batch of packets has more foreseeable transmission chances (i.e.,
the deadline is still far away), we could reduce the redundancy
rate to save bandwidth costs. When the remaining time of these
packets is getting closer to the deadline due to retransmissions,
we could further increase the redundancy rate to avoid deadline
misses.

Strawman solution: RTT-aware adaptive FEC algorithm.
Therefore, a strawman solution is to (i) add redundancy to
both initial transmissions and retransmissions, and (ii) consider
the remaining transmission chance in the optimization of the
redundancy rate. Since there have already been existing solutions
on the redundancy rate based on network conditions [5,[22,/61],
we could introduce a multiplier controlled by the transmission
chance over the existing redundancy rate optimizations, i.e. a
strawman solution is to reduce the redundancy rate when there
are many transmission chances, and increase it when transmis-
sion chances are few. Thus, we could enhance these algorithms
by introducing a factor over the results from existing algorithms.

FEC consists of two parameters (d k), where d data packets
and k redundant packets are sent as a block. Block is composed
to the convenience of FEC encoding. If there are up to k packets
lost in an FEC block (d k), an ideal FEC decoder can recover all
data packets with any remaining packets [64,/65,85|]. We denote
B= 5 as the FEC redundancy rate, and d as the FEC block size.

Specifically, given a packet loss rate & and bitrate B, assume
one of the state-of-the-art solutions has already determined that
Po(a,B) should be the optimized redundancy. We could then
increase or decrease the redundancy rate fy(ot,B) based on the
remaining transmission chance R}—T, ie.

B(a.BRIT)=k" " fy(aB) @

where k is a coefficient to adjust how aggressive the strawman
solution is going to increase or decrease the redundancy rate.

In fact, according to our evaluation in @ such a strawman
solution is enough to push the Pareto frontier of DMR-BWC
forward. However, it confronts a series of shortcomings, which
prevents the operator from further improvements in performance.
We will elaborate on these challenges in the following section.

3.2 Design Challenges

Although we have presented a heuristic RTT-aware adaptive
FEC algorithm as above, it is still challenging to optimize these
parameters due to the following reasons.

Temporal dependency: cascading decision-making between
transmission rounds. When considering multiple transmission
chances, the decision of FEC parameters of one round of
transmission would cascadingly affect the optimization of
the next round. For example, if we aggressively add a high
redundancy rate to a group of packets, the number of packet
losses will then be decreased. On the contrary, a low redundancy
rate for the same group of packets would probabilistically
increase the number of packet losses under the same network
condition. However, these packet losses bring more packets
to retransmit in the next round. If we consider all actions for
F packets for the foreseeable L rounds of transmission, the
action space will be extremely large: Since for each redundancy
decision, there are F' possible scenarios of the number of packets
to transmit in the next round (depending on how many packets
are lost), the number of variables that we need to optimize will be
O(F L)E] Therefore, in the enlarged action space over multiple re-
transmissions, it is challenging to efficiently optimize. Moreover,
the conditional probability between scenarios is not linear (e.g.,
hypergeometric for individually independently and identically
distributed losses). Therefore, using traditional optimization
methods such as integer programming in an extremely large
action space is impractical. We need to coordinate the choices in
different rounds of transmission to achieve optimal performance.

Spatial dependency: redundancy rate and block size are
tightly coupled. Even in a single round, different variables
(e.g., redundancy rate, block size, etc.) still have complicated
dependencies on each other. This goes to the following aspects:

(a) Number of packets to transmit in one round affects redun-
dancy rates. The number of packets to transmit in the different
rounds is varying, depending on how many data packets are lost

SFor a frame with 50 packets (F'=50), and 5 potential transmission rounds (L=5,
e.g., RTT is 20ms and deadline is 100ms), this turns into 108 variables.
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during the last transmission. The penalty of redundancy rate on
BWC also varies according to the number of packets to retrans-
mit. For example, when there are few packets to retransmit, even
adding a redundancy rate of 100% for retransmissions would
not consume too much bandwidth, as also discussed in §2.4]
Therefore, fewer data packets to retransmit would encourage a
more aggressive redundancy rate. The strawman solution is not
aware of the dependency here, leading to its suboptimal result.

(b) Dispersion of blocks might lead to deadline misses when
using larger blocks. Due to the bandwidth limit at the bottleneck
link, packets sent out at the same time could be dispersed [47]]
and arrive at the receiver one by one. In this case, constructing
large blocks will increase the delay to wait for all packets
at the receiver. Since packet losses can only be determined
after the completion of one block, smaller blocks may know
earlier whether they need retransmission and enjoy additional
transmission chances before the deadline. For example, in Fig. [}
due to the early determination of packet loss, the retransmission
of data packets for small blocks could arrive at the receiver
before the deadline, while no packets could arrive before the
deadline for large blocks. We quantify the influence of block size
by measuring the receiving time of FEC blocks from our service
online with different block sizes. As we can see in Fig.[7]and[7(b)]
with a block size of 50 packets, more than 10% blocks could span
10m:s at the receiver, which is even comparable to the RTT. Also,
smaller block sizes might also be beneficial when the loss rate
is higher than the redundancy rate. As illustrated in Fig.[6] when
the first four packets are lost during the transmission, data packet
#3 could still be successfully delivered for a small block size (the
case above in Fig.[6). For large blocks, there is no way to recover
any lost packet if the loss rate is larger than the redundancy rate.

Convoluted goal: deadline miss rate and bandwidth cost. Un-
like latency or throughput which we can directly measure, the es-
timation of the expected deadline miss rate needs to consider mul-
tiple potential rounds of transmission. In this way, the strawman

solution, without explicitly estimating whether that frame is go-
ing to miss the deadline or not, will have suboptimal results. For
example, the relationship between the packet loss rate and the suc-
cess rate of delivering a video frame with tens of packets in a sin-
gle round is hypergeometric, even under the identical and indepen-
dent distribution (i.i.d.) assumption. Considering multiple future
rounds together will only make the relationship between deadline
miss rate and network conditions more convoluted. Moreover,
some applications or even the same application in different oper-
ating regions may have different preferences over deadline miss
rate v.s. bandwidth cost. The traffic cost in some regions might be
higher than in another, and some applications may give it all for
the user’s experience while others may not. Therefore, we need to
explicitly optimize towards the goal to achieve the optimal result.

3.3 Model Formulation and Optimization
We have the following designs to address the challenges above.

Encode the temporal dependency in multi-round planning
into edges in Markov chain. Markov chain is widely used
in the optimization of the sequential decision-making process
(e.g., reinforcement learning [79]). With the Markov chain,
we can formulate the loss detection between two rounds of
(re)transmission into the transition between two Markov nodes.
In this case, by only focusing on the optimal parameters between
the transition of the current state and its potential states in the
next round, we could decouple the cascading effects of the
transitions between neighbor nodes, which reduces the action
space significantly. We further show in Appendix that, in
such a Markov chain, locally focusing on the neighbor nodes
could still have globally optimal results.

Encoding the spatial dependency between variables into
nodes in Markov chain. To ensure the number of packets
to transmit is considered in the optimization, we build a 2-D
Markov chain, with two dimensions as the transmission chance
and the number of packets to transmit. We present the state
transition of our Markov chain in Fig.[8| Each node is represented
by (d,l), where d denotes the number of remaining data packets
to transmit, and / represents the remaining transmission chance
for those packets. Our goal is to find out the optimal redundancy
rate for node (B,L), where B is a given block size, and L is the
remaining transmission chance from Eq.|3| In this case, both the
temporal dependency and spatial correlation between variables
could be formulated into this 2-D Markov chain.

Explicitly optimize deadline miss rate and bandwidth cost
with Markov chain formulation. We finally provide an explicit
expression of the deadline miss rate and bandwidth cost for multi-
round optimization within the formulation of MDP. We inversely
calculate the DMR and BWC at different states from the last
chance to transmit (as the last layer of the Markov chain), to the
first chance to transmit (as the first layer of the Markov chain).
In this way, the transition probabilities between states could be
directly iterated. We further decouple the optimization of redun-
dancy rate and block size to improve the optimization efficiency.
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We present the analytical model and the algorithm below. In
interactive streaming, frames are continuously generated and
sent out from the server. There are thousands to millions of
frames within one stream, depending on the specific application,
where the retransmission of previous frames overlaps with the
transmission of subsequent frames. Therefore, similar to the
finite element analysis in mechanics [10]], we pick one frame
from the stream, and analyze the expected DMR and BWC of
that frame. The expected DMR and BWC of one frame should
be consistent with the DMR and BWC of a stream. We list all
notations that will use in Table [2]in Appendix [B.1] Specifically,
Hairpin optimizes the FEC parameters as follows:

Step 1: Calculating remaining transmission chance. Given
current network RTT, the remaining time towards deadline 7',
the bottleneck bandwidth ®, and a certain block size d, the
remaining transmission chance L could be calculated as:

,_T—d/®
RTT

(©)

Step 2: Generating absorbing Markov chain. We then
calculate the optimal redundancy rate given the current loss
rate ¢ and frame size F. We iteratively calculate the absorbing
Markov chain from layer / — 1 to layer I. For the node (d,/),
at a certain redundancy rate f3,we respectively calculate the
DMR(d,l;3) and BWC(d,1;3) based on the DMR and BWC
from the / — 1-th layer. We leave the detailed equations to
Appendix [B.1} Then, we calculate the optimal S for (d,l):

Bop:(d )= argming utility(DMR(d.1;3),BWC(d [;3)) “4)

Here, utility(DMR, BWC) is the utility function to balance
preference for low DMR and low BWC. For simplicity, we adopt
a linear combination of DMR and BWC as the optimization goal:

utility(DMR BWC) =DMR+\.-BWC )

Note that Hairpin does not fall into the same trade-off between
DMR and BWC as baselines, but improves both DMR and BWC,
as we will evaluate later in §4.3] In practice, service providers
can adjust the coefficient A to balance stuttering events and
bandwidth costs in different scenarios. A lower A indicates that
users prefer the deadline miss rate more than bandwidth costs. We
also evaluate performance with different utility functions in §4.3]

Few packets in RTX: no major difference
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Figure 9: A theoretical illustration of the failure rate of retransmitting
different numbers of packets by per-packet duplication or constructing
FEC blocks. The failure rate of DUP increases with the number of
packets to retransmit, since we need to ensure every data packet is

delivered. We vary the redundancy rate and loss rate.

Therefore, the redundancy rate for (B,L) could be optimized
accordingly. After calculating all nodes at the layer I/, we could
then calculate the DMR and BWC at the layer /41, until the node
(B,L) has been calculated. Since the iterations between nodes
are linear, as long as the utility function is monotonic to DMR
and BWC (e.g., linear relationship), the optimality still holds.

We set DMR(d,0) to 1 for d > 0 since one missed packet
would lead to the miss of the block (shaded green). We also set
all DMR(0,1) to 0 since there is no remaining packet to transmit.
The BWC for all these boundary nodes is set to 0. Note that
different block sizes and remaining transmission chance could
multiplex the same chain to accelerate the optimization, since
the chain only depends on loss rate ¢ and frame size F.

Step 3: Calculating optimal block size. We enumerate the
possible block sizes from 1 to the frame size, calculate the DMR
and BWC for each block according to the chain in Step 2, and
finally find the optimal block size in terms of a given utility
function. We leave the mathematical details to Appendix [B.2}
According to our evaluation in §4.6] not surprisingly, when the
bottleneck bandwidth is high (i.e., the dispersion is insignificant),
the optimal block size for most scenarios is the frame size.
Nevertheless, when the dispersion is significant, constructing
smaller blocks could achieve better DMR. Operators could
optimize the block size for improvements at the last mile.

During the optimization of block sizes, we also optimize the
trade-off of when a loss has been detected, whether to retransmit
that packet as soon as possible or wait for other packets to for-
mulate an FEC block. On recovery ability, constructing several
lost packets into one FEC block might be more effective than
individually retransmitting (or duplicating, if with redundancy)
each packet. We calculate the failure rate of delivering these
packets when there are different numbers of packets to retransmit
at different redundancy rates and loss rates and present the results
in Fig.[0] When there are few packets that need retransmission,
whether duplicating or constructing FEC blocks has no major
difference (dashed line and solid lines shaded green). However,
when optimizing at the tail for interactive streaming, there could
be multiple packet losses within one frame. Therefore, consid-
ering each frame could contain tens of packets, it is possible to
suffer losses of 4 packets or more at the tail. Constructing FEC
blocks for these retransmission packets could reduce the failure
rate of delivering packets by several magnitudes.



Step 4: Getting the optimal parameters. Finally, based on
network conditions and remaining time towards a deadline,
Hairpin can calculate the optimal block size based on Step 3, and
the optimal redundancy rate with the block size based on Step 2.

3.4 Deployment Discussions

In §3| we analytically optimize the FEC parameters given certain
network conditions. The reality might be more complicated than
the theoretical model. In this section, we discuss several practical
concerns of Hairpin based on our operational experiences. Our
further trace-driven simulation and deployments in production
in §4 also demonstrate the effectiveness of Hairpin in the wild.

Reducing computational overhead online. Hairpin adopts
an optimization-based algorithm, which might not scale to
production-scale deployments in terms of computational
overhead. Since the optimization needs to run frequently
(approximately every frame) and scale to tens of thousands of
users simultaneously, it should be computation-efficient and
time-efficient. In response, we do an offline step of enumerating
the state space and solving each specific instance. Then, in
the online step, the algorithm will be reduced to a simple table
lookup towards pre-computed optimized redundancy parameters.
We enumerate the state space of Hairpin as below.
1. Remaining transmission chance: 1 to 10.
2. Loss rate: 0% to 50% with quantization of 1%.
3. Frame size: 5 to 60 packets with quantization of 5 packets.
4. Number of packets to (re)transmit: 5 to 60 packets with
quantization of 5 packets.
Hairpin then stores the best redundancy rate and block size
under different conditions. We found that the benefits of finer
quantization are marginal. Our further evaluation in the real
world in shows that the memory consumption (2MB) and
table lookup time are negligible for online deployment.

Handling network fluctuations. We discuss how Hairpin
handles the fluctuations in network conditions. For RTT, as
presented in Fig. 4] RTT does not increase too much — the
median RTT always allows Hairpin to have 3-5 transmission
chances no matter the loss rate. Moreover, we further measure
the network conditions in Hairpin with a short sliding window
to make sure Hairpin has the most recent network conditions.
We set the measurement window to 2 frames and evaluate the
sensitivity of this parameter in §4.3] In this case, the transient
fluctuation of RTT could be reflected in the optimization results
immediately. We later demonstrate in §4]that Hairpin behaves
well with real-world traces and production deployments.

Handling various loss patterns. In this paper, when given a
certain loss rate, Hairpin assumes the pattern of packet losses
is identically and independently distributed (in the transition
probability of Eq. [6). Note that the duration of a certain loss
rate still follows the results of the online measurement in Fig. [5}
In practical deployment, working with FEC codecs that could
recover from different loss patterns (bursty or arbitrary) [65]],
Hairpin could also handle different loss patterns since Hairpin
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Figure 10: Overview of Hairpin implementation.

only focuses on how many packets within a block are lost. Since
our data is collected frame by frame, if the burstiness spans over
several frames, it will be directly reflected on the value of loss
rates. If the burstiness spans within the frame, no matter how
the pattern changes, the number of lost packets will not change,
which does not affect the recovery efficiency of the FEC codec.
For example, when there are 4 packet losses in one block, no
matter whether these losses are consecutive or separated in the
block, as long as there are 4 additional FEC packets in the same
FEC block, the client would be able to recover these packet losses.
Therefore, Hairpin does not rely on the assumption of underlying
loss patterns, but only focuses on the number of lost packets.
Packet losses might be consecutive across several frames. In this
case, due to the short feedback loop enabled by edge deployments,
Hairpin should have already timely reacted as analyzed in

4 Evaluation

We introduce the implementations in and experiment
settings in We further answer the following questions:

* How does Hairpin perform under real-world traces? We
demonstrate that Hairpin could push forward the Pareto
frontier of baselines on DMR and BWC (§4.3).

* Is Hairpin sensitive to the settings of parameters? We
investigate the performance variation of Hairpin with
different parameters, and demonstrate that Hairpin has
performance improvements in a wide range (§4.5).

* Which design in Hairpin contributes to the performance
improvement against other baselines? In §4.4] we break down
the performance improvements of Hairpin.

» How does Hairpin make decisions and how each optimization
affects the user’s experience? We further dive into the details
of Hairpin’s design in

* How does Hairpin perform well in the wild? Finally, we de-
ploy Hairpin in production servers and find that Hairpin signif-
icantly improves both DMR and BWC in the real world (§4.7).

4.1 Hairpin Implementation

We implement Hairpin in both an ns3-based WebRTC
simulator [88]] and our cloud gaming application in production.
We present the workflow of Hairpin in the network stack in
Fig.|10l Without Hairpin, interactive contents are first encoded
with Video Encoder by the application, and then sent out
at the transport layer frame-by-frame. Then the video frames
could be received by the protocol stack at the client. Packet
Sender and Packet Receiver abstract the network stack
at the transport layer for connection management. After that,
Video Decoder decodes the streaming contents and displays
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Figure 11: Trace-driven simulation. The blue dashed line is the envelope of all baselines on the Pareto frontier.

them to users. Meanwhile, network conditions (e.g., RTT, packet
loss events) will be measured at the server, collected by the
Statistics Collector, and reported to Rate Controller
to adaptively adjust the streaming bit-rate according to network
conditions [26]]. Hairpin inserts between the existing application
layer and transport layer, and optimizes the redundancy
parameters based on current network conditions, as shown in
Fig. The network statistics is still passed to the congestion
controller (rate controller) without modification. The underlying
transport protocol in our cloud gaming service is a customized
version of the RTP protocol [69]] based on UDP to allow the
loss of redundant packets without modifying the kernel at the
client. We implement Reed-Solomon FEC due to its recovery
performance when the redundancy rate is <100% [|65]], and
implement a customized FEC codec for the redundancy rate of
>100%. Note that Hairpin could also work with other codecs
(e.g., XORFEC, FlexFEC, etc.) as long as their parameters are
exposed to Hairpin. We discuss FEC codecs in Appendix [C|

4.2 Experiment Setup

Traces. As for simulation traces, we collect a dataset in one
production server in the wild on our cloud gaming service in two
weeks in January and August 2021, resulting in more than 100M
video frames and more than 600 hours of playtime. This also
supports our measurements in §2|and Users access the ser-
vice via either Ethernet, WiFi, or cellular connection, which we
collect from our cloud gaming client. The cloud gaming service
streams at the frame rate of 60fps and the bit rate ranging from
2Mbps to 30Mbps. The network conditions are recorded on the
server of our cloud gaming service, including the average RTT,
average bit rate, and loss rate at the frame level (approximately
every 16 ms). The traces contain 1,995 Ethernet gaming sessions,
741 WiFi sessions, and 572 cellular sessions in total, each lasting
from minutes to hours. To the best of our knowledge, we are
the first to collect online traces from an interactive streaming
service for weeks at both the frame level and packet level.

Baselines. We orthogonally review the public adaptive FEC

mechanisms and retransmission mechanisms with deployments

in practice. On the axis of retransmission optimization, we

implement the following baselines.

* Qut-of-order. Traditionally, packet losses are detected by
checking the out-of-order packets, such as TCP duplicated
ACK [21]. We use it as our default loss detection mechanism.

* Probe timeout (PTO). Besides, to quickly detect packet
losses of tail packets, recent researchers also propose an
aggressive timeout-based loss detection mechanism [33].

On the axis of redundancy parameter optimization, we implement
the following mechanisms:

* WebRTCry4 comes from the research paper published by
Google in 2014 [46].

WebRTCyow is the adaptive FEC mechanism used in
WebRTC now (adopted by Google Stadia [35], Meet [23]],
etc.), replacing the WebRTC/4. The difference is that
WebRTCy4 is aware of RTT and will reduce the redundancy
rate when RTT is low, while WebRTCyow is more aggressive
on adding redundancy. We migrate the implementation of the
m88 version of Chromium released in December 2020 [7]].
Bolot [22] and USF [61]] are two heuristic adaptive FEC
algorithms from the research community. Unlike Hairpin,
they do not add redundant packets for retransmissions.

* RTX adds no redundancy, but fully relies on retransmissions.
Note that none of these baselines optimize the redundancy
for retransmissions here. Since these two lines of work are
orthogonal to each other, we combinatorially implement
2 (retransmission) X 5 (redundancy) = 10 baselines.

Hairpin Setup. In our simulation, we set the coefficient in the
utility function in Eq. to A =10"*, the measurement window
of network conditions to 2 frames, and the deadline to 100ms.
We evaluate the sensitivity of these parameter settings in §4.5]

4.3 Trace-driven Simulations

To evaluate the performance of Hairpin in dynamic network
conditions, we simulate Hairpin over real-world traces as
introduced in §4.2} We emulate the collected traces of loss
rate and RTT with ns-3, and evaluate whether Hairpin could
capture the network dynamics of loss and RTT variations and
effectively adapt in real traces. We first present the trade-off
between DMR and BWC over three sets of traces in Fig.
As shown in Figure[TI] RTX has the lowest bandwidth cost
since RTX only retransmits a packet after it is lost. However,
it also has the highest deadline miss rate among all baselines.
Meanwhile, WebRTCyow working with PTO has the lowest
DMR among all baselines but also the highest BWC. Other
baselines stay on the Pareto frontier in the trade-off between
DMR and BWC. In contrast, Hairpin could break the trade-off



= A N < \

s A\a V& Sl e

%] 7 = %] =z

S6 %r \\;& 86)\10\00/0 0/‘/ "B

£ e = b 309

5 4 Hairpin A\ \ E 4 o KH 30/0200/0{1/

& i A=10"1airp;

E 2 %?;S'/ -f% 2 7 pnFlXedRTX

0 5 101520 2530 0 5 10 15 20 25 30

Deadline Miss Rate (1/10k)

Figure 12: Breaking down the
performance improvements of
Hairpin.

Deadline Miss Rate (1/10k)
Figure 13: Parameter sensitivity of
A in Hairpin, and the effectiveness
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and achieve a much better DMR and BWC, as the red stars
denoted in Figure 67%-80% lower than the lowest DMR
(WebRTCyow), and comparable BWC as RTX. Thus, as we
analyzed above, Hairpin could effectively improve both DMR
and BWC significantly compared with all other baselines.

Note that the traces here are collected from our production
servers, including the network RTT and instantaneous loss rate,
with a fined granularity of every 16ms. The results in WiFi
traces are worse than in Ethernet traces since WiFi traces have
higher loss rates and RTTs, as measured in Results over
cellular traces are surprisingly good. This is because, during our
online measurements, we just started to provide cloud gaming
service for cellular users and had admission control over network
conditions during that time. In all, Hairpin could significantly
push forward the Pareto frontier of existing baselines in all traces.

44 Performance Breakdown

As discussed before, the performance improvement of Hairpin
comes from two aspects: a carefully crafted optimization model,
and the design space of differentiating retransmissions from
initial transmissions. To investigate the contribution of these two
components, we set up another candidate: HairpinSame. Hair-
pinSame adopts the same Markov Chain-based model as Hairpin,
but enforces the redundancy rate of all rounds to be the same.
We further sweep the choice of A from{10_4,10_2,10_1,1,5,10}
for HairpinSame to show the trade-off between bandwidth cost
and deadline miss rate in this non-differentiating scenario. We
also present the envelope of all baselines from Figure as
the blue dashed line in Figure

As shown in Figure|12] even without differentiating retrans-
missions, HairpinSame is still able to significantly push the
frontier forward. For example, when the bandwidth cost is 4.5%,
Hairpin is able to reduce the deadline miss rate from to 0.28%
to 0.17%, as shown in the gap between the purple solid line and
blue dashed line. We are not going to argue that the proposed
Markov chain algorithm outperforms all the baselines due to the
optimization algorithm. We hypothesize that the improvement
is due to the change of the optimization goal. Previous baselines
focus on the optimization of tail latency, which is different
from deadline miss rate as discussed in §2 In fact, we further
present the latency distribution of Hairpin and all baselines in
Appendix D] (Figure 22)), and the results of Hairpin and baselines
are comparable for most percentiles below the 99.9th. Therefore,
with the focus mostly on the extreme tails after the 99.9th per-
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Figure 14: The performance of Hairpin and all baselines (labels
omitted for brevity) on WiFi traces when the deadline requirement
from the application is different.

centile, Hairpin is able to significantly reduce the deadline miss
rate, or reduce bandwidth cost for the same deadline miss rate.

Nevertheless, with the new design space of differentiating
retransmissions, Hairpin can further reduce the deadline miss rate
from 0.17% to 0.06% when the bandwidth cost is 4.5%, as shown
in the gap between the red star and purple line in Figure[T2] This
further demonstrates the importance of differentiating retrans-
missions. Both designs are critical to performance improvement.

We further want to see how far a naive algorithm, which does
nothing but differentiates retransmissions, will go. To this end,
we have HairpinFixedRTX, which only adds FEC packets to
retransmissions with a fixed ratio, and never adds FEC packets
to initial transmissions, in contrast to all existing solutions in
§4.2] We vary the static redundancy rate for retransmissions
from 2% to 200%. As shown in the gap between the green solid
line and the blue dashed line in Figure [I3] HairpinFixedRTX
significantly improves the trade-off between DMR and BWC
against existing baselines. The series of red stars will later
be explained in §4.5] This demonstrates that differentiatedly
adding FEC over initial transmission and retransmission packets
can effectively improve performance. As we discussed in
even naively differentiating the retransmissions with another
fixed redundancy rate would already be helpful, illustrating the
necessity of differentiating retransmissions.

4.5 Parameter Sensitivity
We also evaluate how Hairpin performs with different parameters.

Utility coefficient A. For the utility coefficient A in Eq. [5} as
introduced in §4.2] it could adjust the preference over the trade-
off between the DMR and BWC. A higher A indicates that users
prefer the BWC more, while a lower A indicates that the DMR
is outweighing the BWC. Therefore, we change A from 10! to
107, and present the DMR and BWC of Hairpin with different
A over WiFi traces in Fig.[13] Note that Fig.[13]is zoomed in
from Fig.[TI(b)] As shown in the red stars in Fig.[T3] the BWC is
decreasing with the increase of A, while the DMR is increasing
by a little. Thus, operators could adjust A to balance the DMR
and BWC according to the requirements of applications.

The setting of the deadline. In the evaluation in §4.3] the
deadline is set to 100ms. We also investigate how Hairpin
performs when the deadline is shorter or longer. Thus, we present
the results of DMR and BWC of Hairpin and baselines over WiFi
traces when the deadline is set to 50ms (Fig. or 200ms
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(Fig.[T4(®)). As presented in Fig.[I4] given the same trace, when
the deadline is shorter (50ms), the advantages of Hairpin over
baselines are a little less than when the deadline is 100ms. This
is because the retransmission chance is less and the design space
is smaller when the deadline is shorter. Nevertheless, Hairpin is
still much better than all existing baselines. When the deadline is
longer, the benefits are even larger due to the larger design space
in retransmission. Results over other sets of traces are similar.

4.6 Hairpin Deep Dive

We further provide a deeper understanding of Hairpin in the
following aspects.

Understanding Hairpin’s decisions. In Appendix we
present the redundancy rate and block size results of Hairpin
to provide a deeper understanding of how Hairpin optimizes
in different scenarios. Besides, we present the number of
transmission rounds of Hairpin and baselines in Fig.
When Hairpin gradually increases the redundancy rate in future
transmission rounds, most frames could therefore be delivered.
Thus, the 99.9th percentile of the number of transmission rounds
in Hairpin is less than all other baselines by more than one.
Similarly, when we inspect the loss rate in each round as shown
in Fig. Hairpin also successfully maintains the lowest
loss rate when the transmission round goes up. Note that the loss
rate here is significantly high due to the survivorship bias — only
lost packets will have another transmission round, while loss has
already indicated a degraded network performance. This also
indicates that the loss is not i.i.d. but bursty in the experiments.

Optimizing towards extremely low DMR. We further illustrate
why we need to achieve an extremely low DMR and how it
affects user’s experience. As analyzed in §3.1] a lower DMR
approaching zero directly indicates fewer stall events in a gaming
session. We measure the number of stall events in each gaming
session, where stall event is only counted once if there are
multiple missed frames in one second or if it lasts longer than
one second. As shown in Fig. Hairpin can reduce the
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Figure 17: The performance of Hairpin and all baselines (labels omit-
ted for brevity) on WiFi traces with different deadline requirements.

average and median number of stall events (which is also critical
for user’s opinion scores [67]]) by a half or more against baselines.
By having a DMR of 0.06%, Hairpin is able to reduce the
75th percentile number of stalls in a session to 2. Considering
the duration of a gaming session (minutes to hours), this will
considerably improve the user’s experience.

We also show the difference of calculating DMR by frame
and by time in Fig. In this paper, we do not argue using
a new metric (DMR by frame) is better — we calculate DMR
by the number of missed frames over total frames because of
the simplicity in the formulation in §3.3] Calculating DMR by
time is almost equivalent to DMR by frame since the stalled
time is the number of stalled frames (missed frames) times the
interval between frames. Therefore, we replot Fig. using
two different DMRs. As shown in Fig. [I6(b)} the results are
almost the same with each other.

Integrating with congestion control. To further investigate the
performance of Hairpin when interacting with the CCA, we
integrate the Hairpin with two CCAs in the WebRTC framework,
GCC [26] and NADA [90], in our simulation. We then replay
the collected traces by setting their bandwidth, RTT, and loss
rate to the link in ns-3. The bandwidth ranges from 2Mbps
to 30Mbps. As shown in Fig. Hairpin could still achieve
significant advantages over all existing baselines.

4.7 Real-World Experiments

Finally, we deploy the Hairpin in a production server in our
cloud gaming service. We conduct an A/B test in production
of Hairpin against the WebRTCyow baseline. The bit rate of
the cloud gaming service also supports the range of 2-30Mbps as
simulated in The A/B test runs for one week in September
2021, covering 17k sessions in total, all of which have a duration
of at least 4 minutes. Hairpin has been integrated into the
UDP-based connections of our cloud gaming service since then.
Since other optimizations are also deployed into our service after
we deploy Hairpin, to make a fair comparison, we only present
the results from the controlled A/B test in September 2021.

Performance. As shown in Table[l| Hairpin is able to improve
both the average DMR and the average BWC compared to
WebRTCyow. Specifically, for Ethernet sessions, Hairpin could
improve the DMR by 32% while also reducing the BWC by
40% against WebRTCyow. For WiFi sessions, the improvements
on DMR and BWC are 30% and 43%. We also measure the
ratio of sessions with an average DMR of larger than 1%, i.e.



Ethernet DMR BWC P(DMR>1%) #Session
WebRTCyow  0.34%  30.4% 6.9% 8380
Hairpin 023% 3.0% 4.6% 7306

WiFi DMR BWC P(DMR>1%) #Session
WebRTCyow  0.72%  31.8% 19.3% 652
Hairpin 051% 3.0% 15.3% 613

Table 1: Real-world experiment results. P(DMR>1%) denotes the
ratio of sessions with an average DMR of larger than 1%.

tail sessions. Hairpin could also reduce the tail sessions by 34%
and 21% for Ethernet and WiFi sessions respectively compared
to WebRTCyow. Note that the DMRs in real-world experiments
are a little higher than those in simulations (§4.3). This might
be because of other external factors (e.g., user devices) that
could affect the DMR. Nevertheless, Hairpin could significantly
improve the users’ experiences on both the DMR and BWC
compared to WebRTCyow .

Overhead. We further measure the overhead of the optimization
of Hairpin. As introduced in to accelerate the optimization
online, we precompute the optimized FEC parameters and store
the result table for online look-up. At our quantization granularity
of the table, it takes 1.98MB to store the table, which is negligi-
ble on servers since the table is static and could be shared by all
connections. Moreover, according to our measurements, the time
of looking up the table is always less than 1ms, which is also neg-
ligible since the table is looked up at the granularity of the frame.

5 Related Work

We first discuss the limitations in Appendix [Ef and then discuss
some pieces of related work here.

Deadline-aware optimization. Optimizing transport protocols
for deadline-aware flows has been intensively studied in the net-
working community. Research efforts have been devoted to the
optimization of transport protocols under the assumption of deliv-
ery deadline in video streaming [72}[87]], space network [73]l, and
others. There are also deadline-aware optimization in datacenters
for flow completion time [[307882]] and job completion time [36].
These research efforts mainly focus on the priority-aware schedul-
ing between different packets, jobs, or flows. Instead, Hairpin
is orthogonal to them and optimizes within one stream.

Loss recovery optimization. There are many previous research
efforts in individually optimizing the retransmission mecha-
nisms [21162,68] or redundancy strategies [5422,29140,51159/61].
Even for the joint optimization of redundancy and retransmission,
we are not the first work to propose similar strategies. In wireless
communications, there are already previous efforts in the joint
optimization of redundancy and retransmission [12,/60]. There
are also researches trying to combine retransmission and redun-
dancy (e.g., WebRTCg1; [71] and also [16}37,/86]]). However,
as discussed in §2.4] and evaluated in §4] without optimizing
redundancy over retransmissions, the fail performance is far
from satisfactory for edge-based interactive streaming. Besides,
there are also research efforts trying to adopt loss-resilient video
codec [41}/80], which are unfortunately not deployable for ser-

vices in the wild due to their hardware support. To the best of our
knowledge, Hairpin is the first work to (i) jointly optimize the
retransmission and redundancy towards the tail performance, and
(ii) deploy in a real interactive streaming application in production.
There are also researches to reduce packet losses by manipulating
sending patterns [20,38], which can work together with Hairpin.

Low-latency interactive streaming. Finally, as an emerging
direction, low-latency interactive streaming also attracts much
attention. At the transport layer, intensive efforts have also been
devoted to the optimization of CCAs [26,/41,/48}/90], or the cross-
layer optimization for interactive streaming to link layer [31].
As for the infrastructure, recent efforts propose to introduce edge
computing for shorter latency [58[77,[89], which are orthogonal
to Hairpin. In contrast, Hairpin is inserted between the transport
layer and the application layer, and is designed to optimize the
redundancy of edge-based interactive streaming. In the evalua-
tion and deployment of Hairpin (§4), we have already integrated
Hairpin with some efforts above for a better user experience.
Moreover, there are other research efforts [34484] that optimize
other application metrics for interactive video streaming in
image or video quality (e.g., SSIM [81] or PSNR [6]), which
are orthogonal to the interaction delay (the delay for each frame)
we focus on in this paper — they focus on the sharpness of the
video but we focus on the interaction lag that users may have

6 Conclusion

We propose Hairpin, a packet loss recovery mechanism for edge-
based interactive streaming to differentiate retransmissions and
jointly optimize redundancy with retransmissions. Hairpin mo-
tivates the joint optimization with real-world measurements, and
optimizes the redundancy and retransmissions with Markov de-
cision process. Both trace-driven simulations and real-world de-
ployments show that the joint optimization significantly reduces
the DMR and BWC compared with state-of-the-art solutions.

This work does not raise any ethical issues.
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Appendices
A Measurements in Production

We present our measurement results on the cloud gaming service
X in production to support some claims in the paper.

To investigate the effect of edge acceleration of interactive
streaming in the wild, we conduct a measurement campaign
on the cloud gaming service X. The measurements last for one
week with thousands of sessions (containing heterogeneous users
through Ethernet, WiFi with Windows and MacOS systems) and
are presented in Fig.[T8] As shown in Fig. the majority
of network delay collected at the granularity of video frame
falls into 10-20ms for both Ethernet and WiFi. We also measure
the flow-level delay ratio at different thresholds and present the
results in Fig. [[8(b) With the edge acceleration, the ratio of
frames with longer than 100ms delay in most flows is less than
102, Among them, Ethernet flows perform slightly better than
WiFi flows. This validates the effectiveness of edge acceleration:
the average network delay could be reduced to 10-20ms with
a proper edge acceleration.

We further measure the fluctuation of RTT by the duration
when RTT is roughly kept at the same level. We quantify it by
calculating the transmission chance (i.e., layer L) for the RTT
measured by each frame, and calculate the duration when the
chance is kept the same. For example, given a deadline of 100ms
in this paper, when the RTT measurements are [26ms, 18ms,
17ms, 22ms, 17ms, 19ms, 19ms], the transmission chances
are [3, 5, 5, 4, 5, 5, 5]. In this case, the durations of each
transmission chance are [1, 2, 1, 3], which are denoted as RTT
maintenance durations. We present the distribution of RTT
maintenance duration measured in our cloud gaming service
in Fig.[T9 The RTT maintenance duration of Ethernet is much
longer than that of Wi, indicating that Ethernet has a more
stable end-to-end delay. Meanwhile, the median duration of both
Ethernet and WiFi is above hundreds of milliseconds, which is
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Notation ~ Explanation
Inputs:
a Network loss rate.
T Remaining time till the deadline.
RTT The network round-trip time.
® The network bottleneck bandwidth.
F The frame size of that frame.
Intermediate variables:
L Remaining transmission chance.
The number of lost packets at the r-th layer
I(n,r) .
with n data packets.
k(n,r) The number of redundant packets at the r-th

layer with n data packets.
DMR Deadline miss rate.
BWC Bandwidth cost.

Outputs:
Bi Redundancy rate at the i-th layer.
b; FEC block size at the i-th layer.

Table 2: Notations in §3|and Appendix E]

much higher than the feedback loop of Hairpin. This indicates
that RTT does not frequently change, and Hairpin is able to
detect and react to the fluctuations of RTT.

B Optimization Model

In this section, we present the notations used in the Markov
chain in We list all notations in Table[2] We further present
the detailed designs here.

B.1 Optimization of the Redundancy Rate

‘We build an absorbing Markov chain to model the redundancy
and calculate the deadline miss rate considering retransmission,
as shown in Fig. [8| We first define the state in the Markov chain
as (n,r), where n is the number of unacknowledged packets
within the block, and r is the number of retransmission. For
example, (dy,0) represents the initial transmission where all dy
packets have not been received before (since it is the first time
of transmission). (3,2) denotes that there are still 3 data packets
that need to be retransmitted for the second time.

For node (d,l), given redundancy rate f3, its DMR follows:

DMR(d ;)= i p((d])—(d'1—1);8)-DMR(d' |—1) (6)
d'=0

where p((d,l) — (d',l—1);B) is the transition probability from
(d,l) to (d’,l—1) and could be calculated based on the current
loss rate & and redundancy rate 3. Similarly, the BWC could
also be updated as:

BWC(d,l;ﬁ):ﬁ%—i— i p((dd)— (d 1—1):8)-BWC(d 1—-1) (T)
d'=0

where the latter term is the additional BWC introduced in this
layer [.

We then calculate the transition probability between states
in the Markov chain. For the transition between state (ng,r)
to (np,r— 1), we know that n, data packets are lost in the r-th
transmission and need to be transmitted for the (r+1) time. We

first discuss the scenario of ny >0. We denote the total number
of packet losses (including data and redundancy) in the 7-th trans-
mission as /(n;,r). We denote the number of redundant packets
in the r-th transmission as k(n;,r). Since the packet losses of all
packets should not be less than the packet losses of data packets,
we have I(n1,r) > np. Meanwhile, since there are only k(np,r)
redundant packets in total, we have I(n;,r) <np+k(ny,r). We
also have [(ny,r) > k(ny,r), otherwise the lost packets could be
recovered with FEC. Therefore, the probability of n, data packet
losses under the condition of /(n;,r — 1) total packet losses
follows the hypergeometric distribution:

H(nyiny +k(nyr—1),my,1(ny 1))
(g k(ny,r) ny+k(ny,r) ®)
- \m) \l(n1,r)—ny I(nyr)
Thus, the transition probability from (n;,r) to (ny,r—1) is:

p((m,r) = (nr—1)) =

Y H(npny +k(nyr)nd(nyr))-P(U(nyr) losses) O
I(ny,r)

On the other hand, at the loss rate of ¢, losing /(n,r) packets
in all nj +k(ny,r) packets follows the Binomial distribution:

P(I(ny,r) losses) =Bi(l(ny,r);ny +k(ny,r),a) =

n1+k(n17r) I(n1,r) (1 _ pp\u1+k(n1,r)—1(ny,r) (10)
(")t 0

Therefore, by substituting Eq. [§|and [[0]into Eq.[9} we can have
the transition probability for n, > 0. Similarly, when state transits
from (n;,r) to (0,r—1), then the number of lost packets in the
r-th layer of Fig. 8| must be less than k(n,r). Therefore, the
transition probability satisfies:

k(ny,r)

p((n1,r) = (0,r—1))="Y Bi(isn; +k(n1,r),c) an
i=0

B.2 Optimization of Block Size

In the following analysis, we are going to compare the utility of
transmitting the whole frame for L chances, or splitting the frame
into several blocks and some of them enjoying L+1 chances.
With that, we assume that the dispersion is less than one RTT.
Therefore, when the block size is set to d, there are Ny
blocks that could enjoy L+1 chances of transmission, and the
remaining Ny, blocks with L chances of transmission, where

DDL—(L+1)-RTT
Nir1= - de
oI (12)
L= E TAVL+]

Therefore, the on-time delivery of the frame requires the on-time
delivery of each block. Since the deadline miss rate is equal to
one minus the probability of on-time delivery, we have the frame



DMR (FDMR) given a certain block size d as:

1—FDMR(d)=(1-DMR(L+1,d)"+'.(1—-DMR(L,d)
= FDMR(d)=1—(1—DMR(L+1,d))":*'.(1—DMR(L,d))*
=Np+1-DMR(L+1,d)+N-DMR(Ld)
(13)

where the last equation holds since DMR(L,d) < 1 and
(1-—a)"=1—no when a < 1. As for the bandwidth cost,
recalling Eq.[7] the number of extra packets of the frame is the
sum of the number of extra packets for each block. Since the
BWC of each block shares the same denominator (frame size
S), the frame BWC is also the sum of BWC of each block:

FBWC(d)=Np | -BWC(L+1,d)+N.-BWC(Ld)  (14)
Therefore, the optimal block size is:

dop =argmax wility(FDMR(d),FBWC(d)) ~ (15)
d

In our implementation, we iterate the possible block size B
from 1 to the frame size S, and store the optimal block size in
each scenario in an offline lookup table. Since the DMR(L,B)
and BWC(L,B) are accessible in the absorbing Markov chain
constructed above, the construction of the table is time-efficient.

C Implementation Details

We are going to introduce the sending mechanism beneath
Hairpin and the implementation of the redundancy optimization
in Hairpin.

Acknowledgement aggregation. In wireless networks, re-
searchers also propose to aggregate several acknowledgements at
the client side to alleviate the uplink interference [52]]. However,
the delayed acknowledgement might also interfere with the
measurements of RTT, delay the detection of packet losses and
waste potential chances of retransmission. In our implemen-
tation, to eliminate the interference from acknowledgement
mechanisms, we disable the aggregation of acknowledgements.
The precise measurement of RTT in the scenario of aggregated
acknowledgement could also be implemented with recent efforts
such as TACK [52], which is out of our scope.

Note that this is different from the aggregation on wireless
routers [[19]. Such aggregations due to wireless channel
competition should be reflected in our measurements of network
RTT fluctuations in Fig. @] In our simulation with online
measurements and deployments in production, Hairpin behaves
well even with the RTT fluctuations.

FEC codec. For the scenarios with a redundancy rate of <100%,
we implement the FEC codec as RS-FEC, as suggested by many
other related efforts [[65]. We refer the readers to [65]] for the
details of RS-FEC. However, when implementing the redundancy
rate of >100%, RS-FEC is not designed to reliably recover lost
packets in all cases. For example, when there are 2 data packets
and 4 FEC packets, RS-FEC cannot always recover 2 data
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Figure 21: Average end-to-end delay of in the experiments in
We trim the lowest average delay in different traces for comparison.

packets when there are 4 packet losses due to the invertibility of
the decoding matrix: it depends on whether two packets received
at the client are linearly independent at the generation matrix.
Therefore, we implement a customized FEC codec. For
example, for data packets ¢ and b, when considering them as
two numbers (with a length of up to 12kbits), we could calculate
a—+b, a+2b, 2a+ b, etc., and send them to the client. The
only overhead is the additional bits that could overflow from
the addition, which is much less than the data bits. Moreover,
as shown in Fig. 23] in most cases the redundancy rate is less
than 100%. Therefore, the overall decoding overhead is also
acceptable. We leave the further adoption of advanced FEC
codec when the redundancy rate is >100% as our future work.

D Supplementary Experiments

Measurement window. We also evaluate the performance of
Hairpin by adjusting the measurement window of the network
conditions that we discussed in Since Hairpin optimizes
the redundancy parameters based on real-time measurements
of the network conditions, the size of the measurement
window might affect the performance of Hairpin. We vary the
measurement window from the last 1 to 8 frames and reconduct
the experiments over WiFi traces. We measure the average
and 95th percentile DMR and BWC, and present the results
in Fig. The DMR and BWC are quite robust: By varying
the measurement window from 1 to 8, the average DMR and
average BWC vary within 0.47%-0.49% and 6.94%-7.19%,
which is subordinate to the improvements in §4.3| (Fig. [T1(D)).
In practice, operators can decide the measurement window based
on the fluctuations of network conditions.

Per-frame latency of Hairpin. Besides, we also measure the
average end-to-end delay for the successfully delivered frames in
the experiments in §4.3|for Hairpin and different baselines. As
shown in Fig.[21] the average end-to-end delay of Hairpin does
increase compared to the baseline with the lowest average delay.
However, the increase is only 0.1-1.5ms for all traces, which is
negligible compared with the RTT (1%-7%), and considering
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the deadline effect we discussed in @ Furthermore, operators
could also adopt less aggressive mappings (e.g., increasing A)
to tradeoff between the tail delay and average delay.

We also present the distribution of the delay of each frame
in Fig. 22] Similar to Fig. 21] the average (median) latency
of frames of Hairpin is similar to other baselines. However,
Hairpin could reduce the tail latency significantly. For example,
Hairpin can reduce the 99.9th percentile frame latency to 80ms
while all baselines of longer than 100ms. Looking at the vertical
axis, Hairpin is also capable of reducing the ratio of higher than
100ms by more than a half, as shown in Fig.[TT(b)|
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Loss rates in each round. We further present the distributions
of loss rates of all frames in each round (specifically, initial
transmission and the third retransmission) in Fig. 23] This
expands the results in Fig. We can tell from Fig. 23(a)] that
due to the conservative redundancy strategy of Hairpin, the loss
rate of Hairpin is higher. However, when retransmission starts,
Hairpin is able to maintain a low loss rate — which means a high

success rate in delivering frames — compared to other baselines.

This shows the strategy of Hairpin: conservatively adding FEC
packets when deadline is far away, and aggressively adding FEC
packets to retransmissions.

The improvements of using Markov chain. As we analyzed in
§3.2] a strawman solution is good but not enough to fully utilize
the design space of redundancy and retransmission. Thus, we
also evaluate the heuristic baseline we present in §3.1](denoted
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Figure 25: Optimization results by Hairpin. Fig. [25(a)|to[25(c)| present

the redundancy rate with different transmission chances L.

as Hairpin-lin, with sweeping the coefficient k from 0.5 to 4,
and present the results in Figure[24] As we can see, Hairpin-lin
(green line) does improve the trade-off compared to existing
baselines (dashed blue line). Yet, there is still a half gap between
Hairpin-lin and the Markov chain-based Hairpin (the red star).
Therefore, it is necessary to analytically formulate the problem
with the Markov chain to further push the trade-off forward.

Understanding Hairpin’s decisions. We further present the
redundancy rate results of Hairpin to provide a deeper under-
standing of how Hairpin optimizes in different scenarios. For
redundancy rate, since the optimization of the absorbing Markov
chain (§3.2) relies on the remaining transmission chance L, loss
rate, remaining data packets to transmit, and the frame size, we
present the optimized redundancy rate over different parameters
in Fig.25(a)|to[25(c)} With more transmission chances, Hairpin
would decrease the redundancy rate and rely on retransmissions
for packet loss recovery. With fewer packets to retransmit,
Hairpin also prefers a higher redundancy rate, as discussed in
§3:2] Moreover, when the number of packets to transmit is
small, the optimized redundancy rate is up to 500% in Fig.
demonstrating the effectiveness of a redundancy rate of >100%.

As for the optimization of block size, as we also discussed
in §3.2] the optimal block size is the frame size (24 packets)
in many cases. Nevertheless, as we discussed, at the decision
boundary of remaining transmission chance, smaller block sizes
do enjoy a slightly better performance by having additional
transmission chances. As shown in Fig. 25(d)} although the
optimal block size is the frame size in most cases, when the RTT
is around 33ms and 50ms (the dividing point between 1, 2, and
3 transmission chances), the optimal block size might be smaller
than the frame size. For example, compared to setting the block
size to the frame size, the DMR with the optimized block size
of Hairpin could be further reduced by 1.78 x around the RTT
of 50ms and bottleneck bandwidth of 60Mbps. We optimize the
block size for the last mile performance improvement.



E Limitations

Delay components in interactive streaming. Hairpin could
have maximum benefits when the end-to-end network delay
dominates the total delay from the video encoder to the decoder
in Fig.|10} This is generally true in interactive streaming services.
Related measurement studies also demonstrate that the network
delay is still one of the bottlenecks of edge-based interactive
streaming [43,/57]. Therefore, we focus on the optimization
of streams between edge servers and clients. Our deployments
in the wild demonstrate that optimizing the network latency
could significantly improve the user’s experience (note that
DMR is measured end-to-end). Hairpin can also work with
the optimization of other delay components (e.g., encoding,
decoding, etc.) to further improve the performance.

Deployment efforts for applications. Another concern of
deploying Hairpin is that both the server and the client need
modification to support the redundancy and retransmissions.
There are previous efforts implementing the FEC mechanism
over TCP [16,[37]], which needs to modify the TCP protocol
stack at the client and are not suitable for products at scale.
For scenarios where TCP is compulsory for transport, the
deployment of Hairpin may depend on the ability to modify
the reception mechanism of TCP packets at the client. However,
most interactive streaming applications adopt UDP to reduce
the network delay [23},35}55!/66], including our service. In this
case, Hairpin could be implemented within the application at
the server and the client, which is practical for most applications.
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