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Abstract
To improve the user experience of mobile web services,

various congestion control algorithms (CCAs) have been pro-

posed, yet the performance of the application is still unsat-

isfactory. We argue that the suboptimal performance comes

from the gap between what the application needs (i.e., Quality

of Experience (QoE)) and what the current CCA is optimizing

(i.e., Quality of Service (QoS)). However, optimizing QoE

for CCAs is extremely challenging due to the convoluted re-

lationship and mismatched timescale between QoE and QoS.

To bridge the gap between QoE and QoS for CCAs, we pro-

pose Floo, a new QoE-oriented congestion control selection

mechanism, as a shim layer between CCAs and applications

to address the challenges above. Floo targets request com-

pletion time as QoE, and conveys the optimization goal of

QoE to CCAs by always selecting the most appropriate CCA

in the runtime. Floo further adopts reinforcement learning to

capture the complexity in CCA selection and supports smooth

CCA switching during transmission. We implement Floo in

a popular mobile web service application online. Through

extensive experiments in production environments and on

various locally emulated network conditions, we demonstrate

that Floo improves QoE by about 14.3% to 52.7%.

1 Introduction
Last decade has witnessed a dramatic increase in the use of

mobile web services. The latest statistics demonstrate that

more than 60% of global Internet users access web services

with mobile devices [4]. Mobile web services are built on the

transport layer, which typically employs a congestion control

algorithm (CCA) that determines the data sending behavior

and significantly affects the user experience. However, unsat-

isfactory performance of mobile web services has still been
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reported [40, 43, 49]. A recent measurement in 2020 shows

that some web service users are still suffering from multi sec-

onds request completion time [54], which also corroborates

our observation in our web service in production (§5.3).

Our observation is that the key issue of the unsatisfactory

performance in mobile web services is the mismatch between

what CCAs are optimizing and what the applications need.

Normally, CCAs optimize the Quality of Service (QoS) met-

rics describing the transport layer protocol delivery capabili-

ties, i.e., delay, throughput, loss rate [22,31], or a combination

of these metrics [7, 19], in different network conditions. How-

ever, the applications do not really need an optimized QoS.

Instead, they need a high quality of experience (QoE) for

users. Specifically, for mobile web services, they have no idea

what is throughput but only care about request completion
time (RCT)1. The mismatch between QoE and QoS for current

CCAs leads to their suboptimal performance.

However, optimizing QoE for CCAs is extremely challeng-

ing due to the following reasons. First, in terms of causality,

the relationship between QoE and QoS is convoluted. For ex-

ample, for small requests in web services, the increase of RTT

will result in the degradation of the RCT. However, for large

bulk requests, the effect of the increase of RTT on RCT is

negligible. Therefore, without clearly understanding the rela-

tionship between QoE and QoS, directly optimizing the QoS

may not be able to improve the QoE for the application. Sec-

ond, in terms of timeliness, network conditions in QoS such as

RTT and throughput are usually measured on a fine timescale

(e.g., per packet). With this, CCAs can also make decisions

on a short timescale. However, QoEs are usually perceived

in a much longer timescale. RCTs in web services can only

be calculated after the request completes, which usually takes

seconds, during which, the CCA has already made numerous

decisions. Thus, it is challenging for CCA to know which

decisions are right and further correct its decisions (§2.1).

Our insight in this paper is not to directly optimize the CCA

1There are various QoE metrics of mobile web service, such as page load

time. In this paper, we focus on the request completion time, i.e., the time

interval between the request sent and the response fully received.



itself, but to introduce a shim layer between the application

layer and transport layer to select the appropriate CCA for a

better QoE. After decades of evolution of CCA, although there

may not exist one CCA to fit all scenarios, we believe that

there should always be at least one CCA that behaves well in a

certain scenario. Selecting the CCA addresses the challenges

above in two ways: First, instead of blindly optimizing those

low-level instructions for CCAs with QoS, we could select the

appropriate CCA based on the QoE. Second, we can perform

the CCA selection at the same or longer timescale to fully

and accurately utilize the information from QoE. Therefore,

if we could always select and switch to the best CCA in the

runtime, we will have the QoE directly optimized (§2.2).

However, it is challenging to propose a CCA selection

mechanism for large-scale mobile web service due to the

following reasons (§2.3).

• Generating an optimal CCA selection policy is challeng-
ing. The CCA selection policy, or in other words, mapping

from the observed network conditions and application QoE

metrics to the appropriate CCAs, is complicated. (1) The

mobile network conditions can fluctuate, and are not easy

to capture from the metrics observed on endpoints. (2)

It is very difficult to model and characterize the CCAs,

especially the recent proposed complicated CCAs [9, 19].

• Switching between CCAs is nontrivial. Different CCAs

maintain different states. For example, BBR maintains the

maximum delivery rate in the last 8 RTTs, but Cubic does

not. If we need to switch between CCAs in the runtime,

we should handle the states for a seamless switch carefully.

Otherwise, if each CCA starts with the slow start, the QoE

might be severely impaired during each switching.

To address the above challenges and provide better per-

formance to the real applications, we propose Floo, a QoE-

oriented mechanism for congestion control selection in large-

scale mobile web services. Our key ideas are (1) to design

a QoE-oriented CCA selection mechanism, and (2) to sup-

port seamless CCA switching during transmission. To turn

our ideas into reality, we design several building blocks in

Floo. First, we propose a reinforcement learning (RL)-based

framework (to understand CCAs) that uses QoE as the selec-

tion criterion, and carefully selects both transport layer and

application layer metrics (against network dynamic) to be

jointly used in CCA selection (§3.2 and §3.3). Second, we

devise a CCA switching mechanism to ensure the smooth-

ness of switching by migrating the CCA phases and variables.

The switching mechanism can be applied to traditional non-

learning CCAs, and it is implemented with multiple classical

CCAs in this paper (§3.4). Briefly speaking, Floo selects the

optimal CCA for each connection according to QoE, and

switches to a new, better CCA when the network condition

changes (§3.1).

We implement Floo atop QUIC in the production environ-

ment of one Meituan’s popular mobile web service applica-

tion, Dianping, with O(10M) daily active users (§4.1). To

make Floo work for real application scenarios, we collect

real-world application traces for 14 days, including 35 mil-

lion request logs. The traces are employed for analysis and

training to reduce the gap between emulated environments

and real world scenarios, enabling Floo to directly serve the

real applications (§4.2). Extensive experiments demonstrate

that Floo reduces the RCT by about 14.3% to 52.7% on aver-

age compared to using a static CCA. Further evaluation also

shows that Floo is able to achieve satisfactory performance in

the real world in different scenarios (§5).

In summary, our key contributions in this paper are:

• By demonstrating the difficulty of optimizing QoE for

CCAs, we reveal the need for a practical QoE-oriented

CCA selection mechanism (§2).

• We propose Floo, a QoE-oriented mechanism for CCA

selection, which supports seamless switching on the fly for

large-scale deployment of mobile web services (§3, §4).

• We deploy and evaluate Floo with Dianping service of

Meituan. Our extensive experiments showed that Floo

achieves consistent high performance under dynamic mo-

bile networks (§5).

2 Motivation and Challenge
In this section, we use real-world mobile web service traces

to demonstrate optimizing QoE for CCAs is extremely chal-

lenging in §2.1. Then, we present our design choices in §2.2

to address the mismatch between QoS and QoE. Finally, we

elaborate on the challenges of designing the QoE-oriented

CCA selection mechanism in §2.3.

2.1 Optimizing QoE for CCAs is extremely challenging

Convoluted relationship between QoS and QoE. QoE met-

rics are defined by applications. In contrast, QoS metrics

focus on the descriptions of transport layer performance. The

optimization of QoS is not consistent with that of QoE. For

example, for large bulk requests, a reduction in RTT does not

imply a QoE improvement [37]. Small request-intensive web

pages are not that sensitive to throughput increase, since their

total bandwidth need may still be small. As for the applica-

tions that apply recovery techniques such as FEC [32], packet

loss also does not have a significant impact on QoE [25]. CCA

has no idea what goal the application optimizes towards and

whether application layer techniques are used. Therefore, the

relationship between QoE and QoS is convoluted.

We conduct emulated experiments to demonstrate the con-

voluted relationship. Four well-known CCAs are considered:

Cubic [23], BBR [12], Copa [9], and Westwood [14]. We use

real-world traces extracted from Dianping to generate request-

response messages (detailed in §4.2) on Mahimahi [41] emu-

lated network paths. The WSP algorithm [44] is employed to

compute the configurations of 100 different network path con-

ditions (detailed in §4.3.1). Each CCA runs on each network

path condition for 2 minutes. We calculate the metrics of Thpt,

RTT, Power [27], etc., periodically at the sender according to

transport layer acknowledgments. The results are presented
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Figure 1: The mean through-

put and RTT of the four CCAs

achieved on a network path.

Figure 2: The RCT for all net-

work path conditions following

different CCA selection metrics.

Metrics Definition

QoE Request completion time
Power [27] Power = T hroughput

Delay

Power_V [28] Power_V = T hroughput∗(1−LossRate)
Delay

Vivace [19] Vivace = ratet −b∗ rate∗ dRT T
dT − c∗ loss∗ rate

Thpt Delivery rate

Table 1: A QoE metric and four QoS metrics. QoE is calculated as

the average RCT after the CCA convergence (20s after connection

establishment). Power is the most common metric used for transport

layer evaluation [7, 22, 31, 57]. Power_Variant [28] is one variant of

Power, which also considers the packet loss rate. Vivace is used by

an online learning CCA, and it is in form of utility function [19, 20].

in Fig. 1 and 2.

Fig. 1 shows the performance of the CCAs on a specific net-

work path. Among the four CCAs, the CCA that achieves the

highest throughput or the lowest RTT does not reach the best

QoE (defined in Tab. 1). Then we consider the relationship

between QoS and QoE on multiple network paths. For each

network path condition, we select the best CCA following

different metrics listed in Tab. 1. For each metric, we obtain

all the RCT of the requests running the selected CCA for all

network path conditions. Fig. 2 shows the Tukey boxplot for

each metric. Results show that if the CCA is selected follow-

ing the QoE metric, the RCT can be reduced by at least 27%

on average, and none of the popular QoS metrics can achieve

similar RCT to the QoE metric. This well demonstrate the

convoluted relationship between QoS and QoE.

Mismatched timescale between QoE and QoS. The mis-

match also exists in the time scale of the CCA and application

optimization. CCAs collect fine-grained ACK information

and make decisions at a granularity of packet-level or RTT-

level. In contrast, QoE is measured and evaluated at a coarse

granularity of the request level, usually around hundreds of

milliseconds or even longer [9, 54]. As a result, it is difficult

to map high time scale QoE to low time scale CCA behavior.

2.2 Design Choices
Instead of optimizing QoE for CCAs, we decide to design

a shim, which selects an appropriate CCA aiming for better

QoE. The QoE-oriented CCA selection approach addresses

the mismatch between QoS and QoE:

• Optimizing the real goal. It is hard to make QoS-oriented

CCAs optimize the QoE, because of the mismatch between

QoE and QoS. However, with QoE metrics as the basis, the

CCA selection shim allows the transport layer behavior to

be optimized toward application layer objectives. As dis-

cussed in §2.1, the QoE is hard to be replaced by existing

transport capability-oriented QoS metrics. Therefore, QoE

is regarded as the real goal of our approach.

• Time scale. The CCA selection approach works above

the transport layer to make decisions at a coarser granu-

larity, understanding the QoE, and deciding which CCA

to use. Specific sending rate/CWND increase or decrease

decisions of the CCAs’ are not necessarily closely coupled

with QoE. Thus, the time scale mismatch is solved. The

CCAs do not need to interact with the application layer

and do not need to be modified.

2.3 Challenges
However, designing and implementing a CCA selection mech-

anism is non-trivial in a large-scale real-world deployment of

mobile web service.

CCA Selection. Creating a mapping from the observed net-

work conditions and QoE metrics to CCAs, or in other words,

generating a CCA selection policy is challenging.

• Fluctuating network conditions. Under mobile networks,

network conditions fluctuate due to wireless channel fad-

ing, user movement, or network congestion. Adapting to

the dynamic network condition is challenging.

• Empirical CCA characteristics. The existing knowledge

of the applicable scenarios of CCA is usually empirical [11,

15]. It is very difficult to model and characterize the CCAs,

especially the recent proposed CCAs [9, 19]. Adapting to

the complicated CCAs is challenging.

Smooth switching on the fly. Due to dynamic network con-

ditions, CCA switching may occur during transmission. We

consider two kinds of switching: Part Switching and Full

Switching. While Full Switching makes the new CCA inherit

all CCA-related variables, including connection-level vari-

ables (e.g., CWND/sending rate and RTT-related values), and

CCA private state variables (e.g., fulled_pipe in BBR), Part

Switching only inherits connection-level variables, and the

private state variables of the new CCA are initialized from

default values. To demonstrate their differences, we build a

small testbed including two hosts and one switcher. The two

hosts establish a QUIC connection, which continues to send

massive data. One CCA switch event happens at the 10th

second. As shown in Fig. 3, the switching without CCA state

migration (Part Switching) has two problems:

• Longer convergence time and performance deteriora-
tion. Without CCA state migration, the new CCA starts

at the slow start phase and the CWND or sending rate in-

creases exponentially from the steady state of the previous

CCA until it converges again. The path condition informa-

tion required for the new CCA still needs time to be col-
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Figure 3: Two demonstrations of Part Switching. The switch event

happens at the 10th second. (a) and (b) show the CWND change

over time. (c) and (d) show the smooth RTT changes over time

and when loss events happen. Part Switching from Cubic to BBR

leads to longer convergence time and performance deterioration. Part

Switching from Cubic to Copa leads to distorted path estimation

collected and results in abnormal behavior of the new CCA.

lected and estimated. Worse still, since the previous CCA

has converged basically, the new CCA’s re-convergence

will cause a lot of packets lost (about 14.8% within 2s after

switching in Fig. 3c).

• Distorted path estimation results in abnormal behavior
of new CCAs. The network condition observed by the

new CCA reflects the condition after the previous CCA

converged. It may not be consistent with the real path con-

dition. For example, as shown in Fig. 3d, there is already

a queue buildup in the buffer by Cubic when the switch-

ing occurs. Therefore, the minRT T observed by Copa is

biased after the switching. In such a case, Copa is unable

to make proper decisions to reduce the RTT or drain the

queue. Fig. 3d shows that the high RTT may last for tens

of seconds or even longer, which completely conflicts with

Copa’s design goal of low latency.

Therefore, smooth switching is necessary. Ideally, the new

CCA should inherit all the CCA-related variables and con-

tinue to update them according to the newly observed network

conditions after the switching. However, considering the more

complex state design of emerging CCAs, and the personalized

state variables, mapping the state of a certain CCA to a new

one is much more challenging.

3 Design
3.1 Design Overview
Fig. 4 shows the overall architecture of Floo. We build the

main building blocks of Floo atop QUIC, including Moni-

tor module, Selector module and Switcher module. Monitor

module collects information from both the transport layer and

application layer. According to the state variables saving ap-

plication statistics and connection statistics, Monitor module

Figure 4: Floo Overview

Characteristic Metric Description

Btlbw T hpt_max The maximum delivery rate

RTProp RT T _min The minimum RTT

Random Loss Loss_rate |Lost Packet| / |Sent Packet|

Buffer RT T _rate Smooth RTT / Min RTT

RTT Variety RT Tvar The variance of RTT samples

CCA
CCA_name Current CCA

CWND/SendRate CWND or pacing rate

App-level

Good put The average Size / Duration of past responses

Unsent_size Total bytes of the response waiting for writing to Send Buffer

Qws The average duration the response wait for writing to Send Buffer

Qwsgradient The gradient of the Qws samples

Bytes_interval Bytes sent in the last SP

Table 2: The metrics collected by Monitor module.

computes the metrics of interest in consecutive time intervals

and feeds them to Selector module every selection period (SP)

(§3.2). According to the metrics fed by the Monitor module,

Selector module selects a CCA based on a pre-trained selec-

tion policy, which maps the metrics from Monitor module to

appropriate CCAs. With the help of that policy, an appropri-

ate CCA is selected to maximize the application QoE. The

selection policy is pre-trained offline with RL methods (§3.3).

After getting informed of the new optimal CCA, Switcher

module conducts CCA state migration to complete a smooth

switching from the current CCA to the new CCA (§3.4). Thus,

an accurate and smooth switching of CCA is completed.

For a QoE-oriented CCA selection mechanism, one key

design decision of Floo is how to incorporate QoE metrics

into the mechanism. From emulated experiments in §2.1, we

observe that it is difficult to replace QoE with QoS. As Fig. 2

shows, the CCAs selected with the QoE criterion achieve

the lowest RCT, while the other four QoS metrics, Power,

Power_V, Vivace and Thpt, have 31.01%, 31.34%, 27.87%,

28.01% higher RCT on average respectively. Therefore, our

answer is to directly set QoE as the selection criterion.

3.2 Monitor
Monitor module gathers collectible statistics that can be mea-

sured and monitored, including the transport layer and applica-

tion layer statistics. The transport layer statistics are collected

from the information provided by ACK packets or the connec-

tion maintained state variables. As for the application layer

statistics, we collect them from mobile web applications.

We consider the metrics shown in Tab. 2. The CCA selec-

tion mechanism is to select the optimal CCA for different

network conditions. Therefore, we first consider the charac-

teristics describing the network path conditions. They are



the former 5 rows of the table. We use bottleneck link band-

width (BtlBw), round-trip propagation time (RT Prop), RTT

variety (RT Tvar), packet loss rate (RandomLoss) and buffer

size (Bu f f erSize) to describe a network path. We estimate

these objective network path conditions with the following

collectible metrics: the maximum delivery rate (T hptmax),

minimum RTT (RT Tmin), average loss rate (Loss_rate), rela-

tive value of buffer size v.s. BDP (RT T _rate) and the RTT

variety (RT Tvar). The calculation of the metrics occurs in a

slicing time window of 10s.

Note that the above metrics are only the observed metrics

of the network paths and not the objective network path con-

ditions. The relationship between the observed and objective

values can be affected by the current running CCA. In order to

accurately reflect the objective values of the network path, two

additional types of information are collected. On the one hand,

we record the current CCA, and CWND/SendRate if applica-

ble. On the other hand, we collect the information from the ap-

plication layer, specifically the Good put, Unsent_size, Qws,

Qwsgradient , Bytes_interval (defined in Tab. 2). It is worth

noting that Qws is the response waiting time, which is the

time between the response is generated on the server and the

response data is written to the send buffer of the transport

layer. Qws reflects the growth and drain of the queue in the

send buffer. When the network condition worsens, the queue

in the send buffer will pile up rapidly, making the rise in Qws.

The calculation of these app-level statistics occurs every SP.

3.3 RL-based Selector
Selector module selects the optimal CCA based on the met-

rics passed by Monitor module. The selection policy, or the

mapping from the Monitor module metrics to the optimal

CCA, is pre-trained and saved in Selector module. We utilize

an RL approach to build a prediction model as the selection

policy, because RL and CCAs are similar, i.e., both of them

continuously make decisions according to the changes of en-

vironment. In this section, we describe the RL system. The

process and method of offline training are shown in §4.3.

State & Action. We use the metrics passed by Monitor mod-

ule as the state of RL system, which is used to select the

optimal CCA. We use normalized metrics instead of the exact

values. This avoids exaggerating the impact of an input metric

with very large values on the final model. Further, normaliza-

tion helps Selector module generalize the network conditions

it observes during the training phase to unseen network con-

ditions and achieve better performance. As for the action, the

RL system uses CCA candidates as the possible action values.

Reward. Reward is an important factor affecting the RL

system’s performance. Specifically, the rewards the RL

agent gains at each step quantify its performance to im-

prove its subsequent action. Numerous RL-based congestion

control-related solutions adopt Power or its variants as re-

ward [7,28,31,42,57]. However, our experiment results show

that application-layer metrics are more appropriate reward in-

dices than QoS-oriented transport layer metrics (§2.1). There-

fore, we directly utilize the gradient of QoE as the reward for

our RL system.

We regard the RCT as the QoE of web services, which is

also a common QoE choice for such services. RCT is the time

taken from sending the request to receiving the last byte of the

response, recorded on the client side. RCT mainly includes the

transmission elapsed time within the network (transmission

time) and the response queuing time on the sender (i.e., Qws
in Tab. 2). For web services, we employ this value as the RL

system reward for the following reasons:

• When the sending rate is high, the response queuing time is

much smaller than the transmission time. Therefore, RCT

is approximately equal to the transmission time, which

reflects the current transmission efficiency, and thus can

evaluate the current action (i.e., CCA).

• When the sending rate is low, or is lower than the deliv-

ery rate from the sender application layer to the sender

transport layer, RCT mainly includes the response queuing

time. In this case, RCT reflects the growth and drain of

the queue within the send buffer. If the current action is

better than the previous action, it will suppress the queue

growth or accelerate the queue draining. The change of

the queue will be reflected in the change of RCT, and will

further evaluate the merit of actions in one training round.

Specifically, we use the gradient of RCT as the reward:

R = ln
Last RCTavg

Current RCTavg
. In each step, we record the average RCT

in time units and compare it with that of the last step. After

one entire training episode, we normalize all the rewards

uniformly.

Learning algorithm. Floo adopts actor-critic RL, and is

trained using the Proximal Policy Optimization (PPO) al-

gorithm [45]. PPO is an advanced RL algorithm that is adept

at exploring policies with continuous features. PPO addresses

the issues of the traditional policy gradient philosophy and

improves the utilization of data and the model stability by

the design of importance sampling and clipping. Appendix A

details how PPO is utilized in Floo.

3.4 CCA State Migration
To deal with the challenges described in §2.3, our design goals

are: (1) Inherit the network path estimation to speed up CCA

convergence and avoid performance degradation. (2) Retain

the characteristics of new CCAs consistent with the original

design goals. In our design, the CCA state migration mecha-

nism considers all the CCA-related variables, i.e., the CCAs’

phase and the variables used in CCAs. This mechanism can

be applied to non-learning CCAs, e.g. Cubic, BBR and Copa.

CCA Phase Migration. CCA phase migration is concerned

with the state transition within the CCAs. With packet loss no

longer the only congestion signal, the emerging CCA phases

become more complex. However, a common feature of non-

learning CCAs is that they all probe the path and estimate



Variable Type Description

Sending rate variables
Variables that directly determine the sending rate,

e.g. CWND, Pacing rate, etc.

Observation variables
Observations of the connection,

e.g. smooth RTT, max delivery rate, etc.

Parameter variables
Variables related to CCA design,

e.g. β=0.8 in Cubic when packet loss.

Other variables
Variables that maintain CCA’s current state,

e.g. f ulled_pipe in BBR, and velocity in Copa.

Table 3: Four types of CCA-related variables.

their occupancy of the path based on the feedback. Therefore,

we coarsely classify CCA phases into two categories based

on how well the CCA probes the path.

The first category is the non-converged phase, i.e., where

CCA has not formed a complete awareness of the path or does

not fully utilize the available capacity. The non-converged

phase includes both the slow start phase and the situation

where the CCA would not fill the pipe for other purposes,

such as ProbeRTT in BBR. The second category is the con-

verged phase, i.e., where CCA adjusts the sending behavior

based on the observations of the path after the slow start, in-

cluding the congestion avoidance phase of traditional CCAs,

the ProbeBW phase of BBR, and the moving phase of Copa.

We adopt different measures to migrate different phases.

If the switching happens at the converged phase of the old

CCA, Floo makes the new CCA directly enter the converged

phase.This avoids massive packet loss caused by the slow start

phase after switching. We do not perform switching at the

non-converged phase. On the one hand, the statistics collected

during the non-converged phase are unreliable. On the other

hand, the non-converged phase usually does not last too long,

so it will not cause much damage even if the switch is not

made immediately. Note that there is one exception: if the

new CCA is BBR, Floo makes the BBR enter the ProbeRTT

phase first. Though the ProbeRTT phase is not converged, it

will affect the performance of the converged phase.

CCA Variable Migration. CCA variable migration is map-

ping variables from the prior CCA to the new CCA. The

variables maintained by various CCAs are different and affect

CCA switching performance differently. Therefore, we group

all variables into four types, as shown in Tab. 3. According to

our two design goals, we adopt the corresponding migration

methods for each type.

• Sending rate variables. Sending rate variables, such as

CWND and pacing rate, directly determine the sending rate.

Therefore, they need to inherit the prior rate, thus ensuring

smooth switching. The key issue here is the conversion

between the rate-based CCAs and window-based CCAs.

We use the relationship that CWND = pacing rate∗RT T
to calculate the migrated values.

• Observation variables. Observation variables are esti-

mated statistics for the network path. The observation vari-

ables collected in the converged phase can directly follow

the new CCA. Considering that some important observa-

tion variables are not preserved by all CCAs, we addition-

ally preserve the bottleneck bandwidth and minimum RTT

at the granularity of the connection.

• Parameter variables. Parameter variables are related to

the design of the CCA, which are basically fixed values

and will determine the performance. Therefore, we do not

perform any manipulation on these variables.

• Other variables. Other variables maintain CCA’s current

states, most of which are computed from observation vari-

ables. We migrate them based on the phase migration meth-

ods. The left ones are simply initialized to default values.

4 Implementation and Training
We implement Floo atop QUIC in the production environment

of Dianping service with O(10M) daily active users. We first

introduce the implementation of Floo (§4.1). Then, in order

to make our model applicable to real applications, we conduct

a large scale passive measurement on Dianping application

from Meituan, analyze the traffic patterns of the application

and use the collected application traces for training (§4.2).

Also, we train the RL-based CCA selection model with the

numerous newly collected real application traces and wireless

network traces (§4.3) to make Floo Selector module suitable

for real application scenarios.

4.1 Implementation

We implement Floo based on QUIC [29]2 in user space. Floo

only requires modification on the sender side. For the train-

ing phase, we implement Floo’s RL-Agent on top of Tensor-

flow [6]. After the training phase, we obtain the trained model,

which is used in Floo’s Selector module. The training phase

is well presented in §4.3.

As for the applications, we slightly modify Dianping to sup-

port Monitor module of Floo, then the modified Dianping can

run on top of Floo. We use it in real-world experiments (§5.3).

Additionally, we also implement a simple request-response

messaging application (Application S) atop Floo, which is

used in the training phase of Floo and all the emulated experi-

ments in §5. Application S generates requests and responses

according to the application traces introduced in §4.3.1. In

the training phase of Floo, Application S negotiates with RL

agent about the information of state, action, reward, etc. For

all the emulated experiments in §5, Application S employs

the well-trained model. The sender of Application S selects

CCA dynamically according to Floo’s Selector module.

CCA Candidates. We consider the CCAs that have been

deployed in real Internet environments as candidates for our

CCA selection policy. Firstly, for deployability, we mainly

consider widely-deployed CCAs, and thus choose the most

two widely-deployed [36] CCAs, Cubic and BBR. Secondly,

for effectiveness, CCA candidates should cover diverse QoS

metrics. Therefore, we also use the loss-resilient Westwood

2We use an IETF QUIC implementation, ngtcp2 [2].



and latency-sensitive Copa. These four CCAs have different

preferences for QoS targets (§2.1).

4.2 Application Dataset
We measure the traffic patterns of a real mobile application

in production environments. These measurements illuminate

the nature of request-response messaging traffic and provide

the basis for constructing CCA selection policies that can be

used for real applications.

We perform a large-scale passive measurement on Dian-

ping from Meituan. Users can make purchases through this

application, and the main user actions include searching, view-

ing images, etc. When the users are using the application,

the client establishes a persistent connection with a frontend

server, through which the application sends requests to the

frontend server. We instrument the mobile APP client of that

application, and after each request is completed, the instru-

mentation collects application-level logs and connection-level

logs describing the finished transport process. We collected

the logs of about 35 million request-response messages over

two weeks.

First, we found that the connections of the application are

persistent and would last 206s on average, which is much

longer than the SP, supporting Floo’s CCA selection. Then,

we present the characteristics of the mobile web service, i.e.

size and frequency of requests and responses sent through the

persistent connections between the client APP and the fron-

tend servers in Fig. 5. Fig. 5a shows the CDF of the request

size. As we can see, over 80% of the requests are less than

10 KB, indicating that most of the upstream traffic is small

and generally not the performance bottleneck. Fig. 5b shows

the CDF of the response size. The responses have a diverse

mix of small and large sizes with heavy-tailed characteristics.

For the response workload, more than 70% of the responses

are less than 10KB, but more than 60% of all bytes are in the

3.4% of responses.

Fig. 5c shows the time interval between the two consec-

utive sending of requests from the client. The inter-sending

time between requests reflects the density and diversity of

requests initiated by the application. Since this interval is

influenced by both user behavior and application character-

istics, we filter out the request initiation due to the user be-

havior. Specifically, the two requests with an inter-sending

time greater than 1 second are considered two clicks of the

user behavior. After filtering, as shown in Fig. 5c, 80% of the

request inter-sending intervals are less than 44ms, and 38.4%

of them are concurrent (0ms). Therefore, although most of the
requests and responses are tens to hundreds of kilobytes in
size, the bandwidth needs of the application are still high.

4.3 Training
Floo’s training goal is to learn one policy that can select an

appropriate CCA to achieve good QoE in diverse network

environments. That policy should be applicable to real appli-

cations over real network environments. For this purpose, we

Parameter Value Range (Min - Max)

RTT(ms) 10 - 50, 50 - 100, 100 - 150, 150 - 300

RTT Jitter / RTT 0 - 0.2, Jitter max = 20ms

Loss rate(%) 0 - 0, 0 - 0.1, 0.1 - 5

Buffer / BDP 0.3 - 0.9, 0.9 - 1.1, 1.1 - 1.5

Table 4: Network condition parameters.

use real application traces and real wireless traces for training

in a controlled emulated environment (§4.3.1). Further, we

use real QUIC implementations and Application S, instead

of network simulators (§4.3.2). This allows the RL agent to

have an experience close to that in real-world scenarios.

4.3.1 Trace and Training Settings
Application traces. We generate training application traces

based on the distribution of the statistics collected from the

measurements(§4.2). Specifically, we generate each request

and response based on the CDF of the request and response

size (Fig. 5a and 5b). The sending time of each request is

determined based on the CDF of the inter-sending intervals

(Fig. 5c). The server of Application S generates a correspond-

ing response and delivers it down to the transport layer im-

mediately after receiving a request. We train the RL model

with many episodes, and each episode lasts 10 minutes. We

generate a separate application trace for each training episode.

Network condition parameters. We use Mahimahi to em-

ulate network paths and Traffic Control (TC) [8] to emu-

late RTT jitter. We adopt the network traces collected and

used in previous works [3, 7, 30, 34, 38, 39, 47, 50], as listed

in Tab. 6. These traces are employed to emulate the time-

varying network path rate upper limit. They can be used to

emulate various network conditions including 4G and 5G in

both stationary and mobile scenarios.

Besides rate upper limit, RTT, RTT jitter, packet loss rate,

and buffer size are also common network condition parame-

ters [17, 52]. We select the values of these parameters using

the space-filling WSP algorithm [17,44] over the ranges listed

in Tab. 4. WSP algorithm could generate multiple sets of net-

work conditions based on the range of each parameter in

order to emulate network conditions as diverse as possible.

We generate 20,000 sets of network condition parameters. At

the beginning of each training episode, we randomly select a

network trace with one set of network condition parameters.

4.3.2 Training Method

We construct a training architecture consisting of learning

agents, Application S clients and Application S servers. The

client and server connecting to the same agent also establish a

QUIC connection through Mahimahi. We set the episode to 10

minutes, which is long enough for CCAs to converge. For each

training episode, the agent selects and configures the network

condition parameters of Mahimahi and the application traces

to be applied, as described in §4.3.1. The detailed training

method is depicted in Appendix C.



(a) Distribution of the request size. (b) Distribution of the response size. (c) Distribution of the inter-sending interval.

Figure 5: Distributions of request and response characteristics from the measurements depicted in §4.2.

5 Evaluation
We first introduce our experimental setup in §5.1. We then

evaluate Floo in the following aspects:

• Consistent high performance. We evaluate Floo over dif-

ferent scenarios. Evaluation shows that Floo achieves the

highest throughput and lowest delay under different net-

work conditions. Floo can reduce the application RCT by

up to 52.7% on average, and up to 78.16% at the tail (§5.2).

• Performance in the real world. We implement Floo in a

popular mobile web service and measure the performance

for 96 hours. Experiments with real users show that Floo

can reduce RCT by about 14.26% in the real world (§5.3).

• Overhead. Floo has acceptable overhead, with about 1.4%

additional CPU utilization and sub-ms magnitude of addi-

tional time consumption (§5.4).

• Improvement deep dive. Finally, we evaluate the effec-

tiveness of the design of Floo (§5.5).

5.1 Setup
We evaluate Floo in both emulated networks (§5.2, §5.4, §5.5)

and large scale production environment (§5.3).

Emulated environment. We evaluate Floo in a controlled en-

vironment by emulating different network conditions with

Mahimahi and generating new application traces. In our

testbed evaluation, we implement Application S atop Floo,

which sends requests and responses with application traces,

and collects statistics for evaluation. We conduct experiments

under 60 scenarios, including 10 stationary WiFi traces, 20

stationary cellular traces, and 30 mobile cellular traces. We

also use the WSP algorithm to select 60 sets of other param-

eters, using the same method as §4.3.1, and importantly, the

combinations of trace and parameter sets are different from

those traces used in training. We compare the performance

of Floo respectively with Cubic, BBR, Copa, Westwood and

Vivace [19]. In each scenario, we send requests and receive

responses using different algorithms for 3 minutes with the

newly generated application traces.

Large scale production environment. We implement Floo

in Dianping, with O(10M) daily active users. Our experiments

are conducted in production environment where clients are

heterogeneous including different OS, HTTP versions, etc.

We manually enable Floo for a fraction of users, measure the

performance for four days and collect 35 million request logs.

In the experiments, we set the selection period (SP) as 12s. A
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Figure 6: Floo achieves lower

RCT than QoS-oriented CCAs.

Figure 7: CPU utilization.

further analysis of the impact of different SP values is detailed

in Appendix F.

5.2 Consistent high performance
Here, we demonstrate that Floo achieves consistent high per-

formance over different network scenarios.

Overall performance. We evaluate Floo under different sce-

narios, with 60 real-world traces. We record the RCT and

show the performance of all scenarios in Fig. 6. For each

scenario, we compare the four CCA candidates, and select

the optimal CCA which achieves the lowest average RCT.

The aggregated best choices for all scenarios is presented as

Static_Opt. Floo achieves the lowest RCT, and reduces the

overall RCT by a median of 20.11% to 32.54% and 21.18% to

78.16% in the 90th percentile. The average RCT was reduced

by 14.3% to 52.7% compared with QoS-oriented CCAs.

Remark 1 (Cubic and Westwood): Floo reduces the av-

erage RCT by 52.7% compared to Cubic and 50.8% to West-

wood. For the 90 percentile (the tail) RCT, Floo shows great

improvement, and has a 74.6% reduction compared to Cubic

and 78.18% to Westwood. This is because that different types

of CCA have different scopes of application. Empirically

speaking, the performance of loss-based CCAs (i.e. Cubic

and Westwood) degrades with high RTT and random packet

loss, and will suffer longer tail latency. The improvement of

Floo in the tail RCT demonstrates its selection accuracy to

not use Cubic/Westwood when the network condition is poor.

Remark 2 (Copa and BBR): Compared to Copa and

BBR, Floo reduces the average RCT by 20.53% and 14.3%

respectively. For the 90 percentile (the tail) completion time,

Floo has a 21.18% reduction compared to Copa and 21.57% to

BBR. The improvement of Floo over the four CCA candidates

validates the accuracy of our Selector module.
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Figure 8: A set of transport layer results for the three scenarios.

(a)(b)(c) present the normalized avg. delay, and avg. throughput,

where the dashed line represents the Pareto front of baselines. (d)

presents the standard deviations of the overall results.

Remark 3 (Static_Opt): Floo can adapt to variable and

dynamic network scenarios, and switch to a better CCA dur-

ing the connection whenever the network condition changes.

Therefore, Floo obtains better performance than statically

optimal selection (9.6% reduction in avg. RCT). The advan-

tage of Floo over Static_Opt demonstrates the need for CCA

switching during the connection.

Remark 4 (Vivace): Vivace is also designed for perfor-

mance. Therefore, we adopt Vivace as a baseline to evaluate

Floo’s ability to improve application QoE. Results show that

Floo achieves 17.72% lower RCT on average than Vivace,

and 25% reduction in the 90th RCT. This is because Vivace

still focuses on transport layer metrics and the utility func-

tion of Vivace is not consistent with the QoE. In addition,

the penalty for packet loss and latency in the utility function

makes Vivace less resistant to random packet loss.

Transport layer performance under different scenarios.
In our emulated experiments, we consider three scenarios, in-

cluding stationary cellular scenario, highly variable scenario

and unseen WiFi scenario. We analyze the transport layer

metrics under different scenarios. We consider two perfor-

mance metrics: average smooth RTT and average throughput.

For each scenario, we normalize the RTT and throughput

performance of all CCAs (including Floo) to the minimum

delay and maximum throughput achieved on that scenario,

respectively. Then, we average all normalized values over all

scenarios and show the results in Fig. 8. More detailed results

are presented in Appendix E.

• Stationary cellular scenarios. In our evaluations, there

are 20 traces of the stationary cellular network, including

indoor [34] and outdoor [7] traces (Fig. 8a).

• Highly variable scenarios - mobile cellular. Similarly, we

tested 30 mobile cellular traces, which are highly variable

scenarios (Fig. 8b). These traces are collected when walk-

ing and driving under 4G [7] and 5G mmWave [38]. We

also adopt the 4G measurements on high-speed rails [30] to

construct a scenario with violently fluctuating bandwidths.

• Unseen scenarios - WiFi. To evaluate the behavior of Floo

in unseen scenarios (Fig. 8c), we use WiFi traces that have

not been employed in the training, We used 10 WiFi traces

from [35], including traces from office and a public WiFi

provided by a crowded restaurant during dinner hours.

Results show that Floo generally achieves the highest

throughput with the lowest latency under different scenarios.

Even in unseen scenarios, Floo shows advantages, demon-

strating Floo’s generalization capability. The improvement

of Floo demonstrates that, besides QoE improvements, di-

rectly optimizing the application QoE through CCA selection

approach can further improve transport layer capabilities.

We also present the stability of throughput and RTT (i.e.,

the standard deviation of the normalized average throughput

and RTT) of each CCA under all scenarios in Fig. 8d. Results

show that Floo could almost achieve stable high performance

in all three scenarios, especially in terms of latency.

5.3 Real-world performance

We implement Floo in Dianping with O(10M) daily active

users. We manually enable Floo for a fraction of users. Specif-

ically, we deployed Floo on the front-end server to serve the

persistent connection between the front-end server and the

client. We enabled Floo for 5% of the users for evaluation.

Besides Floo, we also implement a Floo with Part Switching

(P-Floo), enable P-Floo for another 5% users and evaluate

the effectiveness of switching algorithms. As a comparison,

we set up another 5% of the users to use Cubic, BBR, Copa,

Westwood and Vivace respectively. We collect logs for 96

hours, resulting in more than 35 million request logs, cover-

ing users from more than 50 countries and regions. We collect

RCT from client side and the results are shown in Fig. 9 and

Fig. 10.

Floo is still able to reduce the RCT and obtain optimal

performance in real-world scenarios. Floo achieves a QoE

improvement of 8.07% to 14.26% in real scenarios, with a

reduction of about 25.5% for tail RCT. The difference in RCT

between the real scenario and the emulated evaluation mainly

comes from the different distribution of network conditions.

For emulated evaluation, we aim to cover various network

conditions by selecting as diverse network environments as

possible. In contrast, the network states in the real scenario

are not uniformly distributed. We found that there are about

57.89% of scenarios are under better network conditions (i.e.,

packet loss rate is 0% and min RTT is less than 44ms). There-

fore, unlike the significant advantage of Copa in the emulated



Figure 9: In real world experiments, Floo

brought 12.9% reduction on average RCT.

Figure 10: Floo reduces 25.5% of the 99th

percentile (the agestail) completion time.
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Figure 11: The probability of switching

types of different user groups.

Part CPU utilization (%) Time Consumed (μs)

Network Monitor 0.784 (3.109) 47.4375

Selector 0.431 (3.540) 66.1875

Switcher 0.233 (3.773) 19.5625

Table 5: CPU overhead and time consuming of Floo.

scenario, Cubic and Westwood obtains a lower average RCT

in the real world. As a result, the improvement brought by

Floo in real world is a little lower.

We count the switching frequency and types in the real

world in Fig. 11. With the SP of 12s, the probability of a CCA

switching occurring at selecting is 25.76%, which implies an

average switching interval of about 47s. Among the switching,

the mutual switching between Copa (Cp) and Cubic (Cbc) is

the most frequent, with more than 74% of the switching being

Cubic to Copa and more than 23% being Copa to Cubic. We

group users based on the location of CDN nodes they access.

The results of switching frequency and actions in different

groups are similar.

5.4 Overhead
We report the CPU utilization and runtime overhead of Floo.

CPU utilization. We measure the system overhead of Floo

and compare it with other state-of-the-art CCAs. We performe

experiments on an emulated network (with 48Mbps bottle-

neck link and 20ms RTT) for 6 minutes. We measure the

average CPU utilization with real application traces and a

long flow separately and show the results in Fig. 7. All algo-

rithms are implemented atop QUIC in user space. Although

Floo has a higher overhead compared to classical CCAs, how-

ever, compared to Cubic, which has the lowest overhead, the

additional overhead is only 1.4%.

We measure the CPU utilization of each part by incremen-

tal experiments. Specifically, we separately measure the CPU

utilization of only Monitor module, Monitor module with Se-

lector module, and the complete Floo. We define the computed

overhead of each part as the difference in CPU utilization (%)

between two measurements. The results are shown in Tab. 5.

Time consuming. We show the time consumed by recording

the time spent for each module. Tab. 5 presents the results

taken as an average across 16 runs. We see that the additional

consumed time introduced by Floo is at the sub-millisecond

level, which is much less frequent than that of CCA selection

(about 38.9s on average in our testbed experiments). Specifi-

cally, Selector module takes the most time (about 66μs) be-

cause of the complex calculations for CCA selection. Monitor

module also consumes about 47μs to collect the additional

information. Switcher module executes the state migration

mechanism, which consumes about 19us.

5.5 Floo deep dive
Here, we evaluate the effectiveness of Floo’s design of state

migration, generalizability to other QoE metrics and resilience

to stochastic packet loss.

5.5.1 Effectiveness of state migration
Functional validation. Floo encounters situations where the

path conditions change during transmission and switching-

on-fly is required. To evaluate the effectiveness of Floo’s state

migration algorithm, we manually set the CCA switching

every 20s and switch between all CCAs in an emulated en-

vironment. We compare Full Switching and Part Switching

under 60 different scenarios.

Fig. 12 shows the details of the congestion control switch-

ing process. We show the performance of switching from

BBR to Copa, and to Cubic. We do not show additional details

of Westwood, since Westwood is basically similar to Cubic in

terms of algorithm design. As described in §2.3, packet loss

occurs under Part Switching when switching occurs without

convergence. In addition, Copa maintains a high CWND and

thus experiences a high RTT with packet loss due to the dis-

tortion of estimation of path conditions. Full Switching, as

shown in Fig. 12, avoids these problems and maintains the

CCA characteristics consistent with their design. Specifically,

when switching to Copa (Fig. 12b), Floo is able to decrease

the CWND within 1 second, thus quickly emptying the queue

built by BBR and maintaining low latency. When switching

to BBR (Fig. 12d), Floo first enters the ProbeRTT phase so as

to obtain the RTProp, which the prior CCA did not maintain

earlier. After that, BBR does not enter the Startup phase, but

gradually converges with the ProbeBW phase.
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Figure 12: Details of Full Switching. (a)(c) Full Switching statistics

of CWND, smooth RTT and loss event. (b) Detailed CWND of Full

Switching from BBR to Copa. (d) Detailed CWND of Full Switching

from Cubic to BBR.

Performance analysis. We compare the performance of Full

Switching and Part Switching in both emulated and produc-

tion environments. Fig. 13 shows the distribution of packet

loss rate within 1 second after the switching in the emulated

environment. Part Switching leads to more packet loss, while

Full Switching significantly reduces the packet loss rate, es-

pecially when switching from Cubic to the low-latency algo-

rithms, i.e. BBR and Copa. For real-world experiments, Fig. 9

shows that the average RCT is reduced by about 7.59% with

Full Switching compared to Part Switching.

5.5.2 Generalizability to other QoE metrics

We change QoE to tail RCT in order to analyze Floo’s ability

to generalize to other QoE metrics. Accordingly, we set Re-

ward as R = ln
Last RCTp90

Current RCTp90
and retrain a new RL model. We

evaluate Floo-P90 under the same 60 scenarios as §5.2. For

each scenario, we record the RCT of total requests, the RCT

at the 50th percentile, and the RCT at the 90th percentile3,

respectively. We gather the value of all scenarios in Fig. 14.

Floo-P90 is not as good as Floo in terms of total perfor-

mance of all requests. However, for the 90th percentile RCT,

Floo-P90 has a significant improvement, with a reduction of

21.78% on average. Compared to Floo, Floo-P90 selects Cu-

bic less frequently by 6.03%, while the frequency of using

BBR, Copa and Westwood increased by 4.02%, 1.0% and

1.0%, respectively. This is because the loss caused by Cubic

when filling the buffer can result in a long RCT, while BBR

are relatively conservative. As a comparison, Floo reduces

RCT at the 50th percentile by about 19.49% compared to

3We do not compare the 90th percentile RCT of all secnarios because it

represents the performance under poor network scenarios.

Floo-P90. The above results show that with our mechanism,

there can be a significant improvement on the target QoE

metric. See §7 for more analysis on generalization ability.

5.5.3 Resilience to stochastic packet loss

We also analyze Floo’s resilience to stochastic packet loss.

Stochastic packet loss often occurs under cellular networks

due to channel interference, mobility, etc [24, 51]. We evalu-

ate the performance of Floo with a single flow on a link with

4 Mbps bandwidth, 20 ms RTT, 10 KB buffer, and varying

random loss rate from 0% to 10%. As shown in Fig. 15, Floo

still maintains a low RCT when the stochastic loss rate is set

to 10%. It is worth mentioning that Vivace maintains a low

RCT until a loss rate of about 4%. After that, corresponding

to the 5% loss resistance in the utility function [19], the aver-

age RCTs increase dramatically, even up to 9.5 times of the

no packet loss case. In addition, the performance of Vivace

suffers uncertainty and instability with random packet loss.

6 Related Work
QoE-oriented transport-layer optimization. There are

many other ways to conduct QoE-oriented transport opti-

mization [18, 19, 33], while conveying QoE to transport layer

by CCA selection is more appropriate. QoS, the target of

transport optimization, is reflected in the behaviors in the

network, e.g. how to utilize the bottleneck queue, where

CCA is the most effective procedure to control. For example,

better packet scheduling could improve the host queueing

time through reordering the packets [16]. However, packets

from one application always have the same QoE, leaving

little optimization space for packet scheduling. And flow con-

trol schemes could also decide the sending rate, while it is

not aware of network behaviors. Therefore, conveying QoE

through CCAs is more appropriate.

QoE-oriented CCAs. We are not the first to observe that

CCAs should be optimized towards application QoE. One line

of solution is to integrate application design and the transport

layer behavior [13, 21]. However, these works are designed

for specific applications and redesign is needed if designers

want to migrate their good performance to other applications.

There are also proposals to use application requirements, such

as deadline [55] and priorities [56], to guide the design of

CCA at the transport layer. However, they can only be used for

application requirements that can be directly understood by

the transport layer. For example, deadline can be identified as

the data delivery time, which the transport layer can estimate

and optimize directly from RTT and packet loss events. For

the complex QoE metrics, a possible solution is to adopt

mature algorithms, such as reinforcement learning, yet we

found it impractical. If we put translated QoS as the goal

of RL [7, 26], the gap between QoE and QoS remains. If

we put QoE as the goal of the RL, the indirect and distant

connection between QoE and cwnd/rate decisions makes the

training extremely hard to converge. RL-based CCAs also
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significantly reduces the 90th percentile

RCT by 21.78% on average.
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have interpretability issues in the wild. Therefore, Floo adopts

CCA selection mechanism to bridge the gap between the

complex, application-oriented QoE and the direct, transport

capability-oriented QoS.

CCA-selection methods. There has been some work that

adopts CCA selection methods [15,20,42,57]. Existing works

still aim to optimize transport layer performance. However,

as stated in §2.1, QoS-driven CCA-selection methods will

suffer performance degradation when selection criteria are not

entirely consistent with QoE. In addition, existing schemes

cannot address the two challenges (§2.3) well. Their selection

policy generation methods do not consider QoE, and they

could not support seamless switching either.

Advanced CCAs for mobile web service. In recent years,

many advanced CCA schemes have been proposed, includ-

ing CCAs specifically designed for wireless network, such

as Sprout [50], Verus [53], and emerging learning-based

CCAs [7, 19]. However, these CCAs are still oriented to opti-

mize the transport layer performance and do not address the

QoS and QoE mismatch. Moreover, considering the practi-

cal issues [7, 15] and unproven performance in production

environments, we did not consider them as CCA candidates.

7 Discussion

Generalization to heterogeneous applications and scalabil-
ity to various CCAs. In this paper, we propose a solution for

mobile web service, aiming to reduce RCT, and using four

classical CCAs as candidates. In fact, Floo could be applied to

heterogeneous applications and various CCAs. For example,

for streaming applications, Floo can be reused by consider-

ing a chunk as a request. For complex QoE, as long as we

could extract the traces, characteristics, and the QoE metric

of the application, Floo can theoretically be used for any ap-

plication without any idea of the implementation details and

optimization techniques of the application. For CCAs, Floo

can incorporate various CCAs into the selection mechanism.

Nevertheless, CCA state migration has to be considered. Our

design in §3.4 can be extended to all non-learning algorithms.

However, generalizing to complex applications and switching

between complex CCAs are not designed and verified in this

paper, and are future work.

Fairness and friendliness. Floo selects among various CCAs,

and the fairness and friendliness of Floo is consistent with

that of the CCA candidates. In this paper, we select from

the deployed CCAs, which already has had theoretical and

experimental analysis of fairness and friendliness [9, 11, 48].

Portability to TCP in Linux kernel. Although Floo is im-

plemented atop QUIC, Floo can still be applied to TCP im-

plementation in Linux kernel. Firstly, eBPF technique [1, 10]

provides a safe and convenient way to interact between user

space and kernel. One can imagine that Floo works in user

space, extracts information from the kernel and delivered the

selected CCA to the kernel. The state migration mechanism,

on the other hand, requires further modifications to the kernel.

Secondly, as for the integration with mechanisms specific for

TCP or QUIC, e.g., multi-streaming in QUIC, Floo is orthog-

onal to pre-CCA optimizations. Therefore, for implementing

Floo over TCP without pre-CCA optimizations, Floo can also

select the appropriate CCAs in respective situations.

8 Conclusion
We propose Floo, a QoE-oriented CCA selection mechanism

for mobile web service. Floo uses QoE as the selection cri-

terion and employs RL techniques to construct the mapping

from the transport layer and application layer metrics to CCAs.

Floo switches smoothly during the transmission. We imple-

ment Floo in a popular mobile web service, and evaluate Floo

in both emulated and production environments. Experiments

show that Floo reduces the RCT by 14.3% to 52.7% in differ-

ent scenarios.

This work does not raise any ethical issues.
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A Learning Algorithm of Floo
Floo’s agent interacts with the environment, gets a series of

trajectories ((state, action, reward) or (s, a, r) for short), and

updates the policy according to the information of its interac-

tion. Upon receiving state (st), Floo’s agent needs to choose

a corresponding action (at), i.e. one CCA, and will get the

reward(rt ) in the next step. The policy that Floo’s agent used

to choose an action, is defined as the probability distribu-

tion of actions: π(st ,at)→ [0,1]. π(st ,at) is the probability

of taking action at in state st . Then the agent uses the PPO

algorithm to update the parameter θ of the policy π. The PPO

algorithm is optimized from the policy gradient methods [46],

which estimates the gradient of the expected total reward by

observing the trajectories obtained by following the policy.

The gradient of Policy Gradient can be computed as:

∇θJ(θ) = E(st,at)∼πθ

[
Aθ (st,at)∇ logπθ (a

n
t | sn

t )
]

(1)

Aθ (st,at) is the Advantage Function, which represents the

difference in the expected total reward when we choose action

at in state st , compared to the expected total reward for the

action drawn from policy πθ.

Policy Gradient is an on-policy method where the collected

sample (st , at , rt ) is used only once. In order to make full use

of the training data and improve the learning efficiency, PPO

extends the Policy Gradient method. The original policy is

denoted as πθ, and when the gradient ∇θJ(θ) is applied to the

original policy πθ, the new policy is denoted as πθ′ . At this

point, if we want to reuse the data generated by the policy

πθ to update πθ′ , considering the different distributions of

trajectories in πθ′ and πθ, an importance sampling method is

needed:

Ex∼p[ f (x)] = Ex∼q

[
f (x)

p(x)
q(x)

]
(2)

Therefore, the gradient of the off-policy is calculated as fol-

lows, with the parameters before and after the update denoted

as θ and θ′:

∇θJ(θ) = E(st,at)∼πθ ′

[
πθ (at | st)

πθ′ (at | st)
Aθ′ (st,at)∇ logπθ (a

n
t | sn

t )

]

(3)



Trace Year Type (Num) Stationary / Mobile Description

Lumos [38, 39] 2020 4G (166), 5G mmWave (121) Stationary, Mobile (walking, driving) Verizon’s 4G and 5G service in Minneapolis.

NYC [7] 2019 4G LTE (23) Stationary, Mobile (bus, taxi) Cellular traces gathered in NYC.

PiTree [34] 2019 4G(61) Stationary Measurement of indoor 4G bandwidth.

HSR [30] 2018 4G (33) Mobile (high-speed rails) 4G measurements on high-speed rails.

FCC18 [3] 2018 4G (397) Stationary The broadband network in 2018 provided by FCC.

Ghent [47] 2016 4G (40) Mobile (foot, bicycle, bus, tram, train, car) 4G measurements in 2016 by Ghent University.

Table 6: The description of the real network traces.

The objective function is calculated as Eq. (4). To ensure

that the difference between the policy before and after the

update is not too large, PPO adds a constraint to the objective

function. The clip function forces
πθ(at |st)

πθ′(at |st)
between 1− ε and

1+ε, and finally takes the minimum value among the rewards

that have been clipped and those that have not been clipped.

Jθ′(θ) = ∑
(st ,at )

min(
πθ(at | st)

πθ′(at | st)
Aθ′(st ,at),

clip(
πθ(at|st)

πθ′(at|st)
,1− ε,1+ ε)Aθ′(st,at))

(4)

The detailed derivation and sample code can be found in [5,

45].

B Real Network Traces
Tab. 6 shows the traces used in Section 4.3.1.

C Detailed Training Method

Figure 16: The workflow of the training phase of Floo. Multiple

(Agent, Server, Client) sets run simultaneously.

We construct a training architecture as shown in Fig. 16.

Each learning agent (Agent in Fig. 16) establishes two connec-

tions with an Application S client (Client in Fig. 16) and an

Application S server (Server in Fig. 16) respectively, commu-

nicating about the experimental configurations and training

trajectories. Each server/client only connects to one agent.

The client and server connecting to the same agent also estab-

lish a QUIC connection through Mahimahi. For each training

episode (10 min), the agent selects and configures the net-

work condition parameters of Mahimahi and the application

traces to be applied, as described in §4.3.1. During the inter-

action between the client and the server, the agent receives

the states and rewards from the server and client respectively,

and selects the corresponding action (i.e., CCA) based on the

acquired state. The selected CCA is switched smoothly by

Floo on the server.

To accelerate the training and improve the generalization

performance of the RL model, we employ a distributed frame-

work. We distribute 10 (Agent, Server, Client) sets. All the

agents, servers, and clients are deployed in a cluster. These

servers/clients are connected to the agents with high-speed

links. Each agent observes a series of trajectories, and contin-

uously sends the tuples (state, action, reward) to the central

agent. The central agent then uses the PPO algorithm to com-

pute the gradients (Eq. (3)) and updates the parameters in the

selection model (Eq. (4)). The updated model will be pushed

to each agent and will be used for the next episode. Tab. 7 in

Appendix D shows the detailed model and parameters used

during the training.

D Training Setting
Floo uses an actor-critic architecture. Floo’s actor, taking state

and outputting action, use one hidden layer with 200 units.

The output layer is a softmax layer to map to probabilities

of actions. The critic networks, taking state and outputting V

values, have one hidden layer with 200 units. The output layer

is a linear unit representing the V function. All hidden layers

in actor and critic networks are followed by Leaky ReLU

nonlinearity. Tab. 7 shows other parameters used during the

training of Floo.

Parameter Value

Optimizer Adam

Episode duration 10min

Actor’s Learning Rate 0.0001

Critic’s Learning Rate 0.0002

Discount Factor 0.99

ε in clip function 0.2

Table 7: Parameters used for the training.

E Detailed Results in Emulated Experiments
Our emulated experiments involve three scenarios: stationary

cellular scenario, highly variable scenario and unseen WiFi

scenario. We analyze the transport layer metrics, including

average smooth RTT and average throughput. For each sce-

nario, we normalize the RTT and throughput performance of

all CCAs (including Floo) to the minimum delay and maxi-

mum throughput achieved on that scenario, respectively. We

show the normalized results in Fig. 17a, Fig. 17c and Fig. 17e.

The ellipse indicates the standard deviations from the average
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(b) Trace from PiTree [34].
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(c) Highly variable scenarios.
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Figure 17: The detailed transport layer results for the three scenarios.

(a)(c)(e) presents the normalized avg. delay, and avg. throughput.

The center of each ellipse shows the average value of each CCA,

while the ellipse indicates the standard deviations from the average

values and their covariance. (b)(d)(f) shows the avg. delay (icons),

90% tile delay (end of lines), and avg. throughput of a sample.

values of the RTT and the throughput and their covariance4.

Floo can not only achieve lower latency and higher through-

put, but also obtain a smaller ellipse than other CCAs, which

denotes better stability and consistency. In Fig. 17b, Fig. 17d

and Fig. 17f we also depict the avg. delay (icons), 90% tail

delay (end of lines), and avg. throughput of three typical sam-

ple traces. Under all three scenarios, Floo achieves excellent

performance both in delay and throughput.

F Analysis of Selection Period.
Here, we investigate the impact of SP value on the perfor-

mance and overhead of the mechanism. Intuitively, the SP

determines the frequency of Floo monitoring network and

application states, and selecting CCAs. SP should be consis-

tent with the granularity of the application QoE and should

also consider the network fluctuation. To this end, we vary

the SP and record its impact on application performance. We

4Note that RTT/RTT_Min ∈ [1,∞), and Thp/Thp_Max ∈ [0,1). The ellipse

may exceed the range, but the outlier part is actually not sampled.

5ACK
10ACK

20ACK1s 3s 6s 12s 24s
0

25

50

75

100

125

S
w

itc
hi

ng
 In

te
rv

al
 (s

)

0.4

0.5

0.6

0.7

0.8

0.9

1.0

M
ea

n 
R

C
T 

(s
)

Mean RCT

Figure 18: Avg. RCT (red line) and switching intervals distribution

across diff. SPs

vary the SP from the fine-grained ACK level to the coarse-

grained second-level. To report the performance, we conduct

experiments in 60 scenarios and record the RCT and CCA

switching interval. Note that if no switching has occurred in

one scenario, the switching interval is counted as the duration

of that experiment (120s).

Fig. 18 depicts the results. QoE gradually improves with

the growth of the SP. The performance of ack-level selection

is worse. We find that even for fine-grained ack-level SP, the

granularity of CCA switching interval is at the second-level,

with a median of about 5 to 10 seconds and an average value of

more than 16 seconds. The QoE results are consistent with the

frequency of CCA switching. This is because the fine-grained

data estimation is susceptible to outliers, and cannot reflect

the real path condition and application performance. On the

other hand, the frequency of CCA selection is higher than that

of request sending, which could lead to meaningless CCA

switching. However, long SP, such as 24s, is challenged to

capture and react to the instant changes in network conditions

and application performance. In 96% of the scenarios, the

SP of 24s does not switch during the connection. Therefore,

long SP could not achieve good performance. As for the CPU

utilization, experiments show that SP has little impact on the

overhead. The difference in CPU utilization between different

SPs is less than 0.28%. To have a balanced performance

and overhead, we set a fixed SP of 12s in this paper, which

represents the minimum switching period.


